
IContents

I

© 2024 Devart

Table of Contents
Part I What's New 1

Part II General Information 36

... 371 Overview

... 402 Features

... 493 Requirements

... 494 Compatibility

... 645 Using Several DAC Products in One IDE

... 656 Component List

... 697 Hierarchy Chart

... 708 Editions

... 769 Licensing

... 8010 Getting Support

Part III Getting Started 81

... 871 Installation

... 902 Migration Wizard

... 913 UniDAC Basics

... 1064 Demo Projects

... 1125 Deployment

Part IV Using UniDAC 114

... 1151 Connecting to Database

... 1192 Updating data with UniDAC

... 1223 Master/Detail Relationships

... 1244 Data Types

... 1325 Data Type Mapping

... 1396 Data Encryption

... 1427 Working in an Unstable Network

... 1438 Disconnected Mode

... 1449 Batch Operations

... 15010 Increasing Performance

... 15211 Using Connection Pooling

... 15412 Macros

... 15513 DataSet Manager

... 15814 Network Tunneling

... 16115 Executing Stored Procedures

Universal Data Access ComponentsII

© 2024 Devart

... 16416 Transactions

... 16617 Unified SQL

... 17318 DBMonitor

... 17419 Writing GUI Applications with UniDAC

... 17420 Compatibility with Previous Versions

... 17621 64-bit Development with Embarcadero RAD Studio XE2

... 18222 C++ Builder Development for Android and iOS

Part V Provider-Specific Notes 189

... 1901 Database Providers

.. 190UniDAC and Adaptive Server Enterprise

.. 196UniDAC and Advantage Database Server

.. 199UniDAC and Amazon Redshift

.. 206UniDAC and DB2

.. 209UniDAC and DBF

.. 215UniDAC and InterBase/Firebird

... 215InterBase/Firebird Provider

... 224OTW Netw ork Encryption

.. 225UniDAC and Microsoft Access

.. 229UniDAC and MongoDB

.. 239UniDAC and MySQL

.. 247UniDAC and NexusDB

.. 252UniDAC and PostgreSQL

.. 260UniDAC and ODBC

.. 264UniDAC and Oracle

.. 277UniDAC and SQLite

... 277SQLite Provider

... 285Database File Encryption

.. 288UniDAC and SQL Server

... 3022 Cloud Providers

.. 302UniDAC and BigCommerce

.. 306UniDAC and Dynamics 365

.. 310UniDAC and FreshBooks

.. 314UniDAC and Google BigQuery

.. 318UniDAC and HubSpot

.. 321UniDAC and Magento

.. 325UniDAC and Mailchimp

.. 329UniDAC and NetSuite

.. 333UniDAC and QuickBooks

.. 337UniDAC and Salesforce

.. 341UniDAC and Salesforce MC

.. 345UniDAC and SugarCRM

.. 348UniDAC and Zoho CRM

... 3523 Database Specific Aspects of 64-bit Development

Part VI Reference 355

... 3571 CRAccess

.. 358Classes

... 358TCRCursor Class

IIIContents

III

© 2024 Devart

... 359Members

.. 359Types

... 360TBeforeFetchProc Procedure Reference

.. 360Enumerations

... 361TCRIsolationLevel Enumeration

... 362TCRTransactionAction Enumeration

... 362TCursorState Enumeration

... 3632 CRBatchMove

.. 364Classes

... 364TCRBatchMove Class

... 365Members

... 367Properties

... 369AbortOnKeyViol Property

... 369AbortOnProblem Property

... 370ChangedCount Property

... 370CommitCount Property

... 371Destination Property

... 371FieldMappingMode Property

... 371KeyViolCount Property

... 372Mappings Property

... 373Mode Property

... 373MovedCount Property

... 374ProblemCount Property

... 374RecordCount Property

... 375Source Property

... 376Methods

... 376Execute Method

... 377Events

... 377OnBatchMoveProgress Event

.. 378Types

... 378TCRBatchMoveProgressEvent Procedure Reference

.. 378Enumerations

... 379TCRBatchMode Enumeration

... 380TCRFieldMappingMode Enumeration

... 3803 CREncryption

.. 381Classes

... 381TCREncryptor Class

... 382Members

... 382Properties

... 383DataHeader Property

... 384EncryptionAlgorithm Property

... 384HashAlgorithm Property

... 385InvalidHashAction Property

... 385Passw ord Property

... 386Methods

... 386SetKey Method

.. 387Enumerations

... 387TCREncDataHeader Enumeration

... 388TCREncryptionAlgorithm Enumeration

... 389TCRHashAlgorithm Enumeration

... 389TCRInvalidHashAction Enumeration

... 3904 CRVio

.. 390Classes

Universal Data Access ComponentsIV

© 2024 Devart

... 391THttpOptions Class

... 391Members

... 392Properties

... 393Enabled Property

... 393Passw ord Property

... 394ProxyOptions Property

... 394TrustServerCertif icate Property

... 395Url Property

... 395Username Property

... 395TProxyOptions Class

... 396Members

... 396Properties

... 397Hostname Property

... 397Passw ord Property

... 398Port Property

... 398Username Property

.. 399Enumerations

... 399TIPVersion Enumeration

... 4005 CRXml

.. 400Structs

... 400TAttribute Record

... 4016 DAAlerter

.. 402Classes

... 402TDAAlerter Class

... 403Members

... 403Properties

... 404Active Property

... 405AutoRegister Property

... 405Connection Property

... 405Methods

... 406SendEvent Method

... 407Start Method

... 407Stop Method

... 408Events

... 408OnError Event

.. 409Types

... 409TAlerterErrorEvent Procedure Reference

... 409TAlerterEventEvent Procedure Reference

... 4107 DADump

.. 411Classes

... 411TDADump Class

... 412Members

... 413Properties

... 414Connection Property

... 415Debug Property

... 416Options Property

... 416SQL Property

... 417TableNames Property

... 418Methods

... 418Backup Method

... 419BackupQuery Method

... 420BackupToFile Method

... 421BackupToStream Method

VContents

V

© 2024 Devart

... 421Restore Method

... 422RestoreFromFile Method

... 423RestoreFromStream Method

... 423Events

... 424OnBackupProgress Event

... 425OnError Event

... 426OnRestoreProgress Event

... 426TDADumpOptions Class

... 427Members

... 427Properties

... 428AddDrop Property

... 428CompleteInsert Property

... 429GenerateHeader Property

... 429QuoteNames Property

.. 430Types

... 430TDABackupProgressEvent Procedure Reference

... 431TDARestoreProgressEvent Procedure Reference

... 4318 DALoader

.. 432Classes

... 433TDAColumn Class

... 433Members

... 434Properties

... 434FieldType Property

... 435Name Property

... 435TDAColumns Class

... 436Members

... 436Properties

... 437Items Property(Indexer)

... 437TDALoader Class

... 438Members

... 439Properties

... 440Columns Property

... 440Connection Property

... 441TableName Property

... 441Methods

... 442CreateColumns Method

... 443Load Method

... 443LoadFromDataSet Method

... 444PutColumnData Method

... 444PutColumnData Method

... 445PutColumnData Method

... 446Events

... 446OnGetColumnData Event

... 447OnProgress Event

... 448OnPutData Event

... 449TDALoaderOptions Class

... 449Members

... 450Properties

... 450UseBlankValues Property

.. 451Types

... 451TDAPutDataEvent Procedure Reference

... 451TGetColumnDataEvent Procedure Reference

... 452TLoaderProgressEvent Procedure Reference

Universal Data Access ComponentsVI

© 2024 Devart

... 4539 DAScript

.. 454Classes

... 454TDAScript Class

... 455Members

... 457Properties

... 458Connection Property

... 459DataSet Property

... 459Debug Property

... 460Delimiter Property

... 460EndLine Property

... 461EndOffset Property

... 461EndPos Property

... 462Macros Property

... 462SQL Property

... 463StartLine Property

... 463StartOffset Property

... 464StartPos Property

... 464Statements Property

... 465Methods

... 466BreakExec Method

... 466ErrorOffset Method

... 467Execute Method

... 468ExecuteFile Method

... 468ExecuteNext Method

... 469ExecuteStream Method

... 469FindMacro Method

... 470MacroByName Method

... 471Events

... 472AfterExecute Event

... 472BeforeExecute Event

... 473OnError Event

... 473TDAStatement Class

... 474Members

... 475Properties

... 476EndLine Property

... 476EndOffset Property

... 477EndPos Property

... 477Omit Property

... 478Params Property

... 478Script Property

... 479SQL Property

... 479StartLine Property

... 479StartOffset Property

... 480StartPos Property

... 480Methods

... 481Execute Method

... 481TDAStatements Class

... 482Members

... 482Properties

... 483Items Property(Indexer)

.. 483Types

... 484TAfterStatementExecuteEvent Procedure Reference

... 484TBeforeStatementExecuteEvent Procedure Reference

... 485TOnErrorEvent Procedure Reference

VIIContents

VII

© 2024 Devart

.. 485Enumerations

... 486TErrorAction Enumeration

... 48610 DASQLMonitor

.. 487Classes

... 488TCustomDASQLMonitor Class

... 488Members

... 489Properties

... 490Active Property

... 490DBMonitorOptions Property

... 491Options Property

... 491TraceFlags Property

... 492Events

... 492OnSQL Event

... 493TDBMonitorOptions Class

... 493Members

... 494Properties

... 495Host Property

... 495Port Property

... 496ReconnectTimeout Property

... 496SendTimeout Property

.. 497Types

... 497TDATraceFlags Set

... 497TMonitorOptions Set

... 498TOnSQLEvent Procedure Reference

.. 498Enumerations

... 499TDATraceFlag Enumeration

... 500TMonitorOption Enumeration

... 50011 DBAccess

.. 503Classes

... 505EDAError Class

... 506Members

... 506Properties

... 507Component Property

... 507ErrorCode Property

... 508TCRDataSource Class

... 508Members

... 508TCustomConnectDialog Class

... 509Members

... 510Properties

... 511CancelButton Property

... 512Caption Property

... 512ConnectButton Property

... 512DialogClass Property

... 513LabelSet Property

... 514Passw ordLabel Property

... 514Retries Property

... 514SavePassw ord Property

... 515ServerLabel Property

... 515StoreLogInfo Property

... 516UsernameLabel Property

... 516Methods

... 517Execute Method

... 517GetServerList Method

Universal Data Access ComponentsVIII

© 2024 Devart

... 518TCustomDAConnection Class

... 519Members

... 521Properties

... 522ConnectDialog Property

... 523ConnectString Property

... 523ConvertEOL Property

... 524InTransaction Property

... 524LoginPrompt Property

... 525Options Property

... 526Passw ord Property

... 527Pooling Property

... 528PoolingOptions Property

... 529Server Property

... 529Username Property

... 530Methods

... 531ApplyUpdates Method

... 532ApplyUpdates Method

... 532ApplyUpdates Method

... 533Commit Method

... 534Connect Method

... 534CreateSQL Method

... 535Disconnect Method

... 536ExecProc Method

... 537ExecProcEx Method

... 539ExecSQL Method

... 540ExecSQLEx Method

... 541GetDatabaseNames Method

... 542GetKeyFieldNames Method

... 542GetStoredProcNames Method

... 543GetTableNames Method

... 544MonitorMessage Method

... 545Ping Method

... 545RemoveFromPool Method

... 546Rollback Method

... 547StartTransaction Method

... 547Events

... 548OnConnectionLost Event

... 548OnError Event

... 549TCustomDADataSet Class

... 550Members

... 557Properties

... 561BaseSQL Property

... 562Conditions Property

... 562Connection Property

... 563DataTypeMap Property

... 563Debug Property

... 564DetailFields Property

... 565Disconnected Property

... 565FetchRow s Property

... 566FilterSQL Property

... 566FinalSQL Property

... 567IsQuery Property

... 568KeyFields Property

... 568MacroCount Property

IXContents

IX

© 2024 Devart

... 569Macros Property

... 570MasterFields Property

... 571MasterSource Property

... 572Options Property

... 574ParamCheck Property

... 574ParamCount Property

... 575Params Property

... 576ReadOnly Property

... 576RefreshOptions Property

... 577Row sAffected Property

... 577SQL Property

... 578SQLDelete Property

... 579SQLInsert Property

... 580SQLLock Property

... 581SQLRecCount Property

... 581SQLRefresh Property

... 582SQLUpdate Property

... 583UniDirectional Property

... 584Methods

... 588AddWhere Method

... 589BreakExec Method

... 590CreateBlobStream Method

... 590DeleteWhere Method

... 591Execute Method

... 591Execute Method

... 592Execute Method

... 593Executing Method

... 593Fetched Method

... 594Fetching Method

... 594FetchingAll Method

... 595FindKey Method

... 596FindMacro Method

... 596FindNearest Method

... 597FindParam Method

... 598GetDataType Method

... 599GetFieldObject Method

... 599GetFieldPrecision Method

... 600GetFieldScale Method

... 601GetKeyFieldNames Method

... 601GetOrderBy Method

... 602GotoCurrent Method

... 603Lock Method

... 603MacroByName Method

... 604ParamByName Method

... 605Prepare Method

... 606RefreshRecord Method

... 607RestoreSQL Method

... 607SaveSQL Method

... 608SetOrderBy Method

... 609SQLSaved Method

... 609UnLock Method

... 610Events

... 611AfterExecute Event

... 611AfterFetch Event

Universal Data Access ComponentsX

© 2024 Devart

... 612AfterUpdateExecute Event

... 612BeforeFetch Event

... 613BeforeUpdateExecute Event

... 613TCustomDASQL Class

... 614Members

... 616Properties

... 617ChangeCursor Property

... 618Connection Property

... 618Debug Property

... 619FinalSQL Property

... 620MacroCount Property

... 620Macros Property

... 621ParamCheck Property

... 622ParamCount Property

... 622Params Property

... 623ParamValues Property(Indexer)

