
IContents

© 2023 Devart

Table of Contents
Part I Overview 1

Part II What's new 2

Part III Install the connector 3

................................................................................................................................... 31 Windows 

................................................................................................................................... 32 Linux 

................................................................................................................................... 43 macOS 

Part IV Using the module 4

Part V Connection parameters 5

Part VI Connection pooling 6

Part VII Data types 8

Part VIII Class reference 9

................................................................................................................................... 91 Module class 

................................................................................................................................... 192 Module additions 

................................................................................................................................... 283 Connection class 

................................................................................................................................... 324 Cursor class 

................................................................................................................................... 415 Connection pool class 

Part IX Support 43

Part X Licensing 45

Part XI Uninstall the connector 48



Python Connector for PostgreSQL1

© 2023 Devart

1 Overview

Overview
Python Connector for PostgreSQL is a connectivity solution for accessing PostgreSQL

databases from Python applications. It fully implements the Python DB API 2.0 specification.

The connector is distributed as a wheel package for Windows, macOS, and Linux.

Direct connection

The connector enables you to establish a direct connection to PostgreSQL from a Python

application via TCP/IP, eliminating the need for the database client library. A direct connection

increases the speed of data transmission between the application and PostgreSQL database

server. It also streamlines the deployment process since you don't have to distribute any

client libraries with the application.

Secure communication

The connector supports encrypted communications using SSL/TLS, SSH tunneling, and

HTTP/HTTPS tunneling.

Compatibility
Python versions from 3.7 to 3.12

PostgreSQL versions:

PostgreSQL server from 8.0 to 15.0



Overview 2

© 2023 Devart

Microsoft Azure Database for PostgreSQL

Amazon RDS for PostgreSQL

Amazon Aurora

Google Cloud for PostgreSQL

Heroku Postgres

SQLAlchemy

pandas

petl

Supported platforms
Windows 32-bit and 64-bit

Windows Server 32-bit and 64-bit

macOS 64-bit and ARM (Apple M1 and M2)

Linux 64-bit

Note: For details on supported OS versions, check the compatibility page of your Python

version.

© 2022-2023
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

2 What's new

Python Connector for PostgreSQL 1.0
Initial release of Python Connector for PostgreSQL

Added support for Windows 32-bit and 64-bit

Added support for Windows Server 32-bit and 64-bit

Added support for macOS 64-bit and ARM (Apple M1 and M2)

Added support for Linux 64-bit

© 2022-2023 Request Support Python Connectors Provide Feedback

https://www.devart.com/company/contactform.html?category=0&product=python/postgresql
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/postgresql/feedback.html
https://www.devart.com/company/contactform.html?category=0&product=python/postgresql
https://support.devart.com/portal/en/community/
https://www.devart.com/python/postgresql/feedback.html


Python Connector for PostgreSQL3

© 2023 Devart

Devart. All Rights
Reserved.

Forum

3 Install the connector

3.1 Windows

Install the connector on Windows
1. Download the zip archive.

2. Extract the contents of the archive.

3. Open Command Prompt.

4. Verify that you have the pip package installer on your system using the py -m pip --

version command. If you don't have it, run the following command to install pip.

python -m ensurepip --upgrade

5. In Command Prompt, navigate to the directory that contains the extracted wheel packages.

6. Install the package:

Windows 32-bit

pip install devart_postgresql_connector-1.0.1-cp312-cp312-win32.whl

Windows 64-bit

pip install devart_postgresql_connector-1.0.1-cp312-cp312-win_amd64.whl

© 2022-2023
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

3.2 Linux

Install the connector on Linux
1. Download the zip archive.

2. Extract the contents of the archive.

3. Open a terminal window.

4. Verify that you have the pip package installer on your system using the py -m pip --

version command. If you don't have it, run the following command to install pip.

https://support.devart.com/portal/en/community/
https://www.devart.com/python/postgresql/download.html
https://www.devart.com/company/contactform.html?category=0&product=python/postgresql
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/postgresql/feedback.html
https://www.devart.com/python/postgresql/download.html


Install the connector 4

© 2023 Devart

python -m ensurepip --upgrade

5. In terminal, navigate to the directory that contains the extracted wheel package.

6. Install the package.

pip install devart_postgresql_connector-1.0.1-cp312-cp312-manylinux_2_34_x86_64.whl

© 2022-2023
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

3.3 macOS

Install the connector on macOS
1. Download the zip archive.

2. Extract the contents of the archive.

3. Open a terminal window.

4. Verify that you have the pip package installer on your system using the py -m pip --

version command. If you don't have it, run the following command to install pip.

python -m ensurepip --upgrade

5. In terminal, navigate to the directory that contains the extracted wheel package.

6. Install the package.

pip install devart_postgresql_connector-1.0.1-cp312-cp312-macosx_10_9_universal2.whl

© 2022-2023
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

4 Using the module

Using the module
To retrieve data from a database:

1. Import the module.

import devart.postgresql

2. Connect to a database using the connect() module method and obtain a connection

https://www.devart.com/company/contactform.html?category=0&product=python/postgresql
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/postgresql/feedback.html
https://www.devart.com/python/postgresql/download.html
https://www.devart.com/company/contactform.html?category=0&product=python/postgresql
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/postgresql/feedback.html


Python Connector for PostgreSQL5

© 2023 Devart

object.

my_connection = devart.postgresql.connect(

    Server="your_server",

    Database="your_database",

    UserId="your_username",

    Password="your_password"

)

3. Create a cursor object using the cursor() connection method.

my_cursor = my_connection.cursor()

4. Execute the SQL statement using the execute() cursor method.

my_cursor.execute("SELECT * FROM employees")

5. Retrieve the result set using one of the fetch*() cursor methods.

for row in my_cursor.fetchall():

    print(row)

© 2022-2023
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

5 Connection parameters

Connection parameters
The following table lists PostgreSQL connection parameters you can use in the connect()

module method.

Paramet
er

Description

Server The server name or IP address

Port (Optional) The port number. The default value is 5432.

UserId The name of the database user

Password The password of the database user

https://www.devart.com/company/contactform.html?category=0&product=python/postgresql
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/postgresql/feedback.html


Connection parameters 6

© 2023 Devart

Database The name of the database

Schema (Optional) The schema search path. The default value is public.

