
IContents

I

© 2024 Devart

Table of Contents
Part I Overview 1

Part II What's new 2

Part III Installation 3

... 31 Windows

... 42 Linux

... 43 macOS

Part IV Activation 5

... 51 Activate a license

... 62 View the license details

... 63 Deactivate a license

Part V Using the module 6

Part VI Connection parameters 7

Part VII Connection pooling 8

Part VIII Secure connection 10

... 101 SSL/TLS connection

... 132 SSH tunneling

... 163 HTTP tunneling

Part IX Data types 18

Part X Class reference 19

... 191 Module class

... 302 Module additions

... 393 Connection class

... 434 Cursor class

... 525 Connection pool class

Part XI Support 54

Part XII Licensing 56

Part XIII Uninstall the connector 60

Python Connector for PostgreSQLII

© 2024 Devart

Index 0

Overview 1

© 2024 Devart

1 Overview

Overview
Python Connector for PostgreSQL is a connectivity solution for accessing PostgreSQL

databases from Python applications. It fully implements the Python DB API 2.0 specification.

The connector is distributed as a wheel package for Windows, macOS, and Linux.

Direct connection

The connector enables you to establish a direct connection to PostgreSQL from a Python

application via TCP/IP, eliminating the need for the database client library. A direct connection

increases the speed of data transmission between the application and PostgreSQL database

server. It also streamlines the deployment process since you don't have to distribute any

client libraries with the application.

Secure communication

The connector supports encrypted communications using SSL/TLS, SSH tunneling, and

HTTP/HTTPS tunneling.

Compatibility
Python versions from 3.7 to 3.12

PostgreSQL versions:

PostgreSQL 8.0-16

Python Connector for PostgreSQL2

© 2024 Devart

Microsoft Azure Database for PostgreSQL

Amazon RDS for PostgreSQL

Amazon Aurora

Google Cloud for PostgreSQL

Heroku Postgres

AlloyDB

SQLAlchemy

pandas

petl

Supported platforms
Windows 32-bit and 64-bit

Windows Server 32-bit and 64-bit

macOS 64-bit and ARM (Apple M1 and M2)

Linux 64-bit

Note: For details on supported OS versions, check the compatibility page of your Python

version.

© 2022-2024
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

2 What's new

Python Connector for PostgreSQL 1.2
Added support for Python 3.13

Added support for PostgreSQL 17

Added support for the pgvector extension

Added Read Only mode for connection

https://www.devart.com/company/contactform.html?category=0&product=python/postgresql
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/postgresql/feedback.html

What's new 3

© 2024 Devart

Python Connector for PostgreSQL 1.1
Added support for PostgreSQL 16

Added connection pooling

Added activation with a license key

Added the subscription license type

Python Connector for PostgreSQL 1.0
Initial release of Python Connector for PostgreSQL

Added support for Windows 32-bit and 64-bit

Added support for Windows Server 32-bit and 64-bit

Added support for macOS 64-bit and ARM (Apple M1 and M2)

Added support for Linux 64-bit

© 2022-2024
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

3 Installation

3.1 Windows

Install the connector on Windows
1. Download the zip archive.

2. Extract the contents of the archive.

3. Open Command Prompt.

4. Verify that you have the pip package installer on your system using the py -m pip --

version command. If you don't have it, run the following command to install pip.

python -m ensurepip --upgrade

5. In Command Prompt, navigate to the directory that contains the extracted wheel packages.

6. Install the package:

Windows 32-bit

https://www.devart.com/company/contactform.html?category=0&product=python/postgresql
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/postgresql/feedback.html
https://www.devart.com/python/postgresql/download.html

Python Connector for PostgreSQL4

© 2024 Devart

pip install devart_postgresql_connector-1.0.1-cp312-cp312-win32.whl

Windows 64-bit

pip install devart_postgresql_connector-1.0.1-cp312-cp312-win_amd64.whl

© 2022-2024
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

3.2 Linux

Install the connector on Linux
1. Download the zip archive.

2. Extract the contents of the archive.

3. Open a terminal window.

4. Verify that you have the pip package installer on your system using the py -m pip --

version command. If you don't have it, run the following command to install pip.

python -m ensurepip --upgrade

5. In terminal, navigate to the directory that contains the extracted wheel package.

6. Install the package.

pip install devart_postgresql_connector-1.0.1-cp312-cp312-manylinux_2_34_x86_64.whl

© 2022-2024
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

3.3 macOS

Install the connector on macOS
1. Download the zip archive.

2. Extract the contents of the archive.

3. Open a terminal window.

4. Verify that you have the pip package installer on your system using the py -m pip --

version command. If you don't have it, run the following command to install pip.

https://www.devart.com/company/contactform.html?category=0&product=python/postgresql
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/postgresql/feedback.html
https://www.devart.com/python/postgresql/download.html
https://www.devart.com/company/contactform.html?category=0&product=python/postgresql
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/postgresql/feedback.html
https://www.devart.com/python/postgresql/download.html

Installation 5

© 2024 Devart

python -m ensurepip --upgrade

5. In terminal, navigate to the directory that contains the extracted wheel package.

6. Install the package.

pip install devart_postgresql_connector-1.0.1-cp312-cp312-macosx_10_9_universal2.whl

© 2022-2024
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

4 Activation

4.1 Activate a license

Activate a license
1. Obtain an activation key using either of the following methods:

Copy the activation key that you received in an order confirmation email.

Obtain the activation key on the customer portal:

1. Log in to the customer portal using the login credentials from an order confirmation

email.

2. Click the name of the purchased product on the Products page to view the license

details.

3. Click Copy to clipboard under Activation key.

2. Start the Python shell.

3. Import the module.

import devart.postgresql

4. Specify the activation key using the activate() module method.

devart.postgresql.license.activate("<your_activation_key>")

5. (Optional) View the license details.

print(devart.postgresql.license.summary)

© 2022-2024
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

https://www.devart.com/company/contactform.html?category=0&product=python/postgresql
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/postgresql/feedback.html
https://secure.devart.com/
https://www.devart.com/company/contactform.html?category=0&product=python/postgresql
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/postgresql/feedback.html

Python Connector for PostgreSQL6

© 2024 Devart

4.2 View the license details

View the license details
1. Start the Python shell.

2. Import the devart.postgresql module.

import devart.postgresql

3. Print the value of the summary module attribute.

print(devart.postgresql.license.summary)

© 2022-2024
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

4.3 Deactivate a license

Deactivate a license
1. Start the Python shell.

2. Import the devart.postgresql module.

import devart.postgresql

3. Deactivate your license using the deactivate module method.

devart.postgresql.license.deactivate()

© 2022-2024
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

5 Using the module

Using the module
To retrieve data from a database:

1. Import the module.

import devart.postgresql

2. Connect to a database using the connect() module method and obtain a connection

https://www.devart.com/company/contactform.html?category=0&product=python/postgresql
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/postgresql/feedback.html
https://www.devart.com/company/contactform.html?category=0&product=python/postgresql
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/postgresql/feedback.html

Using the module 7

© 2024 Devart

object.

my_connection = devart.postgresql.connect(

 Server="your_server",

 Database="your_database",

 UserId="your_username",

 Password="your_password"

)

3. Create a cursor object using the cursor() connection method.

my_cursor = my_connection.cursor()

4. Execute the SQL statement using the execute() cursor method.

my_cursor.execute("SELECT * FROM employees")

5. Retrieve the result set using one of the fetch*() cursor methods.

for row in my_cursor.fetchall():

 print(row)

© 2022-2024
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

6 Connection parameters

Connection parameters
The following table describes the PostgreSQL connection parameters you can use in the

connect() module method.

Paramet
er

Description

Server The server name or IP address

Port The port number. The default value is 5432.