... 624Prepared Property

... 624Row sAffected Property

... 625SQL Property

... 626Methods

... 627BreakExec Method

... 627Execute Method

... 628Execute Method

... 628Execute Method

... 629Executing Method

... 629FindMacro Method

... 630FindParam Method

... 631MacroByName Method

... 632ParamByName Method

... 632Prepare Method

... 633UnPrepare Method

... 634WaitExecuting Method

... 634Events

... 635AfterExecute Event

... 635TCustomDAUpdateSQL Class

... 636Members

... 637Properties

... 639DataSet Property

... 639DeleteObject Property

... 640DeleteSQL Property

... 640InsertObject Property

... 641InsertSQL Property

... 641LockObject Property

... 642LockSQL Property

... 642ModifyObject Property

... 643ModifySQL Property

... 643RefreshObject Property

... 644RefreshSQL Property

... 645SQL Property(Indexer)

... 645Methods

... 646Apply Method

... 647ExecSQL Method

... 647TDACondition Class

... 648Members

XIContents

XI

© 2024 Devart

... 648Properties

... 649Enabled Property

... 649Name Property

... 650Value Property

... 650Methods

... 651Disable Method

... 651Enable Method

... 651TDAConditions Class

... 652Members

... 653Properties

... 654Condition Property(Indexer)

... 654Enabled Property

... 655Items Property(Indexer)

... 655Text Property

... 656WhereSQL Property

... 656Methods

... 657Add Method

... 657Add Method

... 658Add Method

... 659Delete Method

... 659Disable Method

... 660Enable Method

... 660Find Method

... 660Get Method

... 661IndexOf Method

... 661Remove Method

... 662TDAConnectionOptions Class

... 662Members

... 663Properties

... 664Allow ImplicitConnect Property

... 665DefaultSortType Property

... 665DisconnectedMode Property

... 666KeepDesignConnected Property

... 666LocalFailover Property

... 667TDAConnectionSSLOptions Class

... 667Members

... 668Properties

... 668CACert Property

... 669Cert Property

... 669CipherList Property

... 670Key Property

... 670TDADataSetOptions Class

... 670Members

... 673Properties

... 676AutoPrepare Property

... 676CacheCalcFields Property

... 677CompressBlobMode Property

... 677DefaultValues Property

... 678DetailDelay Property

... 678FieldsOrigin Property

... 679FlatBuffers Property

... 679InsertAllSetFields Property

... 680LocalMasterDetail Property

... 680LongStrings Property

Universal Data Access ComponentsXII

© 2024 Devart

... 681MasterFieldsNullable Property

... 681NumberRange Property

... 681QueryRecCount Property

... 682QuoteNames Property

... 683RemoveOnRefresh Property

... 683RequiredFields Property

... 684ReturnParams Property

... 684SetFieldsReadOnly Property

... 685StrictUpdate Property

... 685TrimFixedChar Property

... 686UpdateAllFields Property

... 686UpdateBatchSize Property

... 687TDAEncryption Class

... 687Members

... 688Properties

... 688Encryptor Property

... 689Fields Property

... 689TDAMapRule Class

... 690Members

... 691Properties

... 692DBLengthMax Property

... 692DBLengthMin Property

... 693DBScaleMax Property

... 693DBScaleMin Property

... 694DBType Property

... 694FieldLength Property

... 694FieldName Property

... 695FieldScale Property

... 695FieldType Property

... 696IgnoreErrors Property

... 696TDAMapRules Class

... 697Members

... 697Properties

... 698IgnoreInvalidRules Property

... 698TDAMetaData Class

... 699Members

... 703Properties

... 704Connection Property

... 705MetaDataKind Property

... 706Restrictions Property

... 706Methods

... 709GetMetaDataKinds Method

... 709GetRestrictions Method

... 710TDAParam Class

... 711Members

... 712Properties

... 714AsBlob Property

... 714AsBlobRef Property

... 715AsFloat Property

... 715AsInteger Property

... 716AsLargeInt Property

... 716AsMemo Property

... 717AsMemoRef Property

... 717AsSQLTimeStamp Property

XIIIContents

XIII

© 2024 Devart

... 718AsString Property

... 718AsWideString Property

... 719DataType Property

... 719IsNull Property

... 720ParamType Property

... 720Size Property

... 721Value Property

... 721Methods

... 722AssignField Method

... 723AssignFieldValue Method

... 723LoadFromFile Method

... 724LoadFromStream Method

... 725SetBlobData Method

... 725SetBlobData Method

... 726SetBlobData Method

... 726TDAParams Class

... 727Members

... 727Properties

... 728Items Property(Indexer)

... 728Methods

... 729FindParam Method

... 730ParamByName Method

... 730TDATransaction Class

... 731Members

... 732Properties

... 733Active Property

... 733DefaultCloseAction Property

... 734Methods

... 734Commit Method

... 735Rollback Method

... 735StartTransaction Method

... 736Events

... 737OnCommit Event

... 738OnCommitRetaining Event

... 738OnError Event

... 739OnRollback Event

... 740OnRollbackRetaining Event

... 741TMacro Class

... 741Members

... 742Properties

... 743Active Property

... 743AsDateTime Property

... 744AsFloat Property

... 744AsInteger Property

... 745AsString Property

... 745Name Property

... 745Value Property

... 746TMacros Class

... 746Members

... 747Properties

... 748Items Property(Indexer)

... 748Methods

... 749AssignValues Method

... 750Expand Method

Universal Data Access ComponentsXIV

© 2024 Devart

... 750FindMacro Method

... 751IsEqual Method

... 751MacroByName Method

... 752Scan Method

... 753TPoolingOptions Class

... 753Members

... 754Properties

... 754ConnectionLifetime Property

... 755MaxPoolSize Property

... 756MinPoolSize Property

... 756PoolId Property

... 757Validate Property

... 757TSmartFetchOptions Class

... 757Members

... 758Properties

... 759Enabled Property

... 759LiveBlock Property

... 760PrefetchedFields Property

... 760SQLGetKeyValues Property

.. 761Types

... 761TAfterExecuteEvent Procedure Reference

... 762TAfterFetchEvent Procedure Reference

... 762TBeforeFetchEvent Procedure Reference

... 763TConnectionLostEvent Procedure Reference

... 764TDAConnectionErrorEvent Procedure Reference

... 764TDATransactionErrorEvent Procedure Reference

... 765TRefreshOptions Set

... 765TUpdateExecuteEvent Procedure Reference

.. 766Enumerations

... 766TLabelSet Enumeration

... 767TLockMode Enumeration

... 767TRefreshOption Enumeration

... 768TRetryMode Enumeration

.. 768Variables

... 769ChangeCursor Variable

... 76912 LiteCollation

.. 770Types

... 770TLiteAnsiCollation Function Reference

... 770TLiteCollation Function Reference

... 771TLiteWideCollation Function Reference

... 77113 LiteFunction

.. 772Types

... 772TLiteFunction Function Reference

... 77214 MemData

.. 774Classes

... 775TBlob Class

... 775Members

... 777Properties

... 777AsString Property

... 778AsWideString Property

... 778IsUnicode Property

... 779Size Property

... 779Methods

XVContents

XV

© 2024 Devart

... 780Assign Method

... 781Clear Method

... 781LoadFromFile Method

... 782LoadFromStream Method

... 783Read Method

... 784SaveToFile Method

... 784SaveToStream Method

... 785Truncate Method

... 785Write Method

... 786TCompressedBlob Class

... 787Members

... 789Properties

... 790Compressed Property

... 790CompressedSize Property

... 791TDBObject Class

... 791Members

... 792TMemData Class

... 792Members

... 792TObjectType Class

... 793Members

... 794Properties

... 795AttributeCount Property

... 795Attributes Property(Indexer)

... 796DataType Property

... 796Size Property

... 797Methods

... 797FindAttribute Method

... 798TSharedObject Class

... 799Members

... 799Properties

... 800RefCount Property

... 800Methods

... 801AddRef Method

... 801Release Method

.. 802Types

... 802TLocateExOptions Set

... 803TUpdateRecKinds Set

.. 803Enumerations

... 804TCompressBlobMode Enumeration

... 805TConnLostCause Enumeration

... 805TDANumericType Enumeration

... 806TLocateExOption Enumeration

... 807TSortType Enumeration

... 807TUpdateRecKind Enumeration

... 80815 MemDS

.. 808Classes

... 809TMemDataSet Class

... 809Members

... 812Properties

... 813CachedUpdates Property

... 815IndexFieldNames Property

... 816KeyExclusive Property

... 817LocalConstraints Property

... 817LocalUpdate Property

Universal Data Access ComponentsXVI

© 2024 Devart

... 818Prepared Property

... 818Ranged Property

... 819UpdateRecordTypes Property

... 819UpdatesPending Property

... 820Methods

... 822ApplyRange Method

... 823ApplyUpdates Method

... 823ApplyUpdates Method

... 825ApplyUpdates Method

... 826CancelRange Method

... 827CancelUpdates Method

... 827CommitUpdates Method

... 828DeferredPost Method

... 829EditRangeEnd Method

... 830EditRangeStart Method

... 830GetBlob Method

... 831GetBlob Method

... 831GetBlob Method

... 832Locate Method

... 833Locate Method

... 833Locate Method

... 835LocateEx Method

... 835LocateEx Method

... 836LocateEx Method

... 837Prepare Method

... 838RestoreUpdates Method

... 838RevertRecord Method

... 839SaveToXML Method

... 839SaveToXML Method

... 840SaveToXML Method

... 841SetRange Method

... 842SetRangeEnd Method

... 843SetRangeStart Method

... 844UnPrepare Method

... 844UpdateResult Method

... 845UpdateStatus Method

... 846Events

... 847OnUpdateError Event

... 848OnUpdateRecord Event

... 84816 OracleUniProvider

.. 849Classes

... 849TOraUtils Class

... 849Members

... 850Methods

... 850ChangePassw ord Method

... 85117 SQLiteUniProvider

.. 851Classes

... 852TLiteUtils Class

... 852Members

... 853Methods

... 854EncryptDatabase Method

... 855RegisterAnsiCollation Method

... 855RegisterCollation Method

XVIIContents

XVII

© 2024 Devart

... 856RegisterFunction Method

... 857RegisterWideCollation Method

... 857UnRegisterAnsiCollation Method

... 858UnRegisterCollation Method

... 858UnRegisterFunction Method

... 859UnRegisterWideCollation Method

... 86018 SQLServerUniProvider

.. 860Classes

... 860TMSSqlUtils Class

... 861Members

... 861Methods

... 862ChangePassw ord Method

... 86219 Uni

.. 864Classes

... 866TCustomUniDataSet Class

... 867Members

... 875Properties

... 880DMLRefresh Property

... 880LastInsertId Property

... 881Options Property

... 881Params Property

... 882Specif icOptions Property

... 884Transaction Property

... 884UpdateObject Property

... 885UpdateTransaction Property

... 886Methods

... 890CreateProcCall Method

... 891FindParam Method

... 891OpenNext Method

... 892ParamByName Method

... 893TCustomUniTable Class

... 894Members

... 903Methods

... 907PrepareSQL Method

... 907TUniBlob Class

... 908Members

... 910TUniConnection Class

... 911Members

... 915Properties

... 916AutoCommit Property

... 917Database Property

... 918DefaultTransaction Property

... 919Macros Property

... 920Port Property

... 920ProviderName Property

... 921Specif icOptions Property

... 923Methods

... 925ActiveMacroValueByName Method

... 926AssignConnect Method

... 926CommitRetaining Method

... 927CreateDataSet Method

... 928CreateSQL Method

... 928CreateTransaction Method

Universal Data Access ComponentsXVIII

© 2024 Devart

... 929ParamByName Method

... 930ReleaseSavepoint Method

... 930RollbackRetaining Method

... 931RollbackToSavepoint Method

... 932Savepoint Method

... 932StartTransaction Method

... 933StartTransaction Method

... 934StartTransaction Method

... 935TUniDataSetOptions Class

... 935Members

... 938Properties

... 942EnableBCD Property

... 942EnableFMTBCD Property

... 942FullRefresh Property

... 943SetEmptyStrToNull Property

... 943TrimVarChar Property

... 944TUniDataSource Class

... 945Members

... 945TUniEncryptor Class

... 945Members

... 946TUniMacro Class

... 947Members

... 947Properties

... 948Condition Property

... 949Name Property

... 949Value Property

... 950TUniMacros Class

... 950Members

... 951Properties

... 951Items Property(Indexer)