Protocol

(Optional) The version of the PostgreSQL messaging protocol. The

possible values are pvAuto, pv30, and pv20. The default value is

pvAuto.

© 2022-2023
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

6 Connection pooling

Connection pooling
Connecting to a database server typically consists of several time-consuming steps.

Connection pooling can significantly improve the performance and scalability of an application

by reducing the number of times that new database connections must be opened. This is

particularly useful for applications that involve many connect/disconnect operations.

Connection pooling uses a cache of database connections, which enables an application to

reuse a connection from a pool instead of opening a new connection when future requests to

the database are required.

When you close a connection object using the close() method, the connection remains alive

and is added to a pool. When a new connection object is created with the connect() method,

the module returns an existing connection from the pool if the connection pooler hasn't

detected the severed connection and marked it as invalid. A new connection will be

established if the pool is empty or doesn't have a valid connection.

To enable connection pooling, set the value of the connection_pool.enabled module

attribute to True. Additional options include connection_pool.min_size,

connection_pool.max_size, connection_pool.lifetime, and

connection_pool.validate. For more information about these attributes, see the

connection pool class.

The following example sets the attributes for the default connection pool, which implicitly has

the ID 0.

https://www.devart.com/company/contactform.html?category=0&product=python/postgresql
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/postgresql/feedback.html


Python Connector for PostgreSQL7

© 2023 Devart

devart.postgresql.connection_pool.min_size = 0
devart.postgresql.connection_pool.max_size = 1000
devart.postgresql.connection_pool.lifetime = 60000
devart.postgresql.connection_pool.validate = True
devart.postgresql.connection_pool.enabled = True

You can define several connection pools with different settings. To define settings for a

connection pool with a particular ID, use the syntax connection_pool[pool_id: int],

where pool_id is the ID of the pool. You can also pass the the PoolId connection string

parameter to specify which connection pool will be used for a particular connection.

devart.postgresql.connection_pool[42].max_size = 100
devart.postgresql.connection_pool[42].lifetime = 120000
devart.postgresql.connection_pool.enabled = True
my_connection = devart.postgresql.connect("Server=your_server;Database=your_database;UserId=your_username;Password=your_password",PoolId=42)

Database connections belong to the same pool when they have identical parameters in the

connection string. Two connections with different connection string parameters will be placed

into separate pools with the same identifiers. The connector creates a separate pool when a

new connection has the same pool ID as an existing pool but different connection

parameters.

The connection_pool.enabled attribute is global. If pooling is enabled, all new connections

will be pooled. Pooling can be disabled for a particular connection using the 

DisablePooling=True connection string parameter.

my_connection = devart.postgresql.connect("Server=your_server;Database=your_database;UserId=your_username;Password=your_password",DisablePooling=True)

Database connections in a pool are validated every 30 seconds to ensure that a broken

connection won't be returned from the pool when a connection object is constructed. Invalid

connections are destroyed. The connection pooler also validates connections when they are

added or released back into the pool (for example, when you call the connection.close()

method).

If you set the validate attribute to True, connections will also be validated when they're

drawn from the pool. In the event of a network issue, all connections to a database may

become broken. Therefore, if a fatal error is detected in one connection from the pool, the

pooler will validate all connections in the pool.

The pooler removes a connection from the pool after it's been idle for approximately 4

minutes. If no new connections are added to the pool during this time, it becomes empty to

save the resources. If you set the min_size attribute to a non-zero value, the pool won't

destroy all idle connections and become empty unless the remaining connections are marked



Connection pooling 8

© 2023 Devart

as invalid.

The max_size pool attribute limits the number of connections that can be stored in a pool at

the same time. When the maximum number of connections in a pool is reached, all future

database connections will be destroyed once the connection object releases them.

You can limit the connection lifetime using the lifetime attribute. When a connection object

is closed, and a database connection is returned to the pool, the creation time of the

connection is compared with the current time, and the connection is destroyed if that

timespan exceeds the lifetime value. This technique serves for load balancing.

© 2022-2023
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

7 Data types

Data types
The following table describes the supported PostgreSQL data types and their mapping to the

Python data types. The type codes returned in the description cursor attribute can be used

in the addtypecast() cursor method.

PostgreSQL data type Type code Python data type

character 507 str

character varying 508 str

text 517 str

smallint 515 int

integer 511 int

bigint 501 int

serial 516 int

bigserial 502 int

real 514 float

double precision 510 float

numeric 513 numeric

https://www.devart.com/company/contactform.html?category=0&product=python/postgresql
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/postgresql/feedback.html


Python Connector for PostgreSQL9

© 2023 Devart

date 509 datetime.date

time 518 datetime.time

time with time zone 519 datetime.time

timestamp 520 datetime.datetime

timestamp with time zone 521 datetime.datetime

bytea 506 binary

point 562 point

lseg 559 lseg

line 558 line

path 561 path

polygon 563 polygon

box 553 box

circle 555 circle

© 2022-2023
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

8 Class reference

8.1 Module class

Module class
The module class provides methods, global properties, exceptions, constructors, and type

objects to be used by all connections created in the module.

Methods

connect()

Globals

apilevel

threadsafety

paramstyle

https://www.devart.com/company/contactform.html?category=0&product=python/postgresql
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/postgresql/feedback.html


Class reference 10

© 2023 Devart

Exceptions

Warning

Error

InterfaceError

DatabaseError

DataError

OperationalError

IntegrityError

InternalError

ProgrammingError

NotSupportedError

Constructors

Date()

Time()

Timestamp()

DateFromTicks()

TimeFromTicks()

TimestampFromTicks()

Binary()

PostgreSQL-specific constructors

Type objects

STRING

BINARY

NUMBER

DATETIME

ROWID

binary



Python Connector for PostgreSQL11

© 2023 Devart

NaN

Infinity

PostgreSQL-specific type objects

Methods

connect(connection string|connection parameters)

Creates a new connection to the database.

Arguments

connection string

A string literal of form "parameter=value;parameter=value"

connection parameters

A sequence of named parameters

Connection parameters

For the full list of supported connection parameters, see Connection parameters.

Return value

Returns a connection object.