UserId The name of the database user

Password The password of the database user

https://www.devart.com/company/contactform.html?category=0&product=python/postgresql
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/postgresql/feedback.html

Python Connector for PostgreSQL8

© 2024 Devart

Database The name of the database

Schema The schema search path. The default value is public.

Protocol

The version of the PostgreSQL messaging protocol.

The possible values are pvAuto, pv30, and pv20. The default value is

pvAuto.

PoolId The ID of a connection pool that will be used for a particular connection

DisablePo

oling

Disables connection pooling for a particular connection.

The possible values are True and False. The default value is False.

© 2022-2024
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

7 Connection pooling

Connection pooling
Connecting to a database server typically consists of several time-consuming steps.

Connection pooling can significantly improve the performance and scalability of an application

by reducing the number of times that new database connections must be opened. This is

particularly useful for applications that involve many connect/disconnect operations.

Connection pooling uses a cache of database connections, which enables an application to

reuse a connection from a pool instead of opening a new connection when future requests to

the database are required.

When you close a connection object using the close() method, the connection remains alive

and is added to a pool. When a new connection object is created with the connect() method,

the module returns an existing connection from the pool if the connection pooler hasn't

detected the severed connection and marked it as invalid. A new connection will be

established if the pool is empty or doesn't have a valid connection.

To enable connection pooling, set the value of the connection_pool.enabled module

attribute to True. Additional options include connection_pool.min_size,

connection_pool.max_size, connection_pool.lifetime, and

connection_pool.validate. For more information about these attributes, see the

https://www.devart.com/company/contactform.html?category=0&product=python/postgresql
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/postgresql/feedback.html

Connection pooling 9

© 2024 Devart

connection pool class.

The following example sets the attributes for the default connection pool, which implicitly has

the ID 0.

devart.postgresql.connection_pool.min_size = 0
devart.postgresql.connection_pool.max_size = 1000
devart.postgresql.connection_pool.lifetime = 60000
devart.postgresql.connection_pool.validate = True
devart.postgresql.connection_pool.enabled = True

You can define several connection pools with different settings. To define settings for a

connection pool with a particular ID, use the syntax connection_pool[pool_id: int],

where pool_id is the ID of the pool. You can also pass the PoolId connection string

parameter to specify which connection pool will be used for a particular connection.

devart.postgresql.connection_pool[42].max_size = 100
devart.postgresql.connection_pool[42].lifetime = 120000
devart.postgresql.connection_pool.enabled = True
my_connection = devart.postgresql.connect("Server=your_server;Database=your_database;UserId=your_username;Password=your_password",PoolId=42)

Database connections belong to the same pool when they have identical parameters in the

connection string. Two connections with different connection string parameters will be placed

into separate pools with the same identifiers. The connector creates a separate pool when a

new connection has the same pool ID as an existing pool but different connection

parameters.

The connection_pool.enabled attribute is global. If pooling is enabled, all new connections

will be pooled. Pooling can be disabled for a particular connection using the DisablePooling

connection string parameter.

my_connection = devart.postgresql.connect("Server=your_server;Database=your_database;UserId=your_username;Password=your_password",DisablePooling=True)

Database connections in a pool are validated every 30 seconds to ensure that a broken

connection won't be returned from the pool when a connection object is constructed. Invalid

connections are destroyed. The connection pooler also validates connections when they are

added or released back into the pool (for example, when you call the connection.close()

method).

If you set the validate attribute to True, connections will also be validated when they're

drawn from the pool. In the event of a network issue, all connections to a database may

become broken. Therefore, if a fatal error is detected in one connection from the pool, the

pooler will validate all connections in the pool.

Python Connector for PostgreSQL10

© 2024 Devart

The pooler removes a connection from the pool after it's been idle for approximately 4

minutes. If no new connections are added to the pool during this time, it becomes empty to

save the resources. If you set the min_size attribute to a non-zero value, the pool won't

destroy all idle connections and become empty unless the remaining connections are marked

as invalid.

The max_size pool attribute limits the number of connections that can be stored in a pool at

the same time. When the maximum number of connections in a pool is reached, all future

database connections will be destroyed once the connection object releases them.

You can limit the connection lifetime using the lifetime attribute. When a connection object

is closed, and a database connection is returned to the pool, the creation time of the

connection is compared with the current time, and the connection is destroyed if that

timespan exceeds the lifetime value. This technique serves for load balancing.

© 2022-2024
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

8 Secure connection

8.1 SSL/TLS connection

Connecting to PostgreSQL using SSL/TLS
Transport Layer Security (TLS) is a security protocol for accessing remote machines over

untrusted networks. A primary use case of TLS is encrypting the communication between

web applications and servers. It runs on top of TCP/IP to secure client-server

communications and allows a TLS-enabled client to authenticate itself to a TLS-enabled

server and vice versa. TLS evolved from a previous encryption protocol called Secure

Sockets Layer (SSL), and the terms TLS and SSL are sometimes used interchangeably.

During server authentication, the client application uses public-key cryptography (PKI)

algorithms to verify the server's identity by checking that the server's certificate is issued by a

trusted certificate authority (CA) and proves the ownership of the public key. Similarly, TLS

client authentication allows the server to validate the client's identity. The client and server can

also authenticate each other using self-signed certificates. However, you will only want to use

a self-signed certificate for an internal network or a development server.

https://www.devart.com/company/contactform.html?category=0&product=python/postgresql
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/postgresql/feedback.html

Secure connection 11

© 2024 Devart

After establishing a TLS connection, the client and server can exchange symmetrically

encrypted messages with a shared secret key. TLS is the recommended method for

establishing a secure connection to PostgreSQL due to its more straightforward configuration

and higher performance than SSH.

For more information about securing TCP/IP connections with TLS, see Secure TCP/IP

connections in the PostgreSQL documentation.

Enable TLS on a connection
1. Import the module.

import devart.postgresql

2. Connect to a database using the connect() module method and obtain a connection

object.

my_connection = devart.postgresql.connect(

 Server="your_server",

 Database="your_database",

 UserId="your_username",

 Password="your_password",

 UseSSL="True",

 SSLCACert="path_to_ca_cert",

 SSLCert="path_to_client_cert",

 SSLKey="path_to_client_key"

)

TLS parameters

The following table describes the TLS connection parameters.

Parameter Description

UseSSL Enables TLS connections.

SSLCACert The CA certificate

SSLCert The client certificate

SSLKey The client private key

https://www.postgresql.org/docs/current/ssl-tcp.html
https://www.postgresql.org/docs/current/ssl-tcp.html

Python Connector for PostgreSQL12

© 2024 Devart

IgnoreServerCertificateValidity

Specifies whether to verify the server

certificate validity period during a TLS

handshake.

The possible values are True and False.

The default value is True.

IgnoreServerCertificateConstrai

nts

Specifies whether to verify the server

certificate for compliance with constraints

during a TLS handshake.

The possible values are True and False.

The default value is True.

TrustServerCertificate

Specifies whether to verify the server

certificate chain during a TLS handshake. By

default, the connector verifies the entire

certificate chain.

The possible values are True and False. If

the parameter is set to True, the connector

will bypass walking the certificate chain to

validate trust.

IgnoreServerCertificateInsecuri

ty

Specifes whether to verify the server

certificate signature security during a TLS

handshake.

The possible values are True and False.

The default value is False.

SSLMode

Specifies whether and with what priority a

TLS connection will be negotiated with the

server. The possible values are:

smRequire – (Default) Only TLS

connections allowed

Secure connection 13

© 2024 Devart

smPrefer – Negotiates trying first a TLS

connection, then if that fails, tries a regular

non-TLS connection.

smAllow – Negotiates trying first a non-

TLS connection, then if that fails, tries a

TLS connection.

smVerifyCA – Verifies server identity by

validating the server certificate chain up to

the root certificate installed on the client

machine.

smVerifyFull – Verifies server identity by

validating the server certificate chain up to

the root certificate installed on the client

machine and validates that the server

hostname matches the server certificate.