... 952Methods

... 952Add Method

... 953FindMacro Method

... 953MacroByName Method

... 954TUniMetaData Class

... 955Members

... 958Properties

... 960Connection Property

... 960Transaction Property

... 961TUniParam Class

... 962Members

... 963TUniParams Class

... 964Members

... 965TUniQuery Class

... 966Members

... 975Properties

... 979LockMode Property

... 980UpdatingTable Property

... 981TUniSQL Class

... 982Members

... 984Properties

... 986Connection Property

... 987LastInsertId Property

... 988Specif icOptions Property

XIXContents

XIX

© 2024 Devart

... 989Transaction Property

... 989Methods

... 991CreateProcCall Method

... 991FindParam Method

... 992ParamByName Method

... 993TUniStoredProc Class

... 994Members

... 1003Properties

... 1007LockMode Property

... 1008StoredProcName Property

... 1008Methods

... 1013ExecProc Method

... 1013PrepareSQL Method

... 1014TUniTable Class

... 1015Members

... 1024Properties

... 1028LockMode Property

... 1029OrderFields Property

... 1029TableName Property

... 1030TUniTransaction Class

... 1031Members

... 1033Properties

... 1034Connections Property(Indexer)

... 1034ConnectionsCount Property

... 1035IsolationLevel Property

... 1035Methods

... 1036AddConnection Method

... 1037CommitRetaining Method

... 1037RemoveConnection Method

... 1038RollbackRetaining Method

... 1038TUniUpdateSQL Class

... 1039Members

.. 1040Constants

... 1041UniDACVersion Constant

... 104120 UniAlerter

.. 1041Classes

... 1042TUniAlerter Class

... 1043Members

... 1044Properties

... 1044Connection Property

... 104521 UniDacVcl

.. 1045Classes

... 1045TUniConnectDialog Class

... 1046Members

... 1048Properties

... 1049Connection Property

... 1050DatabaseLabel Property

... 1050PortLabel Property

... 1050ProviderLabel Property

... 105122 UniDump

.. 1051Classes

... 1052TUniDump Class

... 1052Members

Universal Data Access ComponentsXX

© 2024 Devart

... 105423 UniLoader

.. 1054Classes

... 1055TUniLoader Class

... 1056Members

... 105724 UniProvider

.. 1057Classes

... 1057TUniProvider Class

... 1058Members

... 105825 UniScript

.. 1058Classes

... 1059TUniScript Class

... 1060Members

... 1062Properties

... 1063Connection Property

... 1064DataSet Property

... 1064Specif icOptions Property

... 1066Transaction Property

... 106626 UniSQLMonitor

.. 1067Classes

... 1067TUniSQLMonitor Class

... 1068Members

... 106927 VirtualDataSet

.. 1069Classes

... 1070TCustomVirtualDataSet Class

... 1070Members

... 1073TVirtualDataSet Class

... 1074Members

.. 1077Types

... 1077TOnDeleteRecordEvent Procedure Reference

... 1078TOnGetFieldValueEvent Procedure Reference

... 1079TOnGetRecordCountEvent Procedure Reference

... 1079TOnModifyRecordEvent Procedure Reference

... 108028 VirtualQuery

.. 1080Classes

... 1080TCustomVirtualQuery Class

... 1081Members

... 1089Properties

... 1093Options Property

... 1093SourceDataSets Property

... 1094Events

... 1095OnRegisterCollations Event

... 1096OnRegisterFunctions Event

... 1096TDataSetLink Class

... 1097Members

... 1097Properties

... 1098DataSet Property

... 1099SchemaName Property

... 1099TableName Property

... 1100TDataSetLinks Class

... 1100Members

... 1101Methods

... 1101Add Method

XXIContents

XXI

© 2024 Devart

... 1102Add Method

... 1103Add Method

... 1104TVirtualCollationManager Class

... 1104Members

... 1105Methods

... 1106RegisterAnsiCollation Method

... 1106RegisterAnsiCollation Method

... 1107RegisterAnsiCollation Method

... 1107RegisterCollation Method

... 1108RegisterCollation Method

... 1108RegisterCollation Method

... 1109RegisterDefaultCollations Method

... 1109RegisterWideCollation Method

... 1109RegisterWideCollation Method

... 1110RegisterWideCollation Method

... 1110UnRegisterAnsiCollation Method

... 1111UnRegisterCollation Method

... 1111UnRegisterDefaultCollations Method

... 1112UnRegisterWideCollation Method

... 1112TVirtualFunctionManager Class

... 1112Members

... 1113Methods

... 1113RegisterFunction Method

... 1114RegisterFunction Method

... 1114RegisterFunction Method

... 1115TVirtualQuery Class

... 1116Members

... 1124Properties

... 1128FetchAll Property

... 1129UpdatingTable Property

... 1130TVirtualQueryOptions Class

... 1131Members

... 1134Properties

... 1137AutoOpenSources Property

... 1138FullRefresh Property

... 1138SetEmptyStrToNull Property

... 1139TrimVarChar Property

... 1139UseUnicode Property

.. 1140Types

... 1140TRegisterFunctionsEvent Procedure Reference

... 114029 VirtualTable

.. 1141Classes

... 1141TVirtualTable Class

... 1142Members

... 1145Properties

... 1146DefaultSortType Property

... 1147Methods

... 1149Assign Method

... 1150LoadFromFile Method

... 1151LoadFromStream Method

Universal Data Access ComponentsXXII

© 2024 Devart

Index 0

What's New 1

© 2024 Devart

1 What's New

New Features in UniDAC 10.0:
Added support for RAD Studio 12

Added support for macOS Sonoma

Added support for iOS 17

Added support for Android 13

Added support for nested Macros in SQL queries

Added support Display Format for Aggregate fields

Added SHA-2(SHA-256, SHA-512) in hash algorithm for encryption

Added support for DBMonitor in the VirtualQuery component

Added support for storing AutoInc fields when saving TVirtualTable to XML

Added support of NexusDB 4.75.01

Oracle data provider

Added support for Oracle 23c

Improved UnicodeEnvironment support for non-Unicode Delphi versions

SQLServer data provider

Added support for SQL Server 2022

Added support for LastInsertID

Added DisableConstraints specific option for the Dump component

Added AddDateTimeFormat specific option for the Dump component

MySQL data provider

Added support for MariaDB 11

Added support for mysql_clear_password authentication mechanism

PostgreSQL data provider

Added support for PostgreSQL 16

Universal Data Access Components2

© 2024 Devart

Added support for PREPARE/EXECUTE commands

Added several specific options for the Dump component

InterBase data provider

Added support for iOS Simulator ARM 64-bit target platform

SQLite data provider

Now the Direct mode is based on version 3.42.0 of the SQLite engine

DBF data provider

Performance of DML operations is significantly improved

Added support for CREATE TABLE IF NOT EXISTS and DROP TABLE IF EXISTS

statements

Added support for the CREATE TABLE AS SELECT statement

NexusDB data provider

Added support of NexusDB 4.75.01 (NexusDB provider)

MongoDB data provider

Added support for MongoDB 7

Added support for MongoDB 6

Added support for empty database name when establishing connection

Improved compatibility with Linked Server in MSSMS

ODBC data provider

Information from SQLGetInfo is added to ODBCMetaData (ODBC provider)

New Features in UniDAC 9.4:
Added support for RAD Studio 11 Alexandria Release 3

Added support for iOS Simulator ARM 64-bit target platform

Added support for Lazarus 2.2.6

Added support for the YEAR, MONTH, DAY, HOUR, MINUTE, SECOND, GETDATE, DATE,

What's New 3

© 2024 Devart

TIME, TRIM, TRIMLEFT, TRIMRIGHT statements in TDADataSet.Filter

Added support for the mathematical operations in TDADataSet.Filter

Added support for Aggregate Fields and InternalCalc Fields

Added ability to restore from file with TEncoding via the Dump component

Improved the execution of statement that have either IS NULL or IS NOT NULL in the

WHERE clause with TVirtualQuery

Now the SetRange will function according to the case sensitivity of keywords in

IndexFieldNames

Fixed bug with AV on using master/detail relationship with VirtualTable

Fixed bug with loading data that already has persistent fields into VirtualTable

Oracle data provider

Improved detection of home directories in recent versions of Oracle

Now valid exception will be raised instead of AV when memory can't be allocated for the

large row count

Fixed bug with LOBs reading in the Direct mode

Fixed bug with reading BFLOAT and BDOUBLE values from ANYDATA

Fixed bug with querying record count if SQL statement contains PIVOT

SQLServer data provider

Improved compatibility with Linked Server in MSSMS

Improved the GetOrderBy method behavior

Fixed bug with Unicode (UTF-8) in the Direct mode for Windows

Fixed bug with an assertion failure in the CachedUpdate mode

Fixed bug with connecting to default instance by prSQL(SQLOLEDB.1) provider

Fixed bug with fetching datetimeoffset fields in the Direct mode

Fixed bug with fetching sql_variant fields in the Direct mode

Fixed bug with preparing a stored procedure in the Direct mode

MySQL data provider

Universal Data Access Components4

© 2024 Devart

Fixed bug with BLOBs for MySQL version below 4.1

Fixed bug with BIGINT UNSIGNED key fields in version 4.1 or higher

Fixed bug with BIT field default values

PostgreSQL data provider

Added support for PostgreSQL 15

Improved process of getting extended fields info

Fixed bug with extra connections in GetType methods

Fixed bug with TIMESTAMPTZ fields

Fixed bug with reading fields of type REAL using the Auto protocol

Fixed bug with writing Bytea type in Batch operations

Fixed bug with using "ON CONFLICT RETURNING" in batch operations

Fixed problem with handling fields of type REAL

Fixed bug with the "Range Check Error" exception when reading BLOB data

InterBase data provider

Improved work with alias

Fixed bug with "The SQL statement is not allowable for a bulk operation" when using SP in

batch operations

Fixed bug with "Validation error" when using the Loader component

SQLite data provider

Added support for GUID fields stored in binary format

Improved reading fields of the BLOB family

DBF data provider

Improved ROUND() function

Fixed bug with a field name case when creating a table

NexusDB data provider

Added support for NexusDB 4.70.01

What's New 5

© 2024 Devart

Added support for working with tables protected by a password

ODBC data provider

Added the UuidWithBraces specific option for the Connection component

MS Access data provider

Fixed bug with "Cannot modify a read-only dataset"