Code sample

 

# establising a connection using a connection string
connection1 = devart.postgresql.connect("Server=your_server;Database=your_database;UserId=your_username;Password=your_password")
# establising a connection using named parameters
connection2 = devart.postgresql.connect(
    Server="your_server",
    Database="your_database",
    UserId="your_username",
    Password="your_password"
)

Globals

apilevel



Class reference 12

© 2023 Devart

Indicates the DB API level supported by the module. Returns a string value "2.0".

threadsafety

Indicates the thread safety level of the module. Returns an integer value 2 that means that
threads may share the module and connections.

paramstyle

Indicates the type of parameter marker formatting expected by the module. Returns a
string value "named" that means that the module supports named style parameters, for
example, ...WHERE name=:name.

Exceptions
The module provides the following exceptions to make all error information available.

Warning

This exception is raised for important warnings like data truncations while inserting, etc.
The Warning exception is a subclass of the Python Exception class.

Error

This exception is the base class of all error exceptions. You can use it to catch all errors
with a single except statement. The Error exception is a subclass of the Python
Exception class.

InterfaceError

This exception is raised for errors that are related to the database interface rather than the
database itself. The InterfaceError exception is a subclass of Error.

DatabaseError

This exception is raised for errors that are related to the database. The DatabaseError
exception is a subclass of Error.

DataError

This exception is raised for errors caused by issues with the processed data like division
by zero, numeric value out of range, etc. The DataError exception is a subclass of
DatabaseError.

OperationalError

This exception is raised for errors that are related to the database operation and not
necessarily under the control of the developer, for example, an unexpected disconnect
occurs, the data source name isn't found, a transaction couldn't be processed, a
memory allocation error occurred during processing, etc. The OperationalError

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.python.org/3/library/exceptions.html#Exception


Python Connector for PostgreSQL13

© 2023 Devart

exception is a subclass of DatabaseError.

IntegrityError

This exception raised when the relational integrity of the database is affected, for example,
a foreign key check fails. The IntegrityError exception is a subclass of
DatabaseError.

InternalError

This exception is raised when the database encounters an internal error, for example, the
cursor isn't valid anymore, the transaction is out of sync, etc. The InternalError
exception is a subclass of DatabaseError.

ProgrammingError

This exception is raised for programming errors, for example, table not found or already
exists, syntax error in the SQL statement, wrong number of parameters specified, etc.
The ProgrammingError exception is a subclass of DatabaseError.

NotSupportedError

This exception is raised when a method or database API isn't supported by the database,
for example, requesting a rollback() on a connection that doesn't support
transactions or has transactions turned off. The NotSupportedError exception is a
subclass of DatabaseError.

The complete exception inheritance tree looks as follows.
Exception

Warning

Error

InterfaceError

DatabaseError

DataError

OperationalError

IntegrityError

InternalError

https://docs.python.org/3/library/exceptions.html#Exception


Class reference 14

© 2023 Devart

ProgrammingError

NotSupportedError

Constructors
The module provides the following constructors for creating date/time objects. The created
date/time objects are implemented as Python datetime module objects.

Date(year, month, day)

Creates an object that holds a date value.

Arguments

year

month

day

Values of type int that specify the year, month, and day.

Return value

Returns a datetime.date object.

Time(hour, minute, second[, timezone])

Creates an object that holds a time value.

Arguments

hour

minute

Values of type int that specify hours and minutes.

second

An int value that specifies seconds or a float value that specifies seconds and

http://docs.python.org/library/datetime.html


Python Connector for PostgreSQL15

© 2023 Devart

microseconds.

timezone

(Optional) A value of type datetime.tzinfo that specifies a timezone. The value can be
None.

Return value

Returns a datetime.time object.

Timestamp(year, month, day[, hour[, minute[, second[,
timezone]]]])

Creates an object that holds a timestamp value.

Arguments

year

month

day

Values of type int that specify the year, month, and day.

hour

minute

(Optional) Values of type int that specify hours and minutes.

second

(Optional) An int value that specifies seconds or a float value that specifies seconds
and microseconds.

timezone

(Optional) A value of type datetime.tzinfo that specifies a timezone. The value can be
None.

Return value



Class reference 16

© 2023 Devart

Returns a datetime.datetime object.

DateFromTicks(ticks)

Creates an object that holds a date value from the given ticks value (the number of seconds

since the Unix epoch). For more information, see the time module in the standard Python

documentation.

Arguments

ticks

A value of type float that specifies number of seconds since the Unix epoch.

Return value

Returns a datetime.date object.

TimeFromTicks(ticks)

Creates an object that holds a time value from the given ticks value (number of seconds

since the Unix epoch). For more information, see the time module in the standard Python

documentation.

Arguments

ticks

A value of type float that specifies number of seconds since the Unix epoch.

Return value

Returns a datetime.time object.

TimestampFromTicks(ticks)

Creates an object that holds a timestamp value from the given ticks value (number of

seconds since the Unix epoch). For more information, see the time module in the standard

Python documentation.

https://docs.python.org/3/library/time.html
https://docs.python.org/3/library/time.html
https://docs.python.org/3/library/time.html


Python Connector for PostgreSQL17

© 2023 Devart

Arguments

ticks

A value of type float that specifies number of seconds since the Unix epoch.

Return value

Returns a datetime.datetime object.

The module provides the following additional constructors.

Binary(value)

Creates an object that holds binary data.

Arguments

value

A value of type str, bytes, bytearray, array.array, or a binary object.

Return value

Returns a binary object.

PostgreSQL-specific constructors

Additional constructors for handling PostgreSQL-specific database types.

Type objects
The module provides the following type objects to create mapping between the PostgreSQL
database types and Python types. You can use these type objects as arguments for the 
addtypecast() cursor method to define a data type cast rule to use when fetching data from
the cursor. They can also be used to determine the Python types of the result columns
returned by the execute*() cursor methods.

STRING

This type object describes string-based columns in a database (for example, character

varying).



Class reference 18

© 2023 Devart

BINARY

This type object describes binary columns in a database (for example, bytea).

NUMBER

This type object describes numeric columns in a database.

DATETIME

This type object describes date/time columns in a database.

ROWID

This type object describes the row ID column in a database.