© 2022-2024
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

8.2 SSH tunneling

Connecting to PostgreSQL using SSH
Secure Shell (SSH) is a cryptographic protocol for secure remote login, command execution,

and file transfer over untrusted networks. It uses a client-server model to authenticate two

parties and encrypt the data between them. All user authentication, commands, output, and

file transfers are encrypted to protect against attacks in the network. The client and server

authenticate to each other and exchange commands and output. SSH uses symmetric

encryption, assymetric encryption, and hashing to secure the transferred data.

In symmetric key cryptography, a single key is used by both the sending and receiving parties

to encrypt and decrypt messages. Assymetric encryption, on the other hand, requires two

https://www.devart.com/company/contactform.html?category=0&product=python/postgresql
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/postgresql/feedback.html

Python Connector for PostgreSQL14

© 2024 Devart

associated keys—the private key and the public key. The public key encrypts messages that

can only be decrypted with the private key. The public key can be freely shared with any

trusted party, while the private key must be kept secret. The client public key is stored in a

location that is accessible by the SSH server, allowing the client to authenticate the server.

Similarly, the server public key is placed on the client side, enabling the server to authenticate

the client. Assymetric encryption is used during the initial key exchange process to generate a

shared secret (session key) that encrypts messages for the duration of the session.

Our connector implements the SSH client functionality that enables you to connect to the

SSH server on the remote machine. The SSH server listens for incoming TCP connections.

The SSH client begins the initial TCP handshake with the server and verifies the server's

identity. The client and server agree upon the encryption protocol and negotiate a session key.

The server then authenticates the client and spawns a shell. The SSH server authenticates

the client and allows the connector to establish a secure direct connection to PostgreSQL.

Enable SSH connections
1. Import the module.

import devart.postgresql

2. Connect to a database using the connect() module method and obtain a connection

object.

my_connection = devart.postgresql.connect(

 Server="your_server",

 Database="your_database",

 UserId="your_username",

 Password="your_password",

 UseSSH="True",

 SSHHostName="your_ssh_host",

Secure connection 15

© 2024 Devart

 SSHUserName="your_ssh_user",

 SSHClientKey="path_to_priv_client_key",

 SSHServerKey="path_to_pub_host_key",

 SSHStoragePath="path_to_ssh_storage"

)

Note: You don't have to install the SSH client on the client machine since the connector

already implements the SSH client functionality.

SSH parameters

The following table describes the SSH connection parameters.

Parameter Description

UseSSH Enables SSH connections.

SSHHostname
The hostname or IP address of the SSH

server

SSHPort
The SSH port number. The default port is

22.

SSHUserName The name of the SSH user

SSHPassword

The password of the SSH user. It's

recommended that you also use an SSH

key.

SSHClientKey The path to the client private key

SSHClientKeyPassword The passphrase for the client private key

SSHServerKey The path to the public host key

SSHStoragePath
The location where the connector will store

its configuration files on the client machine

© 2022-2024
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

https://www.devart.com/company/contactform.html?category=0&product=python/postgresql
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/postgresql/feedback.html

Python Connector for PostgreSQL16

© 2024 Devart

8.3 HTTP tunneling

Connecting to PostgreSQL using HTTP tunneling
You can use HTTP(s) tunneling when the client needs access to a website database from a

remote machine, but direct access to the database server on the specified port is forbidden.

In conditions of restricted connectivity, when the database server is hidden behind a firewall or

you need to transmit private network data through a public network, you can set up an HTTP

tunnel to create a direct network link between the two locations.

If the firewall allows HTTP(S) connections, you can use the connector with a properly

configured web server to connect to the database server. The connector comes with a PHP

script that enables access to the database server through an HTTP tunnel. The tunnel.php

script file is located in the \site-packages\devart\postgresql\http\ directory. You need

to deploy it on a web server which will act as an HTTP tunneling server. The script must be

accessible through HTTP—you can verify its accessibility in any web browser. The web

server must support PHP 5 or later.

You can also use the Secure Shell forwarding, or SSH to tunnel network traffic. However,

SSH is designed to encrypt traffic rather than traverse firewalls. Note that traffic tunneling or

encryption increases the CPU and bandwidth usage. It is recommended that you use direct

connection whenever possible.

Enable HTTP tunneling
1. Import the module.

import devart.postgresql

2. Connect to a database using the connect() module method and obtain a connection

object.

 my_connection = devart.postgresql.connect(

 Server="your_server",

 Database="your_database",

 UserId="your_username",

 Password="your_password",

 UseHttp="True",

 HttpUrl="https://hostname/tunnel.php",

Secure connection 17

© 2024 Devart

 HttpTrustServerCertificate="True"

)

HTTP tunneling parameters

The following table describes the HTTP tunneling parameters.

Parameter Description

UseHttp Enables HTTP tunneling.

HttpUrl The URL of the PHP script for HTTP tunneling

HttpUserN

ame

The username for the password-protected directory that contains the

HTTP tunneling script

HttpPassw

ord

The password for the password-protected directory that contains the

HTTP tunneling script

HttpTrust

ServerCer

tificate

Specifies whether to verify the server certificate chain during a TLS

handshake. By default, the connector verifies the entire certificate chain.

The possible values are True and False. If the parameter is set to True,

the connector will bypass walking the certificate chain to validate trust.

HTTP proxy parameters

If the HTTP tunneling server isn't directly accessible from the client machine, you can connect

through a proxy server.

The following table describes the HTTP proxy parameters.

Parameter Description

ProxyHostName
The hostname or IP address of the proxy

server

ProxyPort The proxy port

ProxyUserName The username for proxy authentication

ProxyPassword The password for proxy authentication

© 2022-2024
Devart. All Rights

Request Support
Python Connectors
Forum

Provide Feedback

https://www.devart.com/company/contactform.html?category=0&product=python/postgresql
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/postgresql/feedback.html

Python Connector for PostgreSQL18

© 2024 Devart

Reserved.

9 Data types

Data types
The following table describes the supported PostgreSQL data types and their mapping to the

Python data types. The type codes returned in the description cursor attribute can be used

in the addtypecast() cursor method.

PostgreSQL data type Type code Python data type

character 507 str

character varying 508 str

text 517 str

smallint 515 int

integer 511 int

bigint 501 int

serial 516 int

bigserial 502 int

real 514 float

double precision 510 float

numeric 513 numeric

date 509 datetime.date

time 518 datetime.time

time with time zone 519 datetime.time

timestamp 520 datetime.datetime

timestamp with time zone 521 datetime.datetime

bytea 506 binary

point 562 point

lseg 559 lseg

line 558 line

Data types 19

© 2024 Devart

path 561 path

polygon 563 polygon

box 553 box

circle 555 circle

© 2022-2024
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

10 Class reference

10.1 Module class

Module class
The module class provides methods, global properties, exceptions, constructors, and type

objects to be used by all connections created in the module.

Methods

connect()

activate()

deactivate()

Globals

apilevel

threadsafety

paramstyle

connection_pool

summary

Exceptions

Warning

Error

InterfaceError

https://www.devart.com/company/contactform.html?category=0&product=python/postgresql
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/postgresql/feedback.html

Python Connector for PostgreSQL20

© 2024 Devart

DatabaseError

DataError

OperationalError

IntegrityError

InternalError

ProgrammingError

NotSupportedError

Constructors

Date()

Time()

Timestamp()

DateFromTicks()

TimeFromTicks()

TimestampFromTicks()

Binary()

PostgreSQL-specific constructors

Type objects

STRING

BINARY

NUMBER

DATETIME

ROWID

binary

NaN

Infinity

PostgreSQL-specific type objects

Class reference 21

© 2024 Devart

Methods

connect(connection string|connection parameters)

Creates a new connection to the database.