MongoDB data provider

Added support for MongoDB Atlas

Added support for DNS Seed List connection format

Fixed bug with reading international characters when UseUnicode option is set

New Features in UniDAC 9.3:
Added support for RAD Studio 11 Alexandria Release 2

Added support for Lazarus 2.2.2

Added support for iOS 15

Added support for Android 12

Added the CloneCursor method for Query and Table components that allows sharing data

between datasets

Added support of standard collations in a SQL statement in the VirtualQuery component

Improved the performance of exporting to XML

Fixed bug when a connection string parameter value contains a single quote

SQLServer data provider

Added support for Microsoft OLE DB Driver 19 for SQL Server

Added support for Azure AD authentication support for the Microsoft OLE DB provider

Added support for Always On availability group in the Direct mode

Added support for connection to the Azure database by using the "Redirect" connection

policy in the Direct mode

Fixed bug with restricting the list of procedures using PROCEDURE_TYPE condition in

Universal Data Access Components6

© 2024 Devart

Metadata component

Fixed bug with committing transaction on SQL Server 2000 in Direct mode

MySQL data provider

Fixed bug with "Record changed by another user" error when LockMode <> lmNone and

using encryption

Fixed bug with truncation of milliseconds of DateTime fields in the Dump component

Fixed bug with posting calculated field

PostgreSQL data provider

Added support for PostGIS

Improved TimeZoneOffset support for TPgTimeStamp

Improved the Truncate method of the TPgLargeObject class is improved

Fixed bug with executing a SELECT statement via the Execute method of the Query

component

Fixed bug with the Ping method of the Connection component when the

MultipleConnections specific option is set to False

Fixed bug with the "Record was changed by another user" exception when editing a dataset

that contains double precision fields

Fixed bug with "Invalid TimeStamp string" when the date has YYYY-MM-DD format

Fixed bug with international characters in error messages

InterBase data provider

Improved support for TIME/TIMESTAMP WITH TIME ZONE data types

Added support for EXTENDED TIME/TIMESTAMP WITH TIME ZONE data types

Added support for working with time zone data types when clients don't have the ICU library

Added support for The isc_dpb_session_time_zone, isc_dpb_set_bind,

isc_dpb_decfloat_round, and isc_dpb_decfloat_traps DPB

Fixed bug with a "Too many Contexts of Relation/Procedures/Views" error when using

"UPDATE OR INSERT" batch operations

What's New 7

© 2024 Devart

Fixed bug with using CAST in the SQL statement when UseUnicode set to True

Fixed bug with reading GUID data of stored procedure in using the AsGuid property

Fixed bug with processing GUID data in using in parameter

Fixed bug with working with the transaction when LockMode <> lmNone

Fixed bug with using the TUniAlerter component in WebBroker applications

Fixed bug with "Invalid variant type" error when the DMLRefresh property is set to True

SQLite data provider

Now the Direct mode is based on version 3.39.2 of the SQLite engine

Fixed bug with mapping table columns of non-standard types to fields of the ftMemo type

Fixed bug with mapping table columns of integer types to string fields

DBF data provider

Added support for VisualFoxPro CANDIDATE indexes

NexusDB data provider

Added support for NexusDB 4.60.01

Added option to set Remote Thread Priority

MS Access data provider

Fixed bug with processing UUID fields

New Features in UniDAC 9.2:
RAD Studio 11 Alexandria Release 1 is supported

Lazarus 2.2.0 is supported

Windows 11 is supported

macOS Monterey is supported

PostgreSQL data provider

The AddDelete specific option for the Dump component is added

Dumping of stores procedures via the Dump component is added

Universal Data Access Components8

© 2024 Devart

The SCRAM-SHA-256-PLUS authentication mechanism is supported

"ON CONFLICT" in batch operations is supported

Open connection performance is improved

SQLite data provider

Now the Direct mode is based on version 3.37.2 of the SQLite engine

SQL Server data provider

Passing the "client_interface_name" parameter to the server in the Direct mode is added

New Features in UniDAC 9.1:
The PoolId connection pool option is added

DBF data provider

FSIZE SQL function is supported

Autoinc data type for dfVisualFoxPro tables is supported

PostgreSQL data provider

PostgreSQL 14 is supported

OUT parameters in stored procedures for PostgreSQL 14 are supported

InterBase data provider

The WireCompression option for the Connection component is added

Nexus DB data provider

Block fetch is supported

Fetch performance is improved

New Features in UniDAC 9.0:
RAD Studio 11 Alexandria is supported

macOS ARM is supported

Added demo project for FastReport FMX

What's New 9

© 2024 Devart

InterBase data provider

Firebird 4 is supported

SQLite data provider

Added the IntegerAsLargeInt option for the Connection component

NexusDB provider

NexusDB 4.50.27 is supported

Google BigQuery data provider

Added the Google BigQuery provider

HubSpot data provider

Added the HubSpot provider

New Features in UniDAC 8.4:
RAD Studio 10.4.2 Sydney is supported

macOS 11 Big Sur is supported

iOS 14 is supported

Android 11 is supported

Performance of batch operations is improved

Performance of the FindFirst, FindNext, FindLast, and FindPrior methods is improved

The UseUnicode option in the VirtualQuery component is added

Oracle data provider

Oracle 21c is supported

The PrefetchRows option in the Direct mode is supported

Data fetch performance in the Direct mode is improved

LOB read/write performance is improved

SQLServer data provider

LOB read/write performance in the Direct mode is improved

Universal Data Access Components10

© 2024 Devart

PostgreSQL data provider

PostgreSQL 13 is supported

Work in a multi-threaded environment through a single connection is supported

The MultipleConnections option in the Connection component is added

InterBase data provider

Over-the-Wire (OTW) encryption is supported

Automatic detection of computed fields when generating update statements is improved

Memory consumption in batch operations is reduced

SQLite data provider

The LockingMode specific option in the Connection component is added

The Synchronous specific option in the Connection component is added

The JournalMode specific option in the Connection component is added

Performance with default values of the new options is significantly improved

ASE data provider

The TextSize specific option is added

DBF data provider

The IgnoreIndexErrors specific option in the Connection component is added

Performance of reading and writing MEMO and BLOB values is improved

Work with dBaseV and dBaseVII tables when the DBFFormat option set to dfAuto is

improved

ODBC data provider

Data fetch performance is improved

LOB read/write performance is improved

New Features in UniDAC 8.3:
Lazarus 2.0.10 and FPC 3.2.0 are supported

What's New 11

© 2024 Devart

Performance of Batch Insert, Update, and Delete operations is improved

Oracle data provider

Oracle 20c is supported

Connection via SSL protocol is supported

Connection via SSH protocol is supported

Connection via HTTP tunnel is supported

SQL Server data provider

SQL Server 2019 is supported

DBF data provider

Native dBase functions in a SQL statement are supported

ODBC data provider

Error message retrieving from SQL Anywhere ODBC driver is improved

New Features in UniDAC 8.2:
RAD Studio 10.4 Sydney is supported

Lazarus 2.0.8 is supported

macOS 64-bit in Lazarus is supported

Oracle data provider

Mapping the FLOAT Oracle data type to the ftNumber field is added

PostgreSQL data provider

The Line geometric type is supported

DBF data provider

The AllFieldsAsNullable specific option is added

NexusDB data provider

Support for the Pipe protocol is added

Universal Data Access Components12

© 2024 Devart

Support for the Secure Pipe protocol is added

Support for the Secure TCP protocol is added

Now an #INMEM alias is created automatically when it is specified in the Database property

New Features in UniDAC 8.1:
Android 64-bit is supported

Lazarus 2.0.6 is supported

Now Trial edition for macOS and Linux is fully functional

Oracle data provider

Oracle 19c is supported

Long database object names is supported

SQLServer data provider

TLS 1.2 support in the Direct mode is added

The connection option MultiSubnetFailover for the MSOLEDB provider is added

Use of the Server property that contains Port in the Direct mode is added

MySQL data provider

OpenSSL 1.1 library is supported

PostgreSQL data provider

PostgreSQL 12 is supported

OpenSSL 1.1 library is supported

Interbase data provider

Interbase 2020 is supported

Improved performance when using pooling

MongoDB data provider

The LowerCaseObjectId specific option for the Connection component is added

DBF data provider

What's New 13

© 2024 Devart

The IdentifierCase specific option is added

The cmUnsafe value for the ConnectMode specific option is added

New Features in UniDAC 8.0:
macOS 64-bit is supported

Release 2 for RAD Studio 10.3 Rio, Delphi 10.3 Rio, and C++Builder 10.3 Rio is now

required

New Features in UniDAC 7.5:
Lazarus 2.0.2 is supported

The DefaultSortType property for TVirtualTable is added

Performance of the SaveToFile/LoadFromFile methods of TVirtualTable is significantly

increased

New Features in UniDAC 7.4:
RAD Studio 10.3 Rio is supported

Support of UPPER and LOWER functions for Unified SQL is added

Oracle data provider

Oracle 18c is supported

Implicit result sets in Oracle 12 are supported

SQLServer data provider

QuoteNames option in TUniLoader to escape field names is added

MySQL data provider

Support for PAM and Windows authentications is added

InterBase data provider

Possibility to write large blobs by pieces is added

PostgreSQL data provider

Universal Data Access Components14

© 2024 Devart

PostgreSQL 11 is supported

SQLite data provider

Support for the BreakExec method in the Query component is added

DBF data provider

Detection of the file format when the DBFFormat option is set to dfAuto is improved

Work with databases which contain a large number of files is improved

BigCommerce data provider

OAuth authentication is supported

New Features in UniDAC 7.3:
Lazarus 1.8.4 is supported

Performance of batch operations is improved

Demo projects for IntraWeb 14 are added

AutoOpenSources option for TVirtualQuery is added

OfflineMode option for TVirtualQuery is added

Oracle data provider

Now non-compiled stored procedures can be described in the Direct mode

Performance of data fetching in the Direct mode is improved

Performance of describing stored procedures in the Direct mode is improved

Support for TIMESTAMP WITH TIMEZONE in the Direct mode is improved

SQLServer data provider

MARS in TDS is supported

NonBlocking mode in TDS is supported

Query notifications in TDS are supported

MySQL data provider

MySQL 8 is supported

What's New 15

© 2024 Devart

Support for sha2_password, caching_sha2_password authentications is added

InterBase data provider

Now the "Data type is not supported" exception is not raised by the Query component when

the DescribeParams property is set to True

PostgreSQL data provider

Support for HTTP/HTTPS tunnel is added

SQLite data provider

WAL in the Direct Mode for non-Windows platforms is supported

ASE data provider

Retrieving the OUTPUT parameters is improved

MongoDB data provider

The Decimal128 data type is supported

Precompiled MongoDB client libraries are included in the Professional Edition

Performance of fetching large documents is improved

DBF data provider

Support for Clipper/Harbour is added

Support for native indexes based on complex expressions is added

Compatibility with Codebase is improved

ExactTarget data provider

App center client authentication is supported

FreshBooks data provider

FreshBooks new version is supported

Magento data provider

Magento version 2.x is supported

Universal Data Access Components16

© 2024 Devart

NetSuite data provider

Sandbox is supported

ZohoCRM data provider

Domain is supported

New Features in UniDAC 7.2:
Lazarus 1.8 and FPC 3.0.4 are supported

Support for custom constraints is added

The UseBlankValues property for the Loader component is added

Redshift data provider

Amazon Redshift provider is added

SQLServer data provider

Windows authentication in the Direct mode is supported

MySQL data provider

Support for backup/restore of triggers and stored procedures is added

InterBase data provider

Loading of the default client library for 64-bit applications is improved

SQLite data provider

Direct Mode in Lazarus is supported

BIT type is supported

The UnknownAsString dataset specific option that allows mapping fields of unknown type

as ftString instead of ftMemo is added

DBF data provider

Direct Mode in Lazarus is supported

The IndexOnReading connection specific option that allows using local indexes on reading

data is added

What's New 17

© 2024 Devart

DB2 data provider

Compatibility with DB2 version 11 is improved

New Features in UniDAC 7.1:
The performance of TVirtualQuery is significantly improved