Code sample

cursor.execute("select column1 from table1")
# check if the first column in the result set is string-based so that its value can be safely treated as `str`
if cursor.description[0].type_code in postgresql.STRING:
    # do something

The module provides the following additional type objects.

binary

This type object describes an object that holds binary data. By default, this type object is used

to fetch BLOB-based columns from the cursor. You can also create a binary object using

the Binary() constructor.

Attributes

value

A value of type bytes that represents binary data. This is a read/write attribute that
accepts values of type str, bytes, bytearray, array.array, and binary.

NaN



Python Connector for PostgreSQL19

© 2023 Devart

This type object describes a special numeric value not-a-number that can be used in

operations with numeric objects.

Remarks

NaN can be interpreted as an undefined or non-representable value. It doesn't support
comparison operators except == and !=.

 

Infinity

This type object describes a special numeric value positive infinity that is larger than

any natural number. It can be used in operations with numeric objects.

Remarks

The connector doesn't provide any special type object for negative infinity that
represents the smallest number. For negative infinity, use a -Infinity value.

 

PostgreSQL-specific type objects

Additional type objects for handling PostgreSQL-specific database types.

© 2022-2023
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

8.2 Module additions

Module additions
The module provides several additional constructors and type objects for handling

PostgreSQL-specific database types.

Constructors

Numeric()

Point()

Lseg()

https://www.devart.com/company/contactform.html?category=0&product=python/postgresql
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/postgresql/feedback.html


Class reference 20

© 2023 Devart

Line()

Path()

Polygon()

Box()

Circle()

Type objects

numeric

point

lseg

line

path

polygon

box

circle

Constructors

Numeric(weight, scale, sign, digits|value)

Creates an object that holds a number with a very large number of digits.

Arguments

weight, scale, sign, digits

Corresponding values for the numeric object attributes.

value

A value of type str, int, float, or a numeric object.

Return value

Returns a numeric object.

 



Python Connector for PostgreSQL21

© 2023 Devart

Remarks

The value argument can also contain special values Infinity, -Infinity, and NaN (or
their string representations). These are adapted from the IEEE 754 standard, and
represent the positive infinity, negative infinity, and not-a-number,
respectively.

 

Point(x, y|value)

Creates an object that holds coordinates of a point on a plane.

Arguments

x, y

Values of type int or float that specify the coordinates of the point.

value

A string literal of form (x, y) wherex and y are the respective coordinates, or a point
object.

Return value

Returns a point object.

 

Lseg(start, end|startx, starty, endx, endy|value)

Creates an object that holds information about a line segment.

Arguments

start, end

Values of type point that specify the endpoints of the segment.

startx, starty, endx, endy

Values of type int or float that specify the coordinates of the endpoints.

value



Class reference 22

© 2023 Devart

A string literal of form [(x1, y1), (x2, y2)] where (x1, y1) and (x2, y2) are the
respective endpoints, or a lseg object.

Return value

Returns a lseg object.

 

Line(a, b, c|value)

Creates an object that holds information about a line.

Arguments

a, b, c

Values of type int or float that specify the coefficients of the linear equation ax + by
+ c = 0 that describes the line.

value

A string literal of form {a, b, c} where a, b, and c are the respective coefficients, or a
line object.

Return value

Returns a line object.

 

Remarks

The a and b arguments must not both be zero.

 

Path(points|value)

Creates an object that holds an array of connected line segments.

Arguments

points

A list of point objects that specify the endpoints of the segments that form the path.



Python Connector for PostgreSQL23

© 2023 Devart

value

A string literal of form [(x1, y1), ..., (xn, yn)] where (xn, yn) are sequential
endpoints of all the segments, or a path object.

Return value

Returns a path object.

 

Polygon(points|value)

Creates an object that holds information about a polygon.

Arguments

points

A list of point objects that specify the vertexes of the polygon.

value

A string literal of form ((x1, y1), ..., (xn, yn)) where (xn, yn) are sequential
coordinates of all the vertexes of the polygon, or a polygon object.

Return value

Returns a polygon object.

 

Box(upperright, lowerleft|upperrightx, upperrighty,
lowerleftx, lowerlefty|value)

Creates an object that holds information about the rectangle.

Arguments

upperright, lowerleft

Values of type point that specify the upper right and lower left corners of the rectangle.



Class reference 24

© 2023 Devart

upperrightx, upperrighty, lowerleftx, lowerlefty

Values of type int or float that specify the coordinates of the rectangle corners.

value

A string literal of form ((x1, y1), (x2, y2)) where (x1, y1) and (x2, y2) are
coordinates of two opposite corners of the rectangle, or a box object.

Return value

Returns a box object.

 

Remarks

There are no strict requirements that the input values must be exactly upper right and
lower left corners. Any two opposite corners can be supplied, but you should keep in
mind that when saved into a database, the values will be reordered as needed to store
the upper right and lower left corners, in that order. Therefore, on subsequent reading of
the stored value, you may get an object that doesn't match the one that was written.

 

Circle(center, radius|centerx, centery, radius|value)

Creates an object that holds information about a circle.

Arguments

center

A value of type point that specifies the center point of the circle.

radius

A value of type int or float that specifies the radius of the circle.

centerx, centery, radius

Values of type int or float that specify coordinates of the center point of the circle and
it's radius, respectively.

value

A string literal of form <(x, y), r> where x and y are the center point coordinates and r



Python Connector for PostgreSQL25

© 2023 Devart

is the radius, or a circle object.

Return value

Returns a circle object.

 

Type objects

numeric

This type object describes an object that holds numbers with a very large number of digits. By

default, this type object is used to fetch numeric or decimal columns from the cursor. You

can also create a numeric object using the Numeric() constructor.

Attributes

digits

A tuple of integers that specifies all the digits of a numeric object. Each element of the
tuple contains four digits.

weight

The index of the last digits element that refers to the integer part of a numeric object.

scale

The number of digits in the fractional part of a numeric object.

sign

Specifies whether a numeric object is positive or negative, or has a special value.
The possible values are:

0x0000 – The numeric value is positive.

0x4000 – The numeric value is negative.

0xC000 – The numeric is NaN.

0xD000 – The numeric value is Infinity.

0xF000 – The numeric value is -Infinity.