Arguments

connection string

A string literal of form "parameter=value;parameter=value"

connection parameters

A sequence of named parameters

Connection parameters

For the full list of supported connection parameters, see Connection parameters.

Return value

Returns a connection object.

Code sample

establising a connection using a connection string
connection1 = devart.postgresql.connect("Server=your_server;Database=your_database;UserId=your_username;Password=your_password")
establising a connection using named parameters
connection2 = devart.postgresql.connect(
 Server="your_server",
 Database="your_database",
 UserId="your_username",
 Password="your_password"
)

license.activate(activation key)

Activates a license.

Arguments

activation key

A string literal that contains the activation key.

Python Connector for PostgreSQL22

© 2024 Devart

Remarks

See Activate a license for activation instructions.

license.deactivate()

Deactivates a license.

Arguments

This method has no arguments.

Remarks

See Deactivate a license for deactivation instructions.

Globals

apilevel

The DB API level supported by the module. Returns a string value "2.0".

threadsafety

The thread safety level of the module. Returns an integer value 2 meaning threads may
share the module and connections.

paramstyle

The type of parameter marker formatting expected by the module. Returns a string value
"named" indicating that the module supports named style parameters, such as
...WHERE name=:name.

connection_pool

Returns the connection pooling configuration.

license.summary

Returns the license details.

Exceptions
The module provides the following exceptions to make all error information available.

Warning

Class reference 23

© 2024 Devart

This exception is raised for important warnings like data truncations while inserting, etc.
The Warning exception is a subclass of the Python Exception class.

Error

This exception is the base class of all error exceptions. You can use it to catch all errors
with a single except statement. The Error exception is a subclass of the Python
Exception class.

InterfaceError

This exception is raised for errors that are related to the database interface rather than the
database itself. The InterfaceError exception is a subclass of Error.

DatabaseError

This exception is raised for errors that are related to the database. The DatabaseError
exception is a subclass of Error.

DataError

This exception is raised for errors caused by issues with the processed data like division
by zero, numeric value out of range, etc. The DataError exception is a subclass of
DatabaseError.

OperationalError

This exception is raised for errors that are related to the database operation and not
necessarily under the control of the developer, for example, an unexpected disconnect
occurs, the data source name isn't found, a transaction couldn't be processed, a
memory allocation error occurred during processing, etc. The OperationalError
exception is a subclass of DatabaseError.

IntegrityError

This exception raised when the relational integrity of the database is affected, for example,
a foreign key check fails. The IntegrityError exception is a subclass of
DatabaseError.

InternalError

This exception is raised when the database encounters an internal error, for example, the
cursor isn't valid anymore, the transaction is out of sync, etc. The InternalError
exception is a subclass of DatabaseError.

ProgrammingError

This exception is raised for programming errors, for example, table not found or already
exists, syntax error in the SQL statement, wrong number of parameters specified, etc.
The ProgrammingError exception is a subclass of DatabaseError.

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception

Python Connector for PostgreSQL24

© 2024 Devart

NotSupportedError

This exception is raised when a method or database API isn't supported by the database,
for example, requesting a rollback() on a connection that doesn't support
transactions or has transactions turned off. The NotSupportedError exception is a
subclass of DatabaseError.

The complete exception inheritance tree:
Exception

Warning

Error

InterfaceError

DatabaseError

DataError

OperationalError

IntegrityError

InternalError

ProgrammingError

NotSupportedError

Constructors
The module provides the following constructors for creating date/time objects. The created
date/time objects are implemented as Python datetime module objects.

Date(year, month, day)

Creates an object that holds a date value.

Arguments

https://docs.python.org/3/library/exceptions.html#Exception
http://docs.python.org/library/datetime.html

Class reference 25

© 2024 Devart

year

month

day

Values of type int that specify the year, month, and day.

Return value

Returns a datetime.date object.

Time(hour, minute, second[, timezone])

Creates an object that holds a time value.

Arguments

hour

minute

Values of type int that specify hours and minutes.

second

An int value that specifies seconds or a float value that specifies seconds and
microseconds.

timezone

(Optional) A value of type datetime.tzinfo that specifies a timezone. The value can be
None.

Return value

Returns a datetime.time object.

Timestamp(year, month, day[, hour[, minute[, second[,
timezone]]]])

Creates an object that holds a timestamp value.

Python Connector for PostgreSQL26

© 2024 Devart

Arguments

year

month

day

Values of type int that specify the year, month, and day.

hour

minute

(Optional) Values of type int that specify hours and minutes.

second

(Optional) An int value that specifies seconds or a float value that specifies seconds
and microseconds.

timezone

(Optional) A value of type datetime.tzinfo that specifies a timezone. The value can be
None.

Return value

Returns a datetime.datetime object.

DateFromTicks(ticks)

Creates an object that holds a date value from the given ticks value (the number of seconds

since the Unix epoch). For more information, see the time module in the standard Python

documentation.

Arguments

ticks

A value of type float that specifies number of seconds since the Unix epoch.

https://docs.python.org/3/library/time.html

Class reference 27

© 2024 Devart

Return value

Returns a datetime.date object.

TimeFromTicks(ticks)

Creates an object that holds a time value from the given ticks value (number of seconds

since the Unix epoch). For more information, see the time module in the standard Python

documentation.

Arguments

ticks

A value of type float that specifies number of seconds since the Unix epoch.

Return value

Returns a datetime.time object.

TimestampFromTicks(ticks)

Creates an object that holds a timestamp value from the given ticks value (number of

seconds since the Unix epoch). For more information, see the time module in the standard

Python documentation.

Arguments

ticks

A value of type float that specifies number of seconds since the Unix epoch.

Return value

Returns a datetime.datetime object.

The module provides the following additional constructors.

Binary(value)

Creates an object that holds binary data.

https://docs.python.org/3/library/time.html
https://docs.python.org/3/library/time.html

Python Connector for PostgreSQL28

© 2024 Devart

Arguments

value

A value of type str, bytes, bytearray, array.array, or a binary object.

Return value

Returns a binary object.

PostgreSQL-specific constructors

Additional constructors for handling PostgreSQL-specific database types.

Type objects
The module provides the following type objects to create mapping between the PostgreSQL
database types and Python types. You can use these type objects as arguments for the
addtypecast() cursor method to define a data type cast rule to use when fetching data from
the cursor. They can also be used to determine the Python types of the result columns
returned by the execute*() cursor methods.

STRING

This type object describes string-based columns in a database.

BINARY

This type object describes binary columns in a database.

NUMBER

This type object describes numeric columns in a database.

DATETIME

This type object describes date/time columns in a database.

ROWID

Class reference 29

© 2024 Devart

This type object describes the row ID column in a database.

Code sample

cursor.execute("select column1 from table1")
check if the first column in the result set is string-based so that its value can be safely treated as `str`
if cursor.description[0].type_code in postgresql.STRING:
 # do something

The module provides the following additional type objects.

binary

This type object describes an object that holds binary data. By default, this type object is used

to fetch BLOB-based columns from the cursor. You can also create a binary object using

the Binary() constructor.

Attributes

value

A value of type bytes that represents binary data. This is a read/write attribute that
accepts values of type str, bytes, bytearray, array.array, and binary.

NaN

This type object describes a special numeric value not-a-number that can be used in

operations with numeric objects.

Remarks

NaN can be interpreted as an undefined or non-representable value. It doesn't support
comparison operators except == and !=.

Infinity

This type object describes a special numeric value positive infinity that is larger than

any natural number. It can be used in operations with numeric objects.

Python Connector for PostgreSQL30

© 2024 Devart

Remarks

The connector doesn't provide any special type object for negative infinity that
represents the smallest number. For negative infinity, use a -Infinity value.

PostgreSQL-specific type objects

Additional type objects for handling PostgreSQL-specific database types.