Application-defined functions in TVirtualQuery are supported

Application-defined collations in TVirtualQuery are supported

AutoInc fields in TVirtualTable are supported

Cloud data providers

BigCommerce provider is added

Dynamics CRM provider is added

FreshBooks provider is added

Magento provider is added

MailChimp provider is added

NetSuite provider is added

QuickBooks provider is added

Salesforce provider is added

Salesforce Marketing Cloud provider is added

SugarCRM provider is added

Zoho CRM provider is added

Oracle data provider

Oracle 12c connection modes (SYSBACKUP, SYSDG, SYSKM) in the Direct mode are

supported

OS authentication in the Direct mode is supported

NChar literal replacement is supported

CLOB parameters behavior when UnicodeEnvironment=True is improved

MySQL data provider

Universal Data Access Components18

© 2024 Devart

Azure Database for MySQL is supported

JSON data type is supported

InterBase data provider

Support for Firebird on Android platform is added

Support for Firebird 3 packages is added

Aliases handling in the RETURNING clause is supported

The WireCompression connection parameter for Firebird 3 is supported

PostgreSQL data provider

SSPI authentication is supported

Processing GUID data type for the TGuidField class is improved

SQLite data provider

Now the Direct mode is based on the SQLite engine version 3.20.0

Custom SQL aggregate functions are supported

DBF data provider

The CodePage specific options are added

The ConnectMode specific options are added

DB2 data provider

The DECFLOAT data type is supported

New Features in UniDAC 7.2:
Lazarus 1.8 and FPC 3.0.4 are supported

Support for custom constraints is added

The UseBlankValues property for the Loader component is added

Redshift data provider

Amazon Redshift provider is added

SQLServer data provider

What's New 19

© 2024 Devart

Windows authentication in the Direct mode is supported

MySQL data provider

Support for backup/restore of triggers and stored procedures is added

InterBase data provider

Loading of the default client library for 64-bit applications is improved

SQLite data provider

Direct Mode in Lazarus is supported

BIT type is supported

The UnknownAsString dataset specific option that allows mapping fields of unknown type

as ftString instead of ftMemo is added

DBF data provider

Direct Mode in Lazarus is supported

The IndexOnReading connection specific option that allows using local indexes on reading

data is added

DB2 data provider

Compatibility with DB2 version 11 is improved

New Features in UniDAC 7.1:
The performance of TVirtualQuery is significantly improved

Application-defined functions in TVirtualQuery are supported

Application-defined collations in TVirtualQuery are supported

AutoInc fields in TVirtualTable are supported

Cloud data providers

BigCommerce provider is added

Dynamics CRM provider is added

FreshBooks provider is added

Universal Data Access Components20

© 2024 Devart

Magento provider is added

MailChimp provider is added

NetSuite provider is added

QuickBooks provider is added

Salesforce provider is added

Salesforce Marketing Cloud provider is added

SugarCRM provider is added

Zoho CRM provider is added

Oracle data provider

Oracle 12c connection modes (SYSBACKUP, SYSDG, SYSKM) in the Direct mode are

supported

OS authentication in the Direct mode is supported

NChar literal replacement is supported

CLOB parameters behavior when UnicodeEnvironment=True is improved

MySQL data provider

Azure Database for MySQL is supported

JSON data type is supported

InterBase data provider

Support for Firebird on Android platform is added

Support for Firebird 3 packages is added

Aliases handling in the RETURNING clause is supported

The WireCompression connection parameter for Firebird 3 is supported

PostgreSQL data provider

SSPI authentication is supported

Processing GUID data type for the TGuidField class is improved

SQLite data provider

What's New 21

© 2024 Devart

Now the Direct mode is based on the SQLite engine version 3.20.0

Custom SQL aggregate functions are supported

DBF data provider

The CodePage specific options are added

The ConnectMode specific options are added

DB2 data provider

The DECFLOAT data type is supported

New Features in UniDAC 7.0:
RAD Studio 10.2 Tokyo is supported

Linux in RAD Studio 10.2 Tokyo is supported

Lazarus 1.6.4 and Free Pascal 3.0.2 is supported

Oracle data provider

Oracle Encryption in the Direct mode is supported

Oracle Data Integrity in the Direct mode is supported

Oracle Cloud (DBaaS) in the Direct mode is supported

Oracle 12c authentication in the Direct mode is supported

SECUREFILE in the Direct mode is supported

Prefetch LOBs for Oracle 11 and higher is supported

EDITIONABLE and NONEDITIONABLE clause is supported

The PrefetchLobSize option is added

Now the Direct mode is based on the SQLite engine version 3.17.0

Field size detecting for servers with multi-byte charset when UseUnicode=False is

improved

Now NUMBER data type without fixed scale has precision=39 and scale=39 instead of 38

Interbase data provider

Possibility to manage batch operations using a transaction is added

Universal Data Access Components22

© 2024 Devart

Possibility to obtain active transaction number using DBMonitor is added

SQLite data provider

Now the Direct mode is based on the SQLite engine version 3.17.0

NexusDB data provider

Support for using ConnectionString is added

Support for using the TfmtBCD fields is added

Support for the SmartFetch mode is improved

MongoDB data provider

New MongoDB provider is added

DBF data provider

Direct mode is supported

New Features in UniDAC 6.4:
TVirtualQuery component is added

TDADataSetOptions.InsertAllSetFields property is added

SQL Server data provider

Support for IPv6 protocol in Direct Mode is added

New Features in UniDAC 6.3:
RAD Studio 10.1 Berlin is supported

Lazarus 1.6 and FPC 3.0.0 is supported

Support for the BETWEEN statement in TDADataSet.Filter is added

Performance of TDALoader on loading data from TDataSet is improved

Oracle data provider

Transactions behavior when AutoCommit is disabled now is the same as in ODAC

SQLServer data provider

What's New 23

© 2024 Devart

Direct mode in TUniLoader is supported

SmartFetch mode in Disconnected mode is supported

MySQL data provider

Support for utf8mb4 charset is added

SmartFetch mode in Disconnected mode is supported

PostgreSQL data provider

PostgreSQL 9.5 is supported

A MessageCharset option in connection specific options is added

SQLite data provider

Now the Direct mode is based on the SQLite engine version 3.12.0

Support for URI filenames is added

Adaptive Server Enterprise data provider

Direct mode is supported

macOS is supported

iOS is supported

Android is supported

Specific option HostName was renamed to ClientHostName

ODBC data provider

An ability to select ODBC Driver Manager is added

MS Access data provider

Possibility to select a driver is added

New Features in UniDAC 6.2:
RAD Studio 10 Seattle is supported

INSERT, UPDATE and DELETE batch operations are supported

Now Trial for Win64 is a fully functional Professional Edition

Universal Data Access Components24

© 2024 Devart

Oracle data provider

Support for Offset is added for DML arrays

Support for OraNet.PacketSize is added to improve performance in VPN and Wireless

networks

Now NULL and empty strings are different values for ftOraLob and ftOraClob parameters

MySQL data provider

MariaDB Embedded is supported

SQLite data provider

Now the Direct mode is based on the SQLite engine version 3.8.11.1

The EnableSharedCache specific option of the Connection component for non-Windows

platforms is added

New Features in UniDAC 6.1:
RAD Studio XE8 is supported

AppMethod is supported

The ParamCheck option behavior is fixed

Oracle data provider

Direct mode in Lazarus is supported

Now the Direct mode is supplied as source code

Support for Objects in the Direct mode is added

Support for EZCONNECT in the Direct mode is added

Support for fields with Cursor data type in the Direct mode is added

Now statements with RETURN INTO clauses can return RowsAffected in the Direct mode

SQL Server data provider

Direct mode in Lazarus is supported

Now the Direct mode is supplied as source code

What's New 25

© 2024 Devart

Performance of connection establishing in the Direct mode is improved

The specific option "OLEDBProvider" is renamed to "Provider"

InterBase data provider

Firebird 3 support is added

Firebird 3 BOOLEAN column type support is added

PostgreSQL data provider

PostgreSQL 9.4 support is added

SQLite data provider

Direct mode for macOS, iOS and Android platforms is supported

Database encryption for macOS, iOS and Android platforms is supported

Now the Direct mode is based on the SQLite engine version 3.8.9

ODBC data provider

ODBC provider for Lazarus is added for Unix platforms

New Features in UniDAC 6.0:
SQL Server data provider

Direct Mode is supported

macOS is supported

iOS is supported

Android is supported

InterBase data provider

The QueryRowsAffected dataset specific option is added for increasing performance of

update operations

SQLite data provider

Now the Direct mode is based on the SQLite engine version 3.8.7.1

NexusDB data provider

Universal Data Access Components26

© 2024 Devart

Nexus Embedded support is added

ASE data provider

Ability to set CharSet is added

DB2 data provider

Support for 64-bit client is added

New Features in UniDAC 5.5:
RAD Studio XE7 is supported

Lazarus 1.2.4 is supported

New free Express edition is added

Providers are added to the Standard edition and now it doesn't require other DAC products

installation

Demo projects for FastReport 5 are added

SpecificOptions names and values validation are added

The TCustomDADataSet.GetKeyFieldNames method is added

The ConstraintColumns metadata kind for the TDAMetadata component is added

Oracle data provider

RAC server support is improved

Support for WITH FUNCTION clause for Oracle 12c is added

The HideRowId option is added

InterBase data provider

The OldTransactionBehaviour global variable is added

SQLite data provider

Now the Direct mode is based on the SQLite engine version 3.8.6

ODBC data provider

Fetch performance is improved

What's New 27

© 2024 Devart

Now the VarBytesAsBlob specific option is replaced with the VarBinaryAsBlob and

LongVarBinaryAsBlob specific options

Information about TypeInfo is added to ODBCMetaData

New Features in UniDAC 5.3:
RAD Studio XE6 is supported

Android in C++Builder XE6 is supported

Lazarus 1.2.2 and FPC 2.6.4 is supported

SmartFetch mode for TDataSet descendants is added

The TUniDataSetOptions.MasterFieldsNullable property is added

Now update queries inside TDataSet descendants have correct owner

Oracle data provider

DataTypeMapping conversion from XMLType to ftString is added

DataTypeMapping conversion from Interval to ftString is added

SQL Server data provider

SQL Server 2014 is supported

InterBase data provider

TUniTransaction.OnCommitRetainig and TUniTransaction.OnRollbackRetainig events are

added

SQLite data provider

Now the Direct mode is based on the SQLite engine version 3.8.4.3

ASE data provider

The PrepareMethod option is added

New Features in UniDAC 5.2:
iOS in C++Builder XE5 is supported

RAD Studio XE5 Update 2 is now required

Universal Data Access Components28

© 2024 Devart

Now .obj and .o files are supplied for C++Builder

Compatibility of migrating floating-point fields from other components is improved

Oracle data provider

An ability to establish OCI and Direct connections in the same application is supported

New Oracle 12c connection modes are added (SYSBACKUP, SYSDG, SYSKM)

SQLite data provider

Direct mode for x64 platform is supported

New Features in UniDAC 5.1:
RAD Studio XE5 is supported

Application development for Android is supported

Lazarus 1.0.12 is supported

Automatic checking for new versions is added

Flexible management of conditions in the WHERE clause is added

The possibility to use conditions is added

Performance is improved

IPv6 protocol support is added

Migration from FIBPlus is added

The possibility to use ranges is added

The AutoCommit property for the Connection component is added

The Ping method for the Connection component is added

The AllowImplicitConnect option for the Connection component is added

The SQLRecCount property for the Query and StoredProc components is added

The ScanParams property for the Script component is added

The RowsAffected property for the Script component is added

Support of the IN keyword in the TDataSet.Filter property is added

Like operator behaviour when used in the Filter property is now similar to TClientDataSet

What's New 29

© 2024 Devart

ConnectionTimeout is now used when disconnecting after connection loss

Oracle data provider

The UROWID data type is supported in the Direct mode

SQL Server data provider

The CursorType specific option is added

MySQL data provider

MariaDB is supported

InterBase data provider

Now Params specific option values for TUniTransaction can be separated by a semicolon

The ForceUsingDefaultPort global variable is added

PostgreSQL data provider

PostgreSQL 9.3 is supported

SQLite data provider

Now the Direct mode is based on the SQLite engine version 3.8.0

The AutoCommit and AutoCommitRowCount TUniLoader specific options

ODBC data provider

The DefaultStrParamSize specific option is added

An option that allows fetching VarBytes as BLOB is added

ConnectionTimeout is now used when disconnecting after connection loss

MS Access data provider

The ForceCreateDatabase option is added

NexusDB data provider

NexusDB 3.12 is supported

New Features in UniDAC 5.0:

Universal Data Access Components30

© 2024 Devart

Rad Studio XE4 is supported

NEXTGEN compiler is supported

Application development for iOS is supported

FPC 2.6.2 and Lazarus 1.0.8 are supported

Connection string support is added

Possibility to encrypt entire tables and datasets is added

Possibility to determine if data in a field is encrypted is added

Support of TimeStamp, Single and Extended fields in VirtualTable is added

Migration from PgDAC and LiteDAC is added to the Migration Wizard

Migration from AnyDAC and FireDAC is added to the Migration Wizard

Oracle data provider

BINARY_DOUBLE & BINARY_FLOAT data types support in the Direct mode is added

MySQL data provider

SSL support in macOS is fixed

InterBase data provider

Application development for iOS using InterBase XE3 ToGo Edition is supported

The DefaultTransaction property in TUniConnection is added

The Params specific option in TUniTransaction is added

PostgreSQL data provider

Now ErrorCode indicates a socket error code when a connection error appears

SSL support in macOS is fixed

SQLite data provider

Now the Direct mode is based on the SQLite engine version 3.7.16.2

Now SQLite string data type without length is mapped as ftMemo instead of ftString

Converter from Unix and Julian data formats to ftDateTime is added

What's New 31

© 2024 Devart

ASE data provider

The EncryptPassword option is added

The DetectFieldsOnPrepare option is added

DB2 data provider

XML fields support is added

New Features in UniDAC 4.6:
Rad Studio XE3 Update 1 is now required

C++Builder 64-bit for Windows is supported

SQLServer data provider

The Port specific option that allows specifying the port number for connection is added

New Features in UniDAC 4.5:
Rad Studio XE3 is supported

Windows 8 is supported

New Features in UniDAC 4.2:
Update 4 Hotfix 1 for RAD Studio XE2, Delphi XE2, and C++Builder XE2 is now required

Data Type Mapping support is added

Data Encryption in a client application is added

The TMSEncryptor component for data encryption is added

Calling of the TCustomDASQL.BeforeExecute event is added

New Features in UniDAC 4.1:
Update 4 for RAD Studio XE2, Delphi XE2, and C++Builder XE2 is now required

macOS and iOS in RAD Studio XE2 is supported

FireMonkey support is improved

Lazarus 0.9.30.4 and FPC 2.6.0 are supported

Universal Data Access Components32

© 2024 Devart

macOS in Lazarus is supported

Linux x64 in Lazarus is supported

FreeBSD in Lazarus is supported

Oracle data provider

Oracle 11 Express Edition is supported

Support for the NonBlocking option is added

The QueryResultOnly option is added to TOraChangeNotification

PostgreSQL data provider

PostgreSQL 9.1 is supported

SQLite data provider

DateFormat and TimedFormat specific options are added in the SQLite data provider

NexusDB data provider

Support of NexusDB 3.09 is added

New Features in Universal Data Access Components
4.00:

Embarcadero RAD Studio XE2 is supported

Application development for 64-bit Windows is supported

FireMonkey application development platform is supported

Support of master/detail relationship for TVirtualTable is added

OnProgress event in TVirtualTable is added

TDADataSetOptions.SetEmptyStrToNull property that allows inserting NULL value instead

of empty string is added

MS Access data provider

Exclusive access to databases in MSAccess provider is added

Adaptive Server Enterprise data provider

What's New 33

© 2024 Devart

Ability to set ApplicationName in the ASE provider is added

The AnsiNull option in the ASE provider is added

New Features in Universal Data Access Components
3.70:

Lazarus 0.9.30 and FPC 2.4.2 is supported

New DBF provider is added

Oracle data provider

Oracle 9, Oracle 10, and Oracle 11 authentication in the Direct mode is supported

Case sensitive login and password in the Direct mode is supported

Unicode login and password in the Direct mode is supported

Client Identifier in the Direct mode is supported

Support of BLOB, CLOB, and NCLOB data types in TUniLoader is improved

PostgreSQL data provider

Application Name connection option is supported

Payload parameter for PostgreSQL notification is supported

SQL Server data provider

Support for SQL Server Compact Edition 4.0 is added

SQLite data provider

User-defined function for SQLite provider is supported

Default UniNoCase collation for SQLite provider is added (the DefaultCollations specific

option)

Interface user-defined collation registration for SQLite provider is improved

SQLite source version is fixed (missing .inc file is added)

Adaptive Server Enterprise data provider

Support for the AnsiNull option is added

Universal Data Access Components34

© 2024 Devart

New Features in Universal Data Access Components
3.60:

NexusDB provider

PostgreSQL 9.0 supported

Improved performance in the PostgreSQL provider

Encryption support in the SQLite provider

Support for connection with using Service Name in the Direct mode in the Oracle provider

Support for ASCII databases in the SQLite provider (the ASCIIDataBase specific option)

New Features in Universal Data Access Components
3.50:

Embarcadero RAD Studio XE suppored

TUniAlerter component

Collation and UTF sorting support in the SQLite provider

Support for dbMonitor 3

Support for extended SQL for MS Access (set the ExtendedAnsiSQL specific option to 1)

Support of ONLY lexeme in the FROM statement for PostgreSQL

Ability to lock records in the CachedUpdate mode

Ability to use Access system database added

Ability to send call stack information to the dbMonitor component

Now setting the SetFieldsReadOnly option to False makes all fields not readonly

New Features in Universal Data Access Components
3.00:

DB2, Microsoft Access, Advantage Database Server, Adaptive Server Enterprise, and other

databases (using ODBC provider) support added

Embarcadero RAD Studio 2010 supported

New Features in Universal Data Access Components

What's New 35

© 2024 Devart

2.70:
SQLite support added

New Features in Universal Data Access Components
2.50:

Unified SQL support

Unified SQL allows to write truly database-independent SQL code. Unified SQL includes:

Macros - in Unified SQL macros can evaluate to a different value depending on the

provider used by the TUniConnection component.

If - for the purpose of extra flexibility Unified SQL supports conditional inclusion of SQL

code into resulting statements using {if} directive. This allows to set different SQL for

different DBMS.

Functions - introduce standard for calling common SQL functions. In run time function is

transformed either to the corresponding native function, or to an equivalent expression.

Literal - provides universal syntax for date, time, and timestamp literals.

TUniLoader component

serves for fast loading of data to the database. For each type of database server

TUniLoader uses its specific interfaces for loading with maximum speed. For example,

Oracle Direct Path Load interface is used for Oracle.

TUniDump component

serves to store data from tables or editable views as a script and to restore data from a

received script.

TUniConnection.AssignConnect method

shares physical connection between several TUniConnection components

Added support for Free Pascal under Linux

Universal Data Access Components36

© 2024 Devart

Added NoPreconnect property to TUniScript for executing CONNECT and CREATE

DATABASE commands

Added DMLRefresh support in the PostgreSQL provider

New Features in Universal Data Access Components
2.00:

PostgreSQL support added

New Features in Universal Data Access Components
1.20:

Delphi 2009 and C++Builder 2009 supported

Extended Unicode support for Delphi 2007 added (special Unicode build)

Free Pascal 2.2 supported

Powerful design-time editors implemented in Lazarus

Completed with more comprehensive structured Help

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

2 General Information

This section contains general information about Universal Data Access Components

Overview

Features

Requirements

Compatibility

Using Several DAC Products in One IDE

Component List

Hierarchy Chart

Editions

Licensing and Subscriptions

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

General Information 37

© 2024 Devart

Getting Support

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

2.1 Overview

Universal Data Access Components (UniDAC) is a powerful library of nonvisual cross-

database data access components for Delphi, C++Builder, and Lazarus (Free Pascal). The

UniDAC library is designed to help programmers develop faster and cleaner cross-database

applications. UniDAC is a complete replacement for standard database connectivity solutions

and presents an efficient native alternative to the Borland Database Engine and dbExpress for

access to Oracle, SQL Server, MySQL, InterBase, Firebird, SQLite, DB2, Microsoft Access,

Advantage Database Server, Adaptive Server Enterprise, DBF, NexusDB, and other

databases (using ODBC provider), as well as various Cloud services.

UniDAC is based on the well-known Data Access Components from Devart such as ODAC,

SDAC, MyDAC, IBDAC, PgDAC and LiteDAC. We have joined the experience of long-term

successful development into one great product which provides unified access to popular

databases such as Oracle, Microsoft SQL Server, MySQL, InterBase, Firebird, SQLite, DB2,

Microsoft Access, Advantage Database Server, Adaptive Server Enterprise, DBF, NexusDB

and other databases (using ODBC provider).

The UniDAC library is actively developed and supported by Devart Team. If you have

questions about UniDAC, send us an email at unidac@devart.com or visit our forum.

Advantages of UniDAC
UniDAC is very convenient in setup and usage. It provides transparent server-independent

interface for working with different databases. Selected database provider ensures the best

way to perform operations on the server.

Universal Data Access

UniDAC provides transparent server-independent interfaces for working with different

databases, and lets you change the client engine for specific server type just by changing

single connection option. It means that you can easily switch between database servers in

your cross-database UniDAC-based application.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/odac/
https://www.devart.com/sdac/
https://www.devart.com/mydac/
https://www.devart.com/ibdac/
https://www.devart.com/pgdac/
https://www.devart.com/litedac/
mailto:support@devart.com
https://support.devart.com/portal/en/community/delphi-data-access-components

Universal Data Access Components38

© 2024 Devart

Server-Aware Providers

UniDAC chooses the best way specific to the server to perform most operations. Every

UniDAC data provider uses server-specific native connectivity. All operations with data are

performed by providers automatically considering peculiarities of the selected database

server.

Access Cloud Services

UniDAC allows developing applications that work with data stored in such Cloud services as:

BigCommerce, Dynamics CRM, FreshBooks, Google BigQuery, HubSpot, Magento,

MailChimp, NetSuite, Salesforce, Salesforce MC, SugarCRM, QuickBooks, Zoho CRM. For

this, it is enough to use UniDAC ODBC provider with any Devart ODBC drivers for Clouds.

Optimized Code

The goal of UniDAC is to enable developers to write efficient and flexible database

applications. The UniDAC library is implemented using advanced data access algorithms and

optimization techniques. Classes and components undergo comprehensive performance

tests and are designed to help you write high-performance, lightweight data access layers.

Compatibility with Other Connectivity Methods

The UniDAC interface retains compatibility with standard VCL data access components like

BDE. Existing BDE-based applications can be easily migrated to UniDAC and enhanced to

take advantage of server-specific features.

Development and Support

UniDAC is a cross-database connectivity solution that has been actively developed and

supported. UniDAC comes with full documentation, demo projects, and fast (usually within

one business day) technical support by the UniDAC development team. Find out more about

how to get help or submit feedback and suggestions to the UniDAC development team in

Getting Support.

A description of the UniDAC components is provided in the Component List.

Key Features
Universal access to different database servers

General Information 39

© 2024 Devart

Support for most popular databases

Full support for the latest server versions

Support for the latest IDE versions

VCL, LCL and FMX versions of library available

High performance

Easy to deploy

Support of all standard and third-party data-aware controls

Advanced connection management

Flexible data updating

UniScript component to execute scripts

UniSQL for writing server-independent queries

Ability of monitoring commands execution

Advanced connection pooling

Unicode and national char sets support

Includes database-independent data storage

CachedUpdates operation mode

Local sorting and filtering by calculated and lookup fields

local master/detail relationship

Ability to retrieve metadata information

Support for using macros in SQL

Customizable connection dialog

Advanced design-time editors

A large amount of helpful demo projects

Annual UniDAC Subscription with Priority Support

Licensed royalty-free per developer, per team, or per site

The full list of UniDAC features are available in Features.

Universal Data Access Components40

© 2024 Devart

How Does UniDAC Work?
UniDAC consists of two layers. The first layer is the general UniDAC Engine that provides the

unified programming interface for the developer. The second layer is the data access layer,

which consists of data access providers. These providers are intended for interacting

between UniDAC Engine and database servers. Each data provider works with one specific

database server. UniDAC structure overview is presented below:

UniDAC Structure Overview
There are two ways to install data access providers. The first way is to install the UniDAC

Professional or UniDAC Standard edition. In this case all available providers are installed. The

second way is to install UniDAC Engine with the UniDAC Express edition, and required data

access providers with Data Access Components such as ODAC, SDAC, MyDAC, IBDAC,

and PgDAC. Each DAC installs the corresponding data access provider for UniDAC.