Examples



Class reference 26

© 2023 Devart

 

num1 = devart.postgresql.Numeric('-12345678.1234')
repr(num1)
'<devart.postgresql.numeric object at 0x...; weight=1, scale=4, sign=16384, digits=(1234, 5678, 1234)>'

The value 12345678.1234 is split into four-digit groups, which are then converted to integers.
In this example, there are three digits elements: 1234, 5678, and 1234. The first two digits
elements contain the integer part of the value, so the weight is 1. The fractional part of the
value consists of four digits, so the scale is 4. Since the value is negative, the sign is
0x4000.

>>> num2 = devart.postgresql.Numeric('NaN')
repr(num2)
'<devart.postgresql.numeric object at 0x...; weight=0, scale=0, sign=49152, digits=()>'

Since the value is NaN, the numeric object contains no data other than the sign attribute,
which is 0xC000.

point

This type object describes an object that holds coordinates of a point on a plane. By default,

this type object is used to fetch point columns from the cursor. You can also create a point

object using the Point() constructor.

Attributes

x

y

The coordinates of the point.

lseg

This type object describes an object that holds information about a line segment. By default,

this type object is used to fetch lseg columns from the cursor. You can also create a lseg

object using the Lseg() constructor.

Attributes

start

end



Python Connector for PostgreSQL27

© 2023 Devart

The endpoints of the line segment.

line

This type object describes an object that holds information about a line. By default, this type

object is used to fetch line columns from the cursor. You can also create a line object

using the Line() constructor.

Attributes

a

b

c

The coefficients of the linear equation ax + by + c = 0 that describes the line.

path

This type object describes an object that holds an array of connected line segments. By

default, this type object is used to fetch path columns from the cursor. You can also create a

path object using the Path() constructor.

Attributes

points

A list of endpoints of all the segments of the path.

polygon

This type object describes an object that holds information about a polygon. By default, this

type object is used to fetch polygon columns from the cursor. You can also create a

polygon object using the Polygon() constructor.

Attributes



Class reference 28

© 2023 Devart

points

A list of coordinates of all the vertexes of the polygon.

box

This type object describes an object that holds information about a rectangle. By default, this

type object is used to fetch box columns from the cursor. You can also create a box object

using the Box() constructor.

Attributes

upperright

lowerleft

The opposite corners of the rectangle.

circle

This type object describes an object that holds information about a circle. By default, this type

object is used to fetch circle columns from the cursor. You can also create a circle object

using the Circle() constructor.

Attributes

center

The center point of the circle.

radius

The radius of the circle.

© 2022-2023
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

8.3 Connection class

Connection class

https://www.devart.com/company/contactform.html?category=0&product=python/postgresql
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/postgresql/feedback.html


Python Connector for PostgreSQL29

© 2023 Devart

The connection class encapsulates a database session. It provides methods for creating

cursors, type casting, and transaction handling. Connections are created using the

connect() module method.

Methods

cursor()

commit()

rollback()

addtypecast()

cleartypecast()

close()

Attributes

connectstring

Exceptions

Methods

cursor()

Creates a new cursor object, which is used to manage the context of fetch operations.

Arguments

This method has no arguments.

Return value

Returns a cursor object.

commit()

Commits any pending transaction to the database.

Arguments

This method has no arguments.



Class reference 30

© 2023 Devart

rollback()

Causes the database to roll back any pending transaction.

Arguments

This method has no arguments.

Remarks

Closing a connection without first committing changes causes an implicit rollback.

addtypecast(database type|module type object|column name|
description|dictionary[, Python type])

Defines a data type cast rule to use when fetching data from the cursor.

Arguments

database type

An int value that specifies the database data type code. You can also pass multiple data
type codes in a tuple or list.

module type object

A module type object that specifies the family of the database data types.

column name

A string literal that specifies the name of the database column. You can also pass multiple
string literals in a tuple or list.

description

A description object that describes the column in a rowset. You can also pass multiple
objects in a tuple or list.

dictionary

A dictionary of pairs column name:Python type that specifies individual cast rules for
a set of columns. The method argument Python type can be omitted.

Python type

A Python type object that specifies the target type to which to cast the database type, or
an int value which means that the column will be of type str and defines its maximum



Python Connector for PostgreSQL31

© 2023 Devart

length.

Code sample

 

connection = devart.postgresql.connect("Server=your_server;Database=your_database;UserId=your_username;Password=your_password")
# all database columns with data type code 511 (PostgreSQL database type INTEGER) will be casted to the Python type `int`
connection.addtypecast(511, int)
# all numeric database columns will be fetched as strings
connection.addtypecast(devart.postgresql.NUMBER, str)
# data of "column1" will be fetched as a string
connection.addtypecast("column1", str)
# data of "column2" will be fetched as `int` and data of "column3" will be fetched as a string of maximum length 50
connection.addtypecast({"column2":int, "column3":50})

Remarks

The cast rule affects all cursors created within the connection. To define a cast rule for a
particular cursor, use the addtypecast() cursor method. The type code of a database
column can be obtained from the type_code attribute of the corresponding element of
the description cursor attribute.

cleartypecast()

Removes all data type cast rules defined for the connection.

Arguments

This method has no arguments.

Remarks

This method doesn't remove cast rules defined for a particular cursor using the 
addtypecast() cursor method.

close()

Closes the connection.

Arguments

This method has no arguments.

Remarks

The connection becomes unusable after calling this method. The InterfaceError
exception is raised if any operation is attempted with the connection. The same applies



Class reference 32

© 2023 Devart

to all cursor objects trying to use the connection. Closing a connection prior to
committing changes causes an implicit rollback.

Attributes

connectstring

A read-only attribute that returns a string literal of the form 
"parameter=value;parameter=value" that contains the parameters for the current
connection.

Exceptions
The connection class provides a set of exception classes that exactly match the module

exceptions. This simplifies error handling in environments with multiple connections.

© 2022-2023
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

8.4 Cursor class

Cursor class
The cursor class represents a database cursor, which is used to manage the context of

fetch operations. This class provides methods for executing SQL statements and operating

rowsets. Cursors are created using the cursor() connection method.

Methods

setinputsizes()

execute()

executemany()

fetchone()

fetchmany()

fetchall()

next()

scroll()

https://www.devart.com/company/contactform.html?category=0&product=python/postgresql
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/postgresql/feedback.html


Python Connector for PostgreSQL33

© 2023 Devart

addtypecast()

cleartypecast()

close()

setoutputsize()

Attributes

connection

arraysize

description

rowcount

rownumber

lastrowid

Methods

setinputsizes([sizes])

Predefines the types of parameters for the further call to the execute*() method.