© 2022-2024
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

10.2 Module additions

Module additions
The module provides several additional constructors and type objects for handling

PostgreSQL-specific database types.

Constructors

Numeric()

Point()

Lseg()

Line()

Path()

Polygon()

Box()

Circle()

Type objects

numeric

point

lseg

https://www.devart.com/company/contactform.html?category=0&product=python/postgresql
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/postgresql/feedback.html

Class reference 31

© 2024 Devart

line

path

polygon

box

circle

Constructors

Numeric(weight, scale, sign, digits|value)

Creates an object that holds a number with a very large number of digits.

Arguments

weight, scale, sign, digits

Corresponding values for the numeric object attributes.

value

A value of type str, int, float, or a numeric object.

Return value

Returns a numeric object.

Remarks

The value argument can also contain special values Infinity, -Infinity, and NaN (or
their string representations). These are adapted from the IEEE 754 standard, and
represent the positive infinity, negative infinity, and not-a-number,
respectively.

Point(x, y|value)

Creates an object that holds coordinates of a point on a plane.

Arguments

Python Connector for PostgreSQL32

© 2024 Devart

x, y

Values of type int or float that specify the coordinates of the point.

value

A string literal of form (x, y) wherex and y are the respective coordinates, or a point
object.

Return value

Returns a point object.

Lseg(start, end|startx, starty, endx, endy|value)

Creates an object that holds information about a line segment.

Arguments

start, end

Values of type point that specify the endpoints of the segment.

startx, starty, endx, endy

Values of type int or float that specify the coordinates of the endpoints.

value

A string literal of form [(x1, y1), (x2, y2)] where (x1, y1) and (x2, y2) are the
respective endpoints, or a lseg object.

Return value

Returns a lseg object.

Line(a, b, c|value)

Creates an object that holds information about a line.

Arguments

Class reference 33

© 2024 Devart

a, b, c

Values of type int or float that specify the coefficients of the linear equation ax + by
+ c = 0 that describes the line.

value

A string literal of form {a, b, c} where a, b, and c are the respective coefficients, or a
line object.

Return value

Returns a line object.

Remarks

The a and b arguments must not both be zero.

Path(points|value)

Creates an object that holds an array of connected line segments.

Arguments

points

A list of point objects that specify the endpoints of the segments that form the path.

value

A string literal of form [(x1, y1), ..., (xn, yn)] where (xn, yn) are sequential
endpoints of all the segments, or a path object.

Return value

Returns a path object.

Polygon(points|value)

Python Connector for PostgreSQL34

© 2024 Devart

Creates an object that holds information about a polygon.

Arguments

points

A list of point objects that specify the vertexes of the polygon.

value

A string literal of form ((x1, y1), ..., (xn, yn)) where (xn, yn) are sequential
coordinates of all the vertexes of the polygon, or a polygon object.

Return value

Returns a polygon object.

Box(upperright, lowerleft|upperrightx, upperrighty,
lowerleftx, lowerlefty|value)

Creates an object that holds information about the rectangle.

Arguments

upperright, lowerleft

Values of type point that specify the upper right and lower left corners of the rectangle.

upperrightx, upperrighty, lowerleftx, lowerlefty

Values of type int or float that specify the coordinates of the rectangle corners.

value

A string literal of form ((x1, y1), (x2, y2)) where (x1, y1) and (x2, y2) are
coordinates of two opposite corners of the rectangle, or a box object.

Return value

Returns a box object.

Class reference 35

© 2024 Devart

Remarks

There are no strict requirements that the input values must be exactly upper right and
lower left corners. Any two opposite corners can be supplied, but you should keep in
mind that when saved into a database, the values will be reordered as needed to store
the upper right and lower left corners, in that order. Therefore, on subsequent reading of
the stored value, you may get an object that doesn't match the one that was written.

Circle(center, radius|centerx, centery, radius|value)

Creates an object that holds information about a circle.

Arguments

center

A value of type point that specifies the center point of the circle.

radius

A value of type int or float that specifies the radius of the circle.

centerx, centery, radius

Values of type int or float that specify coordinates of the center point of the circle and
it's radius, respectively.

value

A string literal of form <(x, y), r> where x and y are the center point coordinates and r
is the radius, or a circle object.

Return value

Returns a circle object.

Type objects

numeric

This type object describes an object that holds numbers with a very large number of digits. By

Python Connector for PostgreSQL36

© 2024 Devart

default, this type object is used to fetch numeric or decimal columns from the cursor. You

can also create a numeric object using the Numeric() constructor.

Attributes

digits

A tuple of integers that specifies all the digits of a numeric object. Each element of the
tuple contains four digits.

weight

The index of the last digits element that refers to the integer part of a numeric object.

scale

The number of digits in the fractional part of a numeric object.

sign

Specifies whether a numeric object is positive or negative, or has a special value.
The possible values are:

0x0000 – The numeric value is positive.

0x4000 – The numeric value is negative.

0xC000 – The numeric is NaN.

0xD000 – The numeric value is Infinity.

0xF000 – The numeric value is -Infinity.

Examples

num1 = devart.postgresql.Numeric('-12345678.1234')
repr(num1)
'<devart.postgresql.numeric object at 0x...; weight=1, scale=4, sign=16384, digits=(1234, 5678, 1234)>'

The value 12345678.1234 is split into four-digit groups, which are then converted to integers.
In this example, there are three digits elements: 1234, 5678, and 1234. The first two digits
elements contain the integer part of the value, so the weight is 1. The fractional part of the
value consists of four digits, so the scale is 4. Since the value is negative, the sign is
0x4000.

>>> num2 = devart.postgresql.Numeric('NaN')
repr(num2)
'<devart.postgresql.numeric object at 0x...; weight=0, scale=0, sign=49152, digits=()>'

Class reference 37

© 2024 Devart

Since the value is NaN, the numeric object contains no data other than the sign attribute,
which is 0xC000.

point

This type object describes an object that holds coordinates of a point on a plane. By default,

this type object is used to fetch point columns from the cursor. You can also create a point

object using the Point() constructor.

Attributes

x

y

The coordinates of the point.

lseg

This type object describes an object that holds information about a line segment. By default,

this type object is used to fetch lseg columns from the cursor. You can also create a lseg

object using the Lseg() constructor.

Attributes

start

end

The endpoints of the line segment.

line

This type object describes an object that holds information about a line. By default, this type

object is used to fetch line columns from the cursor. You can also create a line object

using the Line() constructor.

Attributes

Python Connector for PostgreSQL38

© 2024 Devart

a

b

c

The coefficients of the linear equation ax + by + c = 0 that describes the line.

path

This type object describes an object that holds an array of connected line segments. By

default, this type object is used to fetch path columns from the cursor. You can also create a

path object using the Path() constructor.

Attributes

points

A list of endpoints of all the segments of the path.

polygon

This type object describes an object that holds information about a polygon. By default, this

type object is used to fetch polygon columns from the cursor. You can also create a

polygon object using the Polygon() constructor.

Attributes

points

A list of coordinates of all the vertexes of the polygon.

box

This type object describes an object that holds information about a rectangle. By default, this

type object is used to fetch box columns from the cursor. You can also create a box object

using the Box() constructor.

Class reference 39

© 2024 Devart

Attributes

upperright

lowerleft

The opposite corners of the rectangle.

circle

This type object describes an object that holds information about a circle. By default, this type

object is used to fetch circle columns from the cursor. You can also create a circle object

using the Circle() constructor.

Attributes

center

The center point of the circle.

radius

The radius of the circle.

© 2022-2024
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

10.3 Connection class

Connection class
The connection class encapsulates a database session. It provides methods for creating

cursors, type casting, and transaction handling. Connections are created using the

connect() module method.