However, there is a slignt difference between providers installed with UniDAC Professional

and providers installed with other DACs. Providers installed with UniDAC Professional include

all server-specific functionality, while providers installed with DACs are just wrappers around

DAC libraries. If both providers for a database server are installed, the provider installed with

DAC will be used.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

2.2 Features

Supported target platforms
Windows 32-bit and 64-bit

macOS 64-bit

Mac ARM

iOS 64-bit

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

General Information 41

© 2024 Devart

Android 32-bit and 64-bit

Linux 32-bit (only in Lazarus and Free Pascal) and 64-bit

General usability
Direct access to server data. Does not require installation of other data provider layers

(such as BDE)

Access without using client library [Oracle, SQL Server, MySQL, PostgreSQL, SQLite,

DBF]

Interface compatible with standard data access methods, such as BDE and ADO

VCL, LCL and FMX versions of library available

Separated run-time and GUI specific parts allow you to create pure console applications

such as CGI

Unicode support

National charset support [Oracle, MySQL, InterBase, PostgreSQL]

Unified SQL for writing server-independent queries

Highly usable design time support

Easy to deploy

Network and connectivity
Disconnected Mode with automatic connection control for working with data offline

Local Failover for detecting connection loss and implicitly reexecuting certain operations

Ability to search for installed servers in a local network [SQL Server, MySQL, PostgreSQL]

Connection timeout management [Oracle, SQL Server, MySQL, PostgreSQL, ODBC]

Support for OS authentication

Support for Proxy Authentication

Support for the change expired password

Support for both IPv6 and Ipv4 protocol

Compatibility

Universal Data Access Components42

© 2024 Devart

Full support of the latest server versions

Support for embedded server versions

Compatible with Delphi 6, 7, C++Builder 6, Borland Delphi Studio 2006, Code Gear RAD

Studio 2007, 2009, Embarcadero RAD Studio 2010, XE, XE2, XE3, XE4, XE5, XE6, XE7,

XE8, Seattle, Berlin, Tokyo, Rio, Sydney, Alexandria

Support for Lazarus 2.2.6 and FPC 3.2.2 for Windows, macOS and Linux (32-bit and 64-bit)

Wide reporting component support, including support for InfoPower, ReportBuilder,

FastReport

Support for all standard and third-party visual data-aware controls

Allows you to use Professional Edition of Delphi and C++Builder to develop client/server

applications

Server-specific features

Oracle
Multiple Oracle Homes support

Oracle sequence support

Direct LOB access support

Temporary LOB management routines

Temporary LOBs for updating LOB fields

OCI Connection Pooling, Proxy Session Pooling, and Statement Caching

Oracle optimizer control

CLIENT_IDENTIFIER support

DBMS_ALERT support with the TUniAlerter component

Secure connections with SSL, SSH, and HTTP tunneling

Oracle package support

Oracle 9i scrollable cursor support

DML array operations support

ProxySession support

General Information 43

© 2024 Devart

External Procedure support

ROWID values retrieval

Overloaded stored procedures support

Support for WITH FUNCTION clause

SQL Server
Possibility to change application name for a connection

Possibility to change workstation identifier for a connection

Configuration of OEM/ANSI character translation

Enhanced support for SQL Server Compact Edition

Enhanced support for User-defined Types of SQL Server

Ability to lock records and tables

MySQL
HANDLER syntax support

Transaction isolation level support

Possibility to retrieve last auto-incremented value

Session identifer retrieval

Server object information retrieval

Row-level and table-level locking support

Secure connections with SSL, SSH, and HTTP tunneling

InterBase/Firebird
Advanced BLOB support

Streaming (non-caching) BLOB access support

Advanced generator support

Advanced support for the character set OCTETS

Support for the Firebird 2 EXECUTE BLOCK syntax

Support for the Firebird 2 RETURNING clause

Universal Data Access Components44

© 2024 Devart

Advanced locking for Firebird 2

Automatic updates by DB_KEY unique field for Firebird 2

Multiple transactions support with the TUniTransaction component

InterBase events support with the TUniAlerter component

Comprehensive array data type support

Default value support for stored procedures

InterBase services components for configuring server parameters and security

Support for the Firebird 3 BOOLEAN datatype

Support for the Firebird 2.1 trusted authentication

Support for InterBase OTW encryption

PostgreSQL
Advanced sequences support

Advanced Large Objects support

Ability to control Fetch block size

Returning result sets from stored procedures

Secure connections with SSL, SSH, and HTTP tunneling

Notifications support with the TUniAlerter component

Support for PostgreSQL Asynchronous Notification with the TUniAlerter component

Supports the possibility of retrieving last inserted OID value

Advanced errors support

Support for the PostgreSQL notices

SQLite
Support for all commonly used data types

Support for autoincrement fields

Possibility to retrieve last auto-incremented value

General Information 45

© 2024 Devart

SQLite database encryption in Direct mode using different encryption algorithms

Data Type Mapping

Support for automatic database creation on connect

Support for Shared-Cache mode

Support for SQLite user-defined functions

Support for SQLite user-defined collations

Support for SQLite extensions loading

Support for SQLite R*Tree module

Support for SQLite FTS3 and FTS4 extensions

Support for multi-SQL statements executing

MongoDB
Support for all commonly used data types

Support for native MongoDB query and update commands syntax

Support for displaying/modifying documents using regular data-aware controls like TDBGrid

Support for simply modifying documents in code using "fluent" interface

Support for reading/writing documents in the Extended JSON format

Support for working with collections via regular SQL using VirtualDAC

DB2
Advanced sequences support

Schema and function path support

DBF
Support for variety of database formats: dBaseIII-dBase10, dBase for Windows, HiPer-Six,

FoxPro 2, Visual FoxPro

Support for all native data types

Support for native dBase functions

Support for autoincrement fields

http://blog.devart.com/data-type-mapping-in-delphi-data-access-components.html

Universal Data Access Components46

© 2024 Devart

Support for .dbt (dBase), .fpt (FoxPro) and .smt (HiPer-Six) MEMOs

Support for .mdx (dBaseIV+) and .cdx (Visual FoxPro) indexes

Support for table management commands: CREATE/DROP/PACK/ZAP/REINDEX TABLE,

ALTER TABLE ADD/DROP/ALTER COLUMN

Support for index management commands: CREATE/DROP INDEX

Performance
High overall performance

Fast controlled fetch of large data blocks

Optimized string data storing

Advanced connection pooling

High performance of applying cached updates with batches

Caching of calculated and lookup fields

Fast Locate in a sorted DataSet

Preparing of user-defined update statements

High performance batch processing

Intelligent fetch block size control

Advanced connection pooling

SmartFetch Mode enabling fast bi-directional navigation through large datasets

Local data storage operations
Database-independent data storage with TVirtualTable component

CachedUpdates operation mode

Local sorting and filtering, including by calculated and lookup fields

Local master/detail relationship

Master/detail relationship in CachedUpdates mode

Data access and data management automation
Automatic data updating with TUniQuery, TUniTable, and TUniStoredProc components

General Information 47

© 2024 Devart

Automatic record refreshing and locking

Automatic query preparing

Support for ftWideMemo field type in Delphi 2006 and higher

Data Type Mapping

Support for Data Encryption in a client application

Extended data access functionality
Separate component for executing SQL statements

Simplified access to table data with TUniTable component

Ability to retrieve metadata information with TUniMetaData component

BLOB compression support

Support for using macros in SQL

FmtBCD fields support

Ability to customize update commands by attaching external components to

TUniUpdateSQL objects

Deferred detail DataSet refresh in master/detail relationships

MIDAS technology support

UniDataAdapter component for WinForms and ASP.NET applications

Distributed transactions support with the TUniTransaction component [Oracle, SQL Server

]

Default value support for stored procedures

RefreshQuick method [SQL Server, MySQL]

Fast record insertion with TUniLoader component

NonBlocking mode allows background executing and fetching data in separate threads

LargeInt fields support

Object-oriented building of SELECT statements

Data exchange

Universal Data Access Components48

© 2024 Devart

Transferring data between all types of TDataSet descendants with TCRBatchMove

component

Data export and import to/from XML (ADO format)

Ability to synchronize positions in different DataSets

Extended data management with TUniDump component

Script execution
Advanced script execution features with the TUniScript component

Support for executing individual statements in scripts

Support for executing huge scripts stored in files with dynamic loading

Ability to use standard clients tool syntax in scripts

SQL execution monitoring
Extended SQL tracing capabilities provided by the TUniSQLMonitor component and

dbMonitor

Borland SQL Monitor support

Ability to send messages to dbMonitor from any point in your program

Visual extensions
Includes the source code of enhanced TCRDBGrid data-aware grid control

Customizable connection dialog

Design-time enhancements
DataSet Manager tool to control DataSet instances in the project

Advanced design-time component and property editors

Automatic design-time component linking

Easy migration from BDE and ADO with Migration Wizard

More convenient data source setup with the TUniDataSource component

Syntax highlighting in the design-time editors

General Information 49

© 2024 Devart

Resources:
Code documentation and guides in the CHM, PDF, and HXS formats

Many helpful demo projects

Licensing and support
Included annual UniDAC Subscription with Priority Support

Licensed royalty-free per developer, per team, or per site

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

2.3 Requirements

The UniDAC's core itself has no specific system requirements.

To make an application with UniDAC Express Edition you need at least one of Data Access

Components to be installed (ODAC, SDAC, MyDAC, IBDAC, PgDAC, or LiteDAC).

Provider-specific requirements can be found in the corresponding article of the Provider-

specific Notes section.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

2.4 Compatibility

Database Server Compatibility

Database Windows macOS Linux iOS Android

Oracle
Servers:

23с, 21c,

19c, 18c,

12c, 11g,

10g, 9i, 8i,

8.0,

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/odac/
https://www.devart.com/sdac/
https://www.devart.com/mydac/
https://www.devart.com/ibdac/
https://www.devart.com/pgdac/
https://www.devart.com/litedac/
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components50

© 2024 Devart

including

Oracle

Express

Edition

11g and

10g

Clients:

23с, 21c,

19c, 18c,

12c, 11g,

10g, 9i, 8i,

8.0

Microsoft
SQL
Server
Servers:

SQL

Server

2022

(including

Express

edition)

SQL

Server

2019

(including

Express

edition)

SQL

Server

2017

General Information 51

© 2024 Devart

(including

Express

edition)

SQL

Server

2016

(including

Express

edition)

SQL

Server

2014

(including

Express

edition)

SQL

Server

2012

(including

Express

edition)

SQL

Server

2008 R2

(including

Express

edition)

SQL

Server

2008

(including

Universal Data Access Components52

© 2024 Devart

Express

edition)

SQL

Server

2005

(including

Express

edition)

SQL

Server

2000

(including

MSDE)

SQL

Server 7

SQL

Server

Compact

4.0, 3.5,

3.1

SQL

Azure

Clients:

SQL OLE

DB and

SQL

Native

Client

Microsoft

SQL

General Information 53

© 2024 Devart

Azure

Microsoft

SQL

Azure

MySQL
Servers:

8.0, 6.0,

5.6, 5.5,

5.1, 5.0,

4.1, 4.0,

and 3.23

Embedde

d servers:

8.0, 6.0,

5.6, 5.5,

5.1, 4.1,

and 4.0

MariaDB

Versions

since 5.x

up to 11.x

Microsoft
Azure
Database
for
MySQL
Microsoft

Azure

Database

for MySQL

Universal Data Access Components54

© 2024 Devart

Amazon
RDS for
MySQL
Amazon

RDS for

MySQL

and

Amazon

Aurora

Google
Cloud for
MySQL
Google

Cloud for

MySQL

InterBase
Versions

from XE3

up to 2020

Versions

since XE

Versions

since 4.2

Firebird
versions

1.x, 2.x,

3.x, 4.x

PostgreS
QL
versions

from 8.0

up to 16

General Information 55

© 2024 Devart

Microsoft
Azure
Database
for
PostgreS
QL
Microsoft

Azure

Database

for

PostgreS

QL

Amazon
RDS for
PostgreS
QL
Amazon

RDS for

PostgreS

QL and

Amazon

Aurora

Google
Cloud for
PostgreS
QL
Google

Cloud for

PostgreS

QL

Heroku
Postgres
Heroku

Universal Data Access Components56

© 2024 Devart

Postgres

SQLite
Version

3.x

MongoD
B
Servers:

3.2 and

higher

Clients:

1.3.5 and

higher

Amazon
Redshift
Amazon

Redshift

NexusDB
Versions

4.x

Microsoft
Access
Versions

95, 97,

2000,

2003,

2007,

2010,

2013,

2016,

2019

Sybase
Adaptive
Server

General Information 57

© 2024 Devart

Enterpris
e
versions:

12.5.4 and

higher

Sybase
Advantag
e
Database
Server
versions:

8.0 and

higher

DB2
versions:

8.0 and

higher

DBF
Formats:

dBaseIII-

dBase10,

dBase for

Windows,

HiPer-Six,

FoxPro 2,

Visual

FoxPro

BigCom
merce

Dynamic
s CRM

FreshBo
oks

Universal Data Access Components58

© 2024 Devart

Google
BigQuery

HubSpot

Magento

Mailchim
p

NetSuite

QuickBo
oks

Salesforc
e

Salesforc
eMC

SugarCR
M

Zoho
CRM

Any
database
using
OBDC
provider

1If ODBC driver is available for this platform.