Arguments

sizes

(Optional) A sequence (list or tuple) with one item for each input parameter. The item
should be a type object that defines the type of the input parameter, or an integer value
specifying the maximum length of the string parameter. If the item is None, the
parameter type is determined by the value provided in the execute*() method.

Remarks

Once set, the types of parameters are retained on subsequent calls to the execute*()
method until the cursor is closed by calling close(). To clear the set parameter types,
call the method with no arguments.

Code sample

 

cursor = connection.cursor()
# in the further call to cursor.execute() the supplied parameters will be treated as `int`, `float` and a string of length 20



Class reference 34

© 2023 Devart

cursor.setinputsizes(int, float, 20)

execute(operation[, parameters])

Prepares and executes a database operation.

Arguments

operation

A string literal that specifies the database command (SQL statement) to be executed.

parameters

(Optional) A sequence (list or tuple) of values to be bound to the corresponding
parameters of the operation.

Code sample

 

cursor = connection.cursor()
cursor.execute("create table test_table(column1 integer, column2 integer)")
cursor.execute("insert into test_table(column1, column2) values(:parameter1, :parameter2)", (1, 1))

Remarks

The types of the input parameters can be pre-specified using the setinputsizes()
method. To execute a batch operation that affects multiple rows in a single operation,
use the executemany() method.

executemany(operation[, sequence of parameters])

Prepares and executes a batch database operation.

Arguments

operation

A string literal that specifies the database command (SQL statement) to be executed.

parameters

(Optional) A sequence (list or tuple) of sequences of values, each of which is to be
bound to the corresponding parameter of the operation.



Python Connector for PostgreSQL35

© 2023 Devart

Code sample

 

cursor = connection.cursor()
cursor.execute("create table test_table(column1 integer, column2 integer)")
cursor.executemany("insert into test_table(column1, column2) values(:parameter1, :parameter2)", ((1, 1), (2, 2), (3, 3)))

Remarks

The types of the input parameters can be pre-specified using the setinputsizes()
method. This method is significantly faster than executing the execute() method in a
loop.

fetchone()

Fetches the next row of a query result set.

Arguments

This method has no arguments.

Return value

Returns a single tuple that contains values for each queried database column, or None
when no more data is available.

 

Remarks

The ProgrammingError exception is raised if the previous call to the execute*() method
didn't produce any result set, or no call was made yet.

fetchmany([size=cursor.arraysize])

Fetches the next set of rows of a query result.

Arguments

size

(Optional) The number of rows to fetch per call. If the number isn't specified, the 
arraysize attribute determines the number of rows to be fetched.

Return value



Class reference 36

© 2023 Devart

Returns a list of tuples for each result row. Each tuple contains values for each
queried database column. An empty list is returned when no more rows are available.

 

Remarks

The ProgrammingError exception is raised if the previous call to the execute*() method
didn't produce any result set, or no call was made yet.

fetchall()

Fetches all remaning rows of a query result.

Arguments

This method has no arguments.

Return value

Returns a list of tuples for each result row. Each tuple contains values for each
queried database column. An empty list is returned when no more rows are available.

 

Remarks

This method returns as many rows as are left in the result set, regardless of the 
arraysize value. The ProgrammingError exception is raised if the previous call to the
execute*() method didn't produce any result set or no call was made yet.

next()

Returns the next row from the currently executed SQL statement.

Arguments

This method has no arguments.

Return value

Returns a single tuple that contains values for each queried database column.

 

Remarks

This method uses the same semantics as fetchone(), except that the standard



Python Connector for PostgreSQL37

© 2023 Devart

StopIteration exception is thrown if no more rows are available.

scroll(value[, mode='relative'])

Scrolls the cursor in the result set to a new position.

Arguments

value

An int value that specifies the new cursor position.

mode

(Optional) The value can be either relative or absolute. If the mode is relative (the
default value), the value is taken as offset to the current position in the result set. If the
mode is set to absolute, the value states an absolute target position.

Remarks

The IndexError exception is raised in case a scroll operation attempts to access an item
beyond bounds of the result set. In this case, the cursor position is left unchanged.

addtypecast(database type|module type object|column name|
description|dictionary[, Python type])

Defines a data type cast rule to use when fetching data from the cursor.

Arguments

database type

An int value that specifies the database data type code. You can also pass multiple data
type codes in a tuple or list.

module type object

A module type object that specifies the family of the database data types.

column name

A string literal that specifies the name of the database column. You can also pass multiple
string literals in a tuple or list.

description



Class reference 38

© 2023 Devart

A description object that describes the column in a rowset. You can also pass multiple
objects in a tuple or list.

dictionary

A dictionary of pairs column name:Python type that specifies individual cast rules for
a set of columns. The method argument Python type can be omitted.

Python type

A Python type object that specifies the target type to which to cast the database type, or
an int value which means that the column will be of type str and defines its maximum
length.

Remarks

The cast rule affects only the current cursor. To define the cast rule for all cursors created
within the connection, use the addtypecast() connection method. The type code of a
database column can be obtained from the type_code attribute of the corresponding
element of the description attribute.

Code sample

 

cursor = connection.cursor()
# all database columns with data type code 511 (PostgreSQL database type `integer`) will be casted to the Python type `int`
cursor.addtypecast(511, int)
# all numeric database columns will be fetched as strings
cursor.addtypecast(postgresql.NUMBER, str)
# data of "column1" will be fetched as a string
cursor.addtypecast("column1", str)
# data of "column2" will be fetched as `int` and data of "column3" will be fetched as a string of maximum length 50
cursor.addtypecast({"column2":int, "column3":50})

cleartypecast()

Removes all data type cast rules defined for the cursor.

Arguments

This method has no arguments.

Remarks

This method doesn't remove cast rules defined for the entire connection using the 
addtypecast() connection method.

close()



Python Connector for PostgreSQL39

© 2023 Devart

Closes the cursor.

Arguments

This method has no arguments.

Remarks

The cursor becomes unusable after calling this method. The InterfaceError exception
is raised if any operation is attempted with the cursor.

setoutputsize(int size[, int column])

This method is provided for compatibility with the DB API 2.0 specification. It currently does

nothing but is safe to call.