Methods

cursor()

commit()

rollback()

https://www.devart.com/company/contactform.html?category=0&product=python/postgresql
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/postgresql/feedback.html

Python Connector for PostgreSQL40

© 2024 Devart

addtypecast()

cleartypecast()

close()

Attributes

connectstring

Exceptions

Methods

cursor()

Creates a new cursor object, which is used to manage the context of fetch operations.

Arguments

This method has no arguments.

Return value

Returns a cursor object.

commit()

Commits any pending transaction to the database.

Arguments

This method has no arguments.

rollback()

Causes the database to roll back any pending transaction.

Arguments

This method has no arguments.

Remarks

Closing a connection without first committing changes causes an implicit rollback.

Class reference 41

© 2024 Devart

addtypecast(database type|module type object|column name|
description|dictionary[, Python type])

Defines a data type cast rule to use when fetching data from the cursor.

Arguments

database type

An int value that specifies the database data type code. You can also pass multiple data
type codes in a tuple or list.

module type object

A module type object that specifies the family of the database data types.

column name

A string literal that specifies the name of the database column. You can also pass multiple
string literals in a tuple or list.

description

A description object that describes the column in a rowset. You can also pass multiple
objects in a tuple or list.

dictionary

A dictionary of pairs column name:Python type that specifies individual cast rules for
a set of columns. The method argument Python type can be omitted.

Python type

A Python type object that specifies the target type to which to cast the database type, or
an int value which means that the column will be of type str and defines its maximum
length.

Code sample

connection = devart.postgresql.connect("Server=your_server;Database=your_database;UserId=your_username;Password=your_password")
all database columns with data type code 511 (PostgreSQL database type integer) will be casted to the Python type `int`
connection.addtypecast(511, int)
all numeric database columns will be fetched as strings
connection.addtypecast(devart.postgresql.NUMBER, str)
data of "column1" will be fetched as a string
connection.addtypecast("column1", str)
data of "column2" will be fetched as `int` and data of "column3" will be fetched as a string of maximum length 50

Python Connector for PostgreSQL42

© 2024 Devart

connection.addtypecast({"column2":int, "column3":50})

Remarks

The cast rule affects all cursors created within the connection. To define a cast rule for a
particular cursor, use the addtypecast() cursor method. The type code of a database
column can be obtained from the type_code attribute of the corresponding element of
the description cursor attribute.

cleartypecast()

Removes all data type cast rules defined for the connection.

Arguments

This method has no arguments.

Remarks

This method doesn't remove cast rules defined for a particular cursor using the
addtypecast() cursor method.

close()

Closes the connection.

Arguments

This method has no arguments.

Remarks

The connection becomes unusable after calling this method. The InterfaceError
exception is raised if any operation is attempted with the connection. The same applies
to all cursor objects trying to use the connection. Closing a connection prior to
committing changes causes an implicit rollback.

Attributes

connectstring

A read-only attribute that returns a string literal of the form
"parameter=value;parameter=value" that contains the parameters for the current
connection.

Exceptions

Class reference 43

© 2024 Devart

The connection class provides a set of exception classes that exactly match the module

exceptions. This simplifies error handling in environments with multiple connections.

© 2022-2024
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

10.4 Cursor class

Cursor class
The cursor class represents a database cursor, which is used to manage the context of

fetch operations. This class provides methods for executing SQL statements and operating

rowsets. Cursors are created using the cursor() connection method.

Methods

setinputsizes()

execute()

executemany()

fetchone()

fetchmany()

fetchall()

next()

scroll()

addtypecast()

cleartypecast()

close()

setoutputsize()

Attributes

connection

arraysize

rowtype

https://www.devart.com/company/contactform.html?category=0&product=python/postgresql
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/postgresql/feedback.html

Python Connector for PostgreSQL44

© 2024 Devart

description

rowcount

rownumber

lastrowid

Methods

setinputsizes([sizes])

Predefines the types of parameters for the further call to the execute*() method.

Arguments

sizes

(Optional) A sequence (list or tuple) with one item for each input parameter. The item
should be a type object that defines the type of the input parameter, or an integer value
specifying the maximum length of the string parameter. If the item is None, the
parameter type is determined by the value provided in the execute*() method.

Code sample

cursor = connection.cursor()
in the further call to cursor.execute() the supplied parameters will be treated as `int`, `float` and a string of length 20
cursor.setinputsizes(int, float, 20)

Remarks

Once set, the types of parameters are retained on subsequent calls to the execute*()
method until the cursor is closed by calling close(). To clear the set parameter types,
call the method with no arguments.

execute(operation[, parameters])

Prepares and executes a database operation.

Arguments

operation

A string literal that specifies the database command (SQL statement) to be executed.

Class reference 45

© 2024 Devart

parameters

(Optional) A sequence (list or tuple) of values to be bound to the corresponding
parameters of the operation.

Code sample

cursor = connection.cursor()
cursor.execute("create table test_table(column1 integer, column2 integer)")
cursor.execute("insert into test_table(column1, column2) values(:parameter1, :parameter2)", (1, 1))

Remarks

The types of the input parameters can be pre-specified using the setinputsizes()
method. To execute a batch operation that affects multiple rows in a single operation,
use the executemany() method.

executemany(operation[, sequence of parameters])

Prepares and executes a batch database operation.

Arguments

operation

A string literal that specifies the database command (SQL statement) to be executed.

parameters

(Optional) A sequence (list or tuple) of sequences of values, each of which is to be
bound to the corresponding parameter of the operation.

Code sample

cursor = connection.cursor()
cursor.execute("create table test_table(column1 integer, column2 integer)")
cursor.executemany("insert into test_table(column1, column2) values(:parameter1, :parameter2)", ((1, 1), (2, 2), (3, 3)))

Remarks

The types of the input parameters can be pre-specified using the setinputsizes()
method. This method is significantly faster than executing the execute() method in a
loop.

Python Connector for PostgreSQL46

© 2024 Devart

fetchone()

Fetches the next row of a query result set.

Arguments

This method has no arguments.

Return value

Returns a single sequence (tuple, list or dict according to the rowtype value) that
contains values for each queried database column, or None when no more data is
available.

Remarks

The ProgrammingError exception is raised if the previous call to the execute*() method
didn't produce any result set, or no call was made yet.

fetchmany([size=cursor.arraysize])

Fetches the next set of rows of a query result.

Arguments

size

(Optional) The number of rows to fetch per call. If the number isn't specified, the
arraysize attribute determines the number of rows to be fetched.

Return value

Returns a list of sequences (tuples, lists or dicts according to the rowtype value)
for each result row. Each sequence contains values for each queried database column.
An empty list is returned when no more rows are available.

Remarks

The ProgrammingError exception is raised if the previous call to the execute*() method
didn't produce any result set, or no call was made yet.

fetchall()

Class reference 47

© 2024 Devart

Fetches all remaning rows of a query result.

Arguments

This method has no arguments.

Return value

Returns a list of sequences (tuples, lists or dicts according to the rowtype value)
for each result row. Each sequence contains values for each queried database column.
An empty list is returned when no more rows are available.

Remarks

This method returns as many rows as are left in the result set, regardless of the
arraysize value. The ProgrammingError exception is raised if the previous call to the
execute*() method didn't produce any result set or no call was made yet.

next()

Returns the next row from the currently executed SQL statement.

Arguments

This method has no arguments.

Return value

Returns a single tuple that contains values for each queried database column.

Remarks

This method uses the same semantics as fetchone(), except that the standard
StopIteration exception is thrown if no more rows are available.

scroll(value[, mode='relative'])

Scrolls the cursor in the result set to a new position.

Arguments

value

An int value that specifies the new cursor position.

Python Connector for PostgreSQL48

© 2024 Devart

mode

(Optional) The value can be either relative or absolute. If the mode is relative (the
default value), the value is taken as offset to the current position in the result set. If the
mode is set to absolute, the value states an absolute target position.

Remarks

The IndexError exception is raised in case a scroll operation attempts to access an item
beyond bounds of the result set. In this case, the cursor position is left unchanged.

addtypecast(database type|module type object|column name|
description|dictionary[, Python type])

Defines a data type cast rule to use when fetching data from the cursor.

Arguments

database type

An int value that specifies the database data type code. You can also pass multiple data
type codes in a tuple or list.

module type object

A module type object that specifies the family of the database data types.

column name

A string literal that specifies the name of the database column. You can also pass multiple
string literals in a tuple or list.

description

A description object that describes the column in a rowset. You can also pass multiple
objects in a tuple or list.

dictionary

A dictionary of pairs column name:Python type that specifies individual cast rules for
a set of columns. The method argument Python type can be omitted.

Python type

A Python type object that specifies the target type to which to cast the database type, or
an int value which means that the column will be of type str and defines its maximum

Class reference 49

© 2024 Devart

length.

Code sample

cursor = connection.cursor()
all database columns with data type code 511 (PostgreSQL database type `integer`) will be casted to the Python type `int`
cursor.addtypecast(511, int)
all numeric database columns will be fetched as strings
cursor.addtypecast(postgresql.NUMBER, str)
data of "column1" will be fetched as a string
cursor.addtypecast("column1", str)
data of "column2" will be fetched as `int` and data of "column3" will be fetched as a string of maximum length 50
cursor.addtypecast({"column2":int, "column3":50})

Remarks

The cast rule affects only the current cursor. To define the cast rule for all cursors created
within the connection, use the addtypecast() connection method. The type code of a
database column can be obtained from the type_code attribute of the corresponding
element of the description attribute.

cleartypecast()

Removes all data type cast rules defined for the cursor.

Arguments

This method has no arguments.

Remarks

This method doesn't remove cast rules defined for the entire connection using the
addtypecast() connection method.

close()

Closes the cursor.

Arguments

This method has no arguments.

Remarks

The cursor becomes unusable after calling this method. The InterfaceError exception
is raised if any operation is attempted with the cursor.

Python Connector for PostgreSQL50

© 2024 Devart

setoutputsize(int size[, int column])

This method is provided for compatibility with the DB API 2.0 specification. It currently does

nothing but is safe to call.

Attributes

connection

A read-only attribute that specifies the connection object to which the cursor belongs.

arraysize

A read/write attribute that specifies the number of rows to fetch at a time with the

fetchmany() method.

Remarks

The default value of the attribute is 1 meaning to fetch a single row at a time.

rowtype

A read/write attribute that specifies the type of rows fetched with the fetch*() method.

Possible attribute values are tuple, list and dict.

Remarks

The default value of the attribute is tuple.

description

A read-only attribute that describes the columns in a rowset returned by the cursor.

Return value

Returns a tuple of description objects with the following attributes:

name

The name of the column in the rowset

https://peps.python.org/pep-0249/

Class reference 51

© 2024 Devart

type_code

The database type code that corresponds to the type of the column

display_size

The actual length of the column in characters for a character column, None otherwise

internal size

The size in bytes used by the connector to store the column data

precision

The total number of significant digits for a numeric column, None otherwise

scale

The number of digits in the fractional part for a numeric column, None otherwise

null_ok

Py_True if the corresponding database column accepts NULL values, Py_False otherwise

Remarks

The attribute is None for operations that don't return rows or if no operation has been
invoked for the cursor via the execute() method yet. The type_code attribute can be
used in the addtypecast() method to define a data type cast rule for the corresponding
column.

rowcount

A read-only attribute that specifies the number of rows that the last execute() call produced

by a SELECT statement or affected by UPDATE or INSERT statements.

Remarks

The value of this attribute is -1 if no execute() call has been made on the cursor or the
rowcount of the last operation cannot be determined.

rownumber

A read-only attribute that specifies the current 0-based index of the cursor in the result set.

Remarks

Python Connector for PostgreSQL52

© 2024 Devart

The next fetch*() method fetches rows starting with the index in the rownumber. The
attribute initial value is always 0, regardless of whether the execute() call returned a
rowset or not.

lastrowid

This read-only attribute is provided for compatibility with the DB API 2.0 specification. It

currently returns None.

© 2022-2024
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

10.5 Connection pool class

Connection pool class
The connection_pool class is used to manage the connection pooling mechanism. This

class provides properties for enabling and configuring pooling.

Properties

enabled

max_size

min_size

lifetime

validate

Properties

enabled

Enables connection pooling.

Syntax

enabled = False | True

Remarks

https://peps.python.org/pep-0249/
https://www.devart.com/company/contactform.html?category=0&product=python/postgresql
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/postgresql/feedback.html

Class reference 53

© 2024 Devart

Set enabled to True to enable connection pooling. The default value is False.

max_size

The maximum number of connections allowed in the pool

Syntax

max_size = int
max_size[pool_id: int] = int

Remarks

When the maximum number of connections in the pool is reached, new database
connections will be destroyed instead of released back into the pool after you close
them. The default value of max_size is 100.

If no pool ID (pool_id) is specified, the maximum number of connections is set for the
default connection pool. If the pool ID is specified, the maximum number of connections
is set for the pool with the given ID.

min_size

The minimum number of connections maintained in the pool

Syntax

min_size = int
min_size[pool_id: int] = int

Remarks

Set this property to a non-zero value to prevent removing all connections from the pool
after they have been idle for a long time. The default value of min_size is 0.

If no pool ID (pool_id) is specified, the minimum number of connections is set for the
default connection pool. If the pool ID is specified, the minimum number of connections
is set for the pool with the given ID.

lifetime

The maximum time (in milliseconds) during which a database connection will be kept in the

connection pool

Python Connector for PostgreSQL54

© 2024 Devart

Syntax

lifetime = int
lifetime[pool_id: int] = int

Remarks

The creation time of a connection is compared with the current time, and the connection
is destroyed if that timespan exceeds the lifetime. If lifetime is set to 0 (by default),
the lifetime of a connection is infinite.

If no pool ID (pool_id) is specified, the connection lifetime is set for the default
connection pool. If the pool ID is specified, the maximum number of connections is set
for the pool with the given ID.

validate

Specifies whether to validate a connection when it's returned from the pool.

Syntax

validate[pool_id: int] = False | True

Remarks

If the value of validate is False, the pool will validate a connection only when it's added
to the pool. If the value is True, the pool will validate a connection when it's added or
drawn from the pool. The default value is False.

If no pool ID (pool_id) is specified, the validation rule is set for the default connection
pool. If the pool ID is specified, the rule is set for the pool with the given ID.

© 2022-2024
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

11 Support

Support
This page describes the support options and programs available for users of Python

Connector for PostgreSQL.

https://www.devart.com/company/contactform.html?category=0&product=python/postgresql
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/postgresql/feedback.html

Support 55

© 2024 Devart

Support options

The following support options are available for users of Python Connector for PostgreSQL:

Annual maintenance and support service through the Python Connector for PostgreSQL

Subscription program

Community assistance and technical support through the community forum.

Advanced technical support from the product developers through the Python Connector for

PostgreSQL Priority Support program.

Subscriptions

The Python Connector for PostgreSQL Subscription program is an annual maintenance and

support service that provides the following benefits:

Support through the Priority Support program

Access to new versions of the product

Access to nightly builds with hotfixes (on demand)

Notifications about new product versions

Priority Support

Python Connector for PostgreSQL Priority Support is an advanced product support service

from the product developers. Devart staff will provide a response to the customer via email

within two business days from the date of receipt. Priority Support is available for users with

an active subscription.