Attributes

connection

A read-only attribute that specifies the connection object to which the cursor belongs.

arraysize

A read/write attribute that specifies the number of rows to fetch at a time with the 

fetchmany() method.

Remarks

The default value of the attribute is 1 meaning to fetch a single row at a time.

description

A read-only attribute that describes the columns in a rowset returned by the cursor.

Return value

Returns a tuple of description objects with the following attributes:

name

The name of the column in the rowset

https://peps.python.org/pep-0249/


Class reference 40

© 2023 Devart

type_code

The database type code that corresponds to the type of the column

display_size

The actual length of the column in characters for a character column, None otherwise

internal size

The size in bytes used by the connector to store the column data

precision

The total number of significant digits for a numeric column, None otherwise

scale

The number of digits in the fractional part for a numeric column, None otherwise

null_ok

Py_True if the corresponding database column accepts NULL values, Py_False otherwise

Remarks

The attribute is None for operations that don't return rows or if no operation has been
invoked for the cursor via the execute() method yet. The type_code attribute can be
used in the addtypecast() method to define a data type cast rule for the corresponding
column.

rowcount

A read-only attribute that specifies the number of rows that the last execute() call produced

by a SELECT statement or affected by UPDATE or INSERT statements.

Remarks

The value of this attribute is -1 if no execute() call has been made on the cursor or the
rowcount of the last operation cannot be determined.

rownumber

A read-only attribute that indicates the current 0-based index of the cursor in the result set.

Remarks



Python Connector for PostgreSQL41

© 2023 Devart

The next fetch*() method fetches rows starting with the index in the rownumber. The
attribute initial value is always 0, regardless of whether the execute() call returned a
rowset or not.

lastrowid

This read-only attribute is provided for compatibility with the DB API 2.0 specification. It

currently returns None.

© 2022-2023
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

8.5 Connection pool class

Cursor class
The connection_pool class is used to manage the connection pooling mechanism. This

class provides properties for enabling and configuring pooling.

Properties

enabled

max_size

min_size

lifetime

validate

Properties

enabled

Enables connection pooling.

Remarks

Set enabled to True to enable connection pooling. The default value is False.

Syntax

 

https://peps.python.org/pep-0249/
https://www.devart.com/company/contactform.html?category=0&product=python/postgresql
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/postgresql/feedback.html


Class reference 42

© 2023 Devart

enabled = False | True

max_size

The maximum number of connections allowed in the pool

Remarks

When the maximum number of connections in the pool is reached, new database
connections will be destroyed instead of released back into the pool after you close
them. The default value of max_size is 100.

If no pool ID (pool_id) is specified, the maximum number of connections is set for the
default connection pool. If the pool ID is specified, the maximum number of connections
is set for the pool with the given ID.

Syntax

 

max_size = int
max_size[pool_id: int] = int

min_size

The minimum number of connections maintained in the pool

Remarks

Set this property to a non-zero value to prevent removing all connections from the pool
after they have been idle for a long time. The default value of min_size is 0.

If no pool ID (pool_id) is specified, the minimum number of connections is set for the
default connection pool. If the pool ID is specified, the minimum number of connections
is set for the pool with the given ID.

Syntax

 

min_size = int
min_size[pool_id: int] = int

lifetime

The maximum time (in milliseconds) during which a database connection will be kept in the

connection pool



Python Connector for PostgreSQL43

© 2023 Devart

Remarks

The creation time of a connection is compared with the current time, and the connection
is destroyed if that timespan exceeds the lifetime. If lifetime is set to 0 (by default),
the lifetime of a connection is infinite.

If no pool ID (pool_id) is specified, the connection lifetime is set for the default
connection pool. If the pool ID is specified, the maximum number of connections is set
for the pool with the given ID.

Syntax

 

lifetime = int
lifetime[pool_id: int] = int

validate

Specifies whether to validate a connection when it's returned from the pool.

Remarks

If the value of validate is False, the pool will validate a connection only when it's added
to the pool. If the value is True, the pool will validate a connection when it's added or
drawn from the pool. The default value is False.

If no pool ID (pool_id) is specified, the validation rule is set for the default connection
pool. If the pool ID is specified, the rule is set for the pool with the given ID.

Syntax

 

validate[pool_id: int] = False | True

© 2022-2023
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

9 Support

Support
This page describes the support options and programs available for users of Python

Connector for PostgreSQL.

https://www.devart.com/company/contactform.html?category=0&product=python/postgresql
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/postgresql/feedback.html


Support 44

© 2023 Devart

Support options

The following support options are available for users of Python Connector for PostgreSQL:

Annual maintenance and support service through the Python Connector for PostgreSQL

Subscription program

Community assistance and technical support through the community forum.

Advanced technical support from the product developers through the Python Connector for

PostgreSQL Priority Support program.

Subscriptions

The Python Connector for PostgreSQL Subscription program is an annual maintenance and

support service that provides the following benefits:

Support through the Priority Support program

Access to new versions of the product

Access to nightly builds with hotfixes (on demand)

Notifications about new product versions

Priority Support

Python Connector for PostgreSQL Priority Support is an advanced product support service

from the product developers. Devart staff will provide a response to the customer via email

within two business days from the date of receipt. Priority Support is available for users with

an active subscription.

If you need assistance with our product, send us an email at support@devart.com with the

following details:

The license number of your product

The version and edition of your product

The version of your PostgreSQL server

A detailed description of the issue

(Optional) Scripts for creating and populating the database objects

If you have any questions regarding licensing or subscriptions, send us an email at 

https://support.devart.com/portal/en/community/
mailto:support@devart.com


Python Connector for PostgreSQL45

© 2023 Devart

sales@devart.com

© 2022-2023
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

10 Licensing

Licensing
Python Connector for PostgreSQL License Agreement

--------------------------------------------------

PLEASE READ THIS LICENSE AGREEMENT CAREFULLY. BY INSTALLING OR USING

THIS SOFTWARE,YOU INDICATE ACCEPTANCE OF AND AGREE TO BECOME BOUND

BY THE TERMS AND CONDITIONS OF THIS LICENSE. IF YOU DO NOT AGREE TO THE

TERMS OF THIS LICENSE, DO NOT INSTALL OR USE THIS SOFTWARE AND

PROMPTLY RETURN IT TO DEVART.

INTRODUCTION

This Devart end-user license agreement ("Agreement") is a legal agreement between you

(either an individual person or a single legal entity) and Devart, for the use of the Python

Connector for PostgreSQL software application, demos, intermediate files, printed materials,

and online or electronic documentation contained in this installation file. For the purpose of

this Agreement, the software program(s) and supporting documentation will be referred to as

the "Software".

LICENSE

1. GRANT OF LICENSE

The enclosed Software is licensed, not sold. You have the following rights and privileges,

subject to all limitations, restrictions, and policies specified in this Agreement.

1.1. If you are a legally licensed user, depending on the license type specified in the

registration letter you have received from Devart upon purchase of the Software:

- the "Desktop License" allows you to install and use the Software on a single desktop

computer, provided it is accessed by no more than one person at a time, either directly or

remotely, for sole purposes only in accordance with this Agreement. If more than one person

mailto:sales@devart.com
https://www.devart.com/company/contactform.html?category=0&product=python/postgresql
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/postgresql/feedback.html


Licensing 46

© 2023 Devart

can simultaneously use the computer where you plan to install the product,you must

purchase a Server License. A Desktop License is valid for one single desktop installation;

- the "Server License" allows you to install and use the Software on a single server,provided it

is accessed by more than one person at a time, either directly or remotely.This definition

includes, but is not limited to, Web servers, application servers,batch servers, and desktop

workstations, where more than one concurrent users can access the Software. A Server

License is valid for one single server installation,provided it is used by 1 (one) legal entity in

accordance with this Agreement.

1.2. If you are a legally licensed user of the Software, you are also entitled to:

- make one copy of the Software for archival purposes only, or copy the Software onto the

hard disk of your computer and retain the original for archival purposes;

- develop and test Applications with the Software, subject to the Limitations below.

1.3. You are allowed to use evaluation versions of the Software as specified in the Evaluation

section.

No other rights or privileges are granted in this Agreement.

2. LIMITATIONS

Only legally registered users are licensed to use the Software, subject to all of the conditions

of this Agreement. Usage of the Software is subject to the following restrictions.

2.1. You may not reverse engineer, decompile, or disassemble the Software.

2.2. You may not reproduce or distribute any Software documentation without express written

permission from Devart.

2.3. You may not distribute and sell any portion of the Software integrating it into your

Applications.

2.4. You may not transfer, assign, or modify the Software in whole or in part. In particular, the

Software license is non-transferable, and you may not transfer the Software installation

package.

2.5. You may not remove or alter any Devart's copyright, trademark, or other proprietary rights

notice contained in any portion of Devart files.

3. REDISTRIBUTION



Python Connector for PostgreSQL47

© 2023 Devart

The license grants you a non-exclusive right to reproduce any new software

programs(Applications) created using the Software. You cannot distribute the Software

integrated into your Applications. Any Devart's files remain Devart's exclusive property.

4. TRANSFER

You may not transfer the Software to any individual or entity without express written

permission from Devart. In particular, you may not share copies of the Software under

"Desktop License" with other co-developers without obtaining proper license of these copies

for each individual; you may not install the Software under "Server License" more than 1 (one)

server without obtaining proper license of these installations for each server.

5. TERMINATION

Devart may immediately terminate this Agreement without notice or judicial resolution in the

event of any failure to comply with any provision of this Agreement. Upon such termination

you must destroy the Software, all accompanying written materials, and all copies.

6. EVALUATION

Devart may provide evaluation ("Trial") versions of the Software. You may transfer or

distribute Trial versions of the Software as an original installation package only.If the Software

you have obtained is marked as a "Trial" version, you may install and use the Software for a

period of up to 30 calendar days from the date of installation(the "Trial Period"), subject to the

additional restriction that it is used solely for evaluation of the Software and not in conjunction

with the development or deployment of any application in production. You may not use

Applications developed using Trial versions of the Software for any commercial purposes.

Upon expiration of the Trial Period, the Software must be uninstalled, all its copies and all

accompanying written materials must be destroyed.

7. WARRANTY

The Software and documentation are provided "AS IS" without warranty of any kind. Devart

makes no warranties, expressed or implied, including, but not limited to, the implied

warranties of merchantability and fitness for a particular purpose or use.

8. SUBSCRIPTION AND SUPPORT

The Software is sold on a subscription basis. The Software subscription entitles you to

download improvements and enhancement from Devart's web site as they become available,

during the active subscription period. The initial subscription period is one year from the date



Licensing 48

© 2023 Devart

of purchase of the license. The subscription is automatically activated upon purchase, and

may be subsequently renewed by Devart, subject to receipt applicable fees. Licensed users

of the Software with an active subscription may request technical assistance with using the

Software over email from the Software development. Devart shall use its reasonable

endeavors to answer queries raised, but does not guarantee that your queries or problems

will be fixed or solved.

Devart reserves the right to cease offering and providing support for legacy IDE versions.

9. COPYRIGHT

The Software is confidential and proprietary copyrighted work of Devart and is protected by

international copyright laws and treaty provisions. You may not remove the copyright notice

from any copy of the Software or any copy of the written materials,accompanying the

Software.

This Agreement contains the total agreement between the two parties and supersedes any

other agreements, written, oral, expressed, or implied.

© 2022-2023
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

11 Uninstall the connector

Uninstall the connector
To uninstall the connector, run the following command.

pip uninstall devart-postgresql-connector

© 2022-2023
Devart. All Rights
Reserved.

Request Support
Python Connectors
Forum

Provide Feedback

https://www.devart.com/company/contactform.html?category=0&product=python/postgresql
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/postgresql/feedback.html
https://www.devart.com/company/contactform.html?category=0&product=python/postgresql
https://support.devart.com/portal/en/community/
https://support.devart.com/portal/en/community/
https://www.devart.com/python/postgresql/feedback.html

	Overview
	What's new
	Install the connector
	Windows
	Linux
	macOS

	Using the module
	Connection parameters
	Connection pooling
	Data types
	Class reference
	Module class
	Module additions
	Connection class
	Cursor class
	Connection pool class

	Support
	Licensing
	Uninstall the connector