If you need assistance with our product, send us an email at support@devart.com with the

following details:

The license number of your product

The version and edition of your product

The version of your PostgreSQL server

A detailed description of the issue

(Optional) Scripts for creating and populating the database objects

If you have any questions regarding licensing or subscriptions, send us an email at

https://support.devart.com/portal/en/community/
mailto:support@devart.com

Python Connector for PostgreSQL56

© 2024 Devart

sales@devart.com

© 2022-2024
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

12 Licensing

Licensing
Python Connector for PostgreSQL License Agreement

--

PLEASE READ THIS LICENSE AGREEMENT CAREFULLY. BY INSTALLING OR USING

THIS SOFTWARE, YOU INDICATE ACCEPTANCE OF AND AGREE TO BECOME BOUND

BY THE TERMS AND CONDITIONS OF THIS LICENSE. IF YOU DO NOT AGREE TO THE

TERMS OF THIS LICENSE, DO NOT INSTALL OR USE THIS SOFTWARE AND

PROMPTLY RETURN IT TO DEVART.

INTRODUCTION

This Devart end-user license agreement ("Agreement") is a legal agreement between you

(either an individual person or a single legal entity) and Devart, for the use of the Python

Connector software application, demos, intermediate files, printed materials, and online or

electronic documentation contained in this installation file. For the purpose of this Agreement,

the software program(s) and supporting documentation will be referred to as the "Software".

LICENSE

1. GRANT OF LICENSE

The enclosed Software is licensed, not sold. You have the following rights and privileges,

subject to all limitations, restrictions, and policies specified in this Agreement.

1.1. If you are a legally licensed user, depending on the License Type specified in the

registration letter you have received from Devart upon purchase of the Software:

- The "Single License" allows you to install and use the Software on one or more computers,

provided it is used by 1 (one) user for the sole purposes of developing, testing, and deploying

scripts or applications in a single company at one physical address in accordance with this

Agreement.

mailto:sales@devart.com
https://www.devart.com/company/contactform.html?category=0&product=python/postgresql
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/postgresql/feedback.html

Licensing 57

© 2024 Devart

- The "Team License" allows you to install and use the Software on one or more computers,

provided it is used by up to 4 (four) users for the sole purposes of developing, testing, and

deploying scripts or applications in a single company at one physical address in accordance

with this Agreement.

- The "Site License" allows you to install and use the Software on one or more computers,

provided it is used by unlimited number of users for the sole purposes of developing, testing,

and deploying scripts or applications in a single company at one physical address in

accordance with this Agreement.

- The "OEM License" allows you to install and use the Software as part of a licensee's script

or application that can be deployed to web servers, application servers, batch servers,

desktops, and other end-user devices. This definition includes the ability to install and use the

script or application containing the Software an unlimited number of times, without any

additional fees in favor of the licensor.

1.2. If you are a legally licensed user, depending on the License Type specified in the

registration letter you have received from Devart upon purchase of the Software:

- The "Subscription-based License" allows you to install and use the Software on a single

computer only during the subscription term specified at purchase. An Internet connection is

required to activate the license and check the license status when the Software is used.

Once the subscription term is over, you will be able to either stop using the Software or renew

the license for a new subscription term.

- The "Perpetual License" allows you to install and use the specific Software product version

on a single computer without an active subscription. A subscription provides access to new

product releases, regular upgrades, and support for new server versions provided during the

subscription term.

1.3. If you are a legally licensed user of the Software, you are also entitled to:

- Make one copy of the Software for archival purposes only, or copy the Software onto the

hard disk of your computer and retain the original for archival purposes

- Develop and test Applications with the Software, subject to the Limitations below.

1.4. If you have the "OEM License ", you are also entitled to:

- Make any number of copies of the Software to deploy it to your end-user

Python Connector for PostgreSQL58

© 2024 Devart

- Deploy the Software to your end-user as a Software installation package or integrate it into

your Applications.

1.5. You are allowed to use evaluation versions of the Software as specified in the Evaluation

section.

No other rights or privileges are granted in this Agreement.

2. LIMITATIONS

Only legally registered users are licensed to use the Software, subject to all of the conditions

of this Agreement. Usage of the Software is subject to the following restrictions.

2.1. You may not reverse engineer, decompile, or disassemble the Software.

2.2. You may not build any other Python packages through inheritance for public distribution or

commercial sale.

2.3. You may not reproduce or distribute any Software documentation without express written

permission from Devart.

2.4. You may not distribute and sell any portion of the Software integrating it into your

Applications.

2.5. You may not transfer, assign, or modify the Software in whole or in part. In particular, the

Software license is non-transferable, and you may not transfer the Software installation

package.

2.6. You may not remove or alter any Devart's copyright, trademark, or other proprietary rights

notice contained in any portion of Devart files.

3. REDISTRIBUTION

The license grants you a non-exclusive right to reproduce any new software programs

(Applications) created using the Software. You cannot distribute the Software integrated into

your Applications unless you are an "OEM License" holder. Any Devart's files remain Devart's

exclusive property.

4. TRANSFER

You may not transfer the Software to any individual or entity without express written

permission from Devart. In particular, you may not share copies of the Software under "Single

License" and "Team License" with other co-developers without obtaining proper license of

Licensing 59

© 2024 Devart

these copies for each individual.

5. TERMINATION

Devart may immediately terminate this Agreement without notice or judicial resolution in the

event of any failure to comply with any provision of this Agreement. Upon such termination

you must destroy the Software, all accompanying written materials, and all copies.

6. EVALUATION

Devart may provide evaluation ("Trial") versions of the Software. You may transfer or

distribute Trial versions of the Software as an original installation package only. If the Software

you have obtained is marked as a "Trial" version, you may install and use the Software for a

period of up to 30 calendar days from the date of installation (the ""Trial Period"), subject to

the additional restriction that it is used solely for evaluation of the Software and not in

conjunction with the development or deployment of any application in production. You may not

use Applications developed using Trial versions of the Software for any commercial

purposes. Upon expiration of the Trial Period, the Software must be uninstalled, all its copies

and all accompanying written materials must be destroyed.

7. WARRANTY

The Software and documentation are provided "AS IS" without warranty of any kind. Devart

makes no warranties, expressed or implied, including, but not limited to, the implied

warranties of merchantability and fitness for a particular purpose or use.

8. SUBSCRIPTION AND SUPPORT

The Software is sold on a subscription basis. The Software subscription entitles you to

download improvements and enhancement from Devart's web site as they become available,

during the active subscription period. The initial subscription period is one year from the date

of purchase of the license. The subscription is automatically activated upon purchase, and

may be subsequently renewed by Devart, subject to receipt applicable fees. Licensed users

of the Software with an active subscription may request technical assistance with using the

Software over email from the Software development. Devart shall use its reasonable

endeavors to answer queries raised, but does not guarantee that your queries or problems

will be fixed or solved.

Devart reserves the right to cease offering and providing support for legacy Python and

Database versions.

Python Connector for PostgreSQL60

© 2024 Devart

9. COPYRIGHT

The Software is confidential and proprietary copyrighted work of Devart and is protected by

international copyright laws and treaty provisions. You may not remove the copyright notice

from any copy of the Software or any copy of the written materials, accompanying the

Software.

This Agreement contains the total agreement between the two parties and supersedes any

other agreements, written, oral, expressed, or implied.

© 2022-2024
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

13 Uninstall the connector

Uninstall the connector
To uninstall the connector, run the following command.

pip uninstall devart-postgresql-connector

© 2022-2024
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

https://www.devart.com/company/contactform.html?category=0&product=python/postgresql
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/postgresql/feedback.html
https://www.devart.com/company/contactform.html?category=0&product=python/postgresql
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/postgresql/feedback.html

	Overview
	What's new
	Installation
	Windows
	Linux
	macOS

	Activation
	Activate a license
	View the license details
	Deactivate a license

	Using the module
	Connection parameters
	Connection pooling
	Secure connection
	SSL/TLS connection
	SSH tunneling
	HTTP tunneling

	Data types
	Class reference
	Module class
	Module additions
	Connection class
	Cursor class
	Connection pool class

	Support
	Licensing
	Uninstall the connector