IDE Compatibility

UniDAC is compatible with the following IDEs:

Embarcadeo RAD Studio 12 Athens

Embarcadeo Delphi 12 Athens for Windows

General Information 59

© 2024 Devart

Embarcadeo Delphi 12 Athens for macOS

Embarcadeo Delphi 12 Athens for Linux

Embarcadeo Delphi 12 Athens for iOS

Embarcadeo Delphi 12 Athens for Android

Embarcadeo C++Builder 12 Athens for Windows

Embarcadeo C++Builder 12 Athens for iOS

Embarcadeo C++Builder 12 Athens for Android

Embarcadero RAD Studio 11.1 Alexandria

Embarcadero Delphi 11.1 Alexandria for Windows

Embarcadero Delphi 11.1 Alexandria for macOS

Embarcadero Delphi 11.1 Alexandria for Linux

Embarcadero Delphi 11.1 Alexandria for iOS

Embarcadero Delphi 11.1 Alexandria for Android

Embarcadero C++Builder 11.1 Alexandria for Windows

Embarcadero C++Builder 11.1 Alexandria for iOS

Embarcadero C++Builder 11.1 Alexandria for Android

Embarcadero RAD Studio 10.4 Sydney (Requires Release 1 or Release 2)

Embarcadero Delphi 10.4 Sydney for Windows

Embarcadero Delphi 10.4 Sydney for macOS

Embarcadero Delphi 10.4 Sydney for Linux

Embarcadero Delphi 10.4 Sydney for iOS

Embarcadero Delphi 10.4 Sydney for Android

Embarcadero C++Builder 10.4 Sydney for Windows

Embarcadero C++Builder 10.4 Sydney for iOS

Embarcadero C++Builder 10.4 Sydney for Android

Embarcadero RAD Studio 10.3 Rio (Requires Release 2 or Release 3)

Embarcadero Delphi 10.3 Rio for Windows

Embarcadero Delphi 10.3 Rio for macOS

https://cc.embarcadero.com/item/30883
https://cc.embarcadero.com/Item/30896

Universal Data Access Components60

© 2024 Devart

Embarcadero Delphi 10.3 Rio for Linux

Embarcadero Delphi 10.3 Rio for iOS

Embarcadero Delphi 10.3 Rio for Android

Embarcadero C++Builder 10.3 Rio for Windows

Embarcadero C++Builder 10.3 Rio for macOS

Embarcadero C++Builder 10.3 Rio for iOS

Embarcadero C++Builder 10.3 Rio for Android

Embarcadero RAD Studio 10.2 Tokyo (Incompatible with Release 1)

Embarcadero Delphi 10.2 Tokyo for Windows

Embarcadero Delphi 10.2 Tokyo for macOS

Embarcadero Delphi 10.2 Tokyo for Linux

Embarcadero Delphi 10.2 Tokyo for iOS

Embarcadero Delphi 10.2 Tokyo for Android

Embarcadero C++Builder 10.2 Tokyo for Windows

Embarcadero C++Builder 10.2 Tokyo for macOS

Embarcadero C++Builder 10.2 Tokyo for iOS

Embarcadero C++Builder 10.2 Tokyo for Android

Embarcadero RAD Studio 10.1 Berlin

Embarcadero Delphi 10.1 Berlin for Windows

Embarcadero Delphi 10.1 Berlin for macOS

Embarcadero Delphi 10.1 Berlin for iOS

Embarcadero Delphi 10.1 Berlin for Android

Embarcadero C++Builder 10.1 Berlin for Windows

Embarcadero C++Builder 10.1 Berlin for macOS

Embarcadero C++Builder 10.1 Berlin for iOS

Embarcadero C++Builder 10.1 Berlin for Android

Embarcadero RAD Studio 10 Seattle

Embarcadero Delphi 10 Seattle for Windows

General Information 61

© 2024 Devart

Embarcadero Delphi 10 Seattle for macOS

Embarcadero Delphi 10 Seattle for iOS

Embarcadero Delphi 10 Seattle for Android

Embarcadero C++Builder 10 Seattle for Windows

Embarcadero C++Builder 10 Seattle for macOS

Embarcadero C++Builder 10 Seattle for iOS

Embarcadero C++Builder 10 Seattle for Android

Embarcadero RAD Studio XE8

Embarcadero Delphi XE8 for Windows

Embarcadero Delphi XE8 for macOS

Embarcadero Delphi XE8 for iOS

Embarcadero Delphi XE8 for Android

Embarcadero C++Builder XE8 for Windows

Embarcadero C++Builder XE8 for macOS

Embarcadero C++Builder XE8 for iOS

Embarcadero C++Builder XE8 for Android

Embarcadero RAD Studio XE7

Embarcadero Delphi XE7 for Windows

Embarcadero Delphi XE7 for macOS

Embarcadero Delphi XE7 for iOS

Embarcadero Delphi XE7 for Android

Embarcadero C++Builder XE7 for Windows

Embarcadero C++Builder XE7 for macOS

Embarcadero C++Builder XE7 for iOS

Embarcadero C++Builder XE7 for Android

Embarcadero RAD Studio XE6

Embarcadero Delphi XE6 for Windows

Embarcadero Delphi XE6 for macOS

Universal Data Access Components62

© 2024 Devart

Embarcadero Delphi XE6 for iOS

Embarcadero Delphi XE6 for Android

Embarcadero C++Builder XE6 for Windows

Embarcadero C++Builder XE6 for macOS

Embarcadero C++Builder XE6 for iOS

Embarcadero C++Builder XE6 for Android

Embarcadero RAD Studio XE5 (Requires Update 2)

Embarcadero Delphi XE5 for Windows

Embarcadero Delphi XE5 for macOS

Embarcadero Delphi XE5 for iOS

Embarcadero Delphi XE5 for Android

Embarcadero C++Builder XE5 for Windows

Embarcadero C++Builder XE5 for macOS

Embarcadero C++Builder XE5 for iOS

Embarcadero RAD Studio XE4

Embarcadero Delphi XE4 for Windows

Embarcadero Delphi XE4 for macOS

Embarcadero Delphi XE4 for iOS

Embarcadero C++Builder XE4 for Windows

Embarcadero C++Builder XE4 for macOS

Embarcadero RAD Studio XE3 (Requires Update 2)

Embarcadero Delphi XE3 for Windows

Embarcadero Delphi XE3 for macOS

Embarcadero C++Builder XE3 for Windows

Embarcadero C++Builder XE3 for macOS

Embarcadero RAD Studio XE2 (Requires Update 4 Hotfix 1)

Embarcadero Delphi XE2 for Windows

Embarcadero Delphi XE2 for macOS

http://cc.embarcadero.com/item/29662
http://cc.embarcadero.com/item/29294
http://edn.embarcadero.com/article/42282

General Information 63

© 2024 Devart

Embarcadero C++Builder XE2 for Windows

Embarcadero C++Builder XE2 for macOS

Embarcadero RAD Studio XE

Embarcadero Delphi XE

Embarcadero C++Builder XE

Embarcadero RAD Studio 2010

Embarcadero Delphi 2010

Embarcadero C++Builder 2010

CodeGear RAD Studio 2009 (Requires Update 3)

CodeGear Delphi 2009

CodeGear C++Builder 2009

CodeGear RAD Studio 2007

CodeGear Delphi 2007

CodeGear C++Builder 2007

Borland Developer Studio 2006

Borland Delphi 2006

Borland C++Builder 2006

Borland Delphi 7

Borland Delphi 6 (Requires Update Pack 2 – Delphi 6 Build 6.240)

Borland C++Builder 6 (Requires Update Pack 4 – C++Builder 6 Build 10.166)

Lazarus 2.2.6 and Free Pascal 3.2.2 for Windows, macOS, and Linux

All the existing Delphi and C++Builder editions are supported: Architect, Enterprise,

Professional, Community, and Starter.

Lazarus and Free Pascal are supported only in Trial Edition and Professional Edition with

source code.

Supported Target Platforms
Windows 32-bit and 64-bit

macOS 64-bit and ARM (Apple Silicon M1)

Linux 32-bit (only in Lazarus and Free Pascal) and 64-bit

iOS 64-bit

http://cc.embarcadero.com/item/26921
http://edn.embarcadero.com/article/29791
http://edn.embarcadero.com/article/29793
http://www.lazarus.freepascal.org/
http://www.freepascal.org/

Universal Data Access Components64

© 2024 Devart

iOS Simulator ARM 64-bit

Android 32-bit and 64-bit

Support for Windows 64-bit is available since RAD Studio XE2. Support for iOS 64-bit is

available since RAD Studio XE8. Support for Android 32-bit is available since RAD Studio

XE5. Support for Linux 64-bit is available since RAD Studio 10.2 Tokyo. Support for macOS

64-bit is available since RAD Studio 10.3 Rio. Support for Android 64-bit is available since

RAD Studio 10.3.3 Rio.

Direct mode for Oracle, SQL Server and SAP Sybase ASE is available for all platforms and

IDEs, and is distributed as obfuscated source code. SQLite Direct Mode is distributed as pre-

compiled packages and available only in Delphi and C++Builder for all target platforms.

Supported GUI Frameworks
FireMonkey (FMX)

Visual Component Library (VCL)

Lazarus Component Library (LCL)

Devart Data Access Components Compatibility
All DAC products are compatible with each other.

But, to install several DAC products to the same IDE, it is necessary to make sure that all

DAC products have the same common engine (BPL files) version. The latest versions of

DAC products or versions with the same release date always have the same version of the

common engine and can be installed to the same IDE.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

2.5 Using Several DAC Products in One IDE

UniDAC, ODAC, SDAC, MyDAC, IBDAC, PgDAC, LiteDAC and VirtualDAC components use

common base packages listed below:

Packages:

dacXX.bpl

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

General Information 65

© 2024 Devart

dacvclXX.bpl

dcldacXX.bpl

Note that product compatibility is provided for the current build only. In other words, if you

upgrade one of the installed products, it may conflict with older builds of other products. In

order to continue using the products simultaneously, you should upgrade all of them at the

same time.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

2.6 Component List

This topic presents a brief description of the components included in the Universal Data

Access Components library. Click on the name of each component for more information.

These components are added to the UniDAC page of the Component palette except for

TCRBatchMove and TVirtualTable components. They are added to the Data Access page of

the Component palette.

UniDAC component list

TUniConnection Lets you set up and control connections to different servers.

TUniEncryptor Represents data encryption and decryption in client application.

TUniTransaction
Provides discrete transaction control over sessions. Can be
used to manipulate both simple and distributed transactions for
certain providers.

TUniQuery

Uses SQL statements to retrieve data from tables and pass it to
one or more data-aware components through a TDataSource
object. This component provides a mechanism for updating
data.

TUniTable
Lets you retrieve and update data in a single table without
writing SQL statements.

TUniStoredProc
Executes stored procedures and functions. Lets you edit cursor
data returned as parameter.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components66

© 2024 Devart

TUniSQL
Executes SQL statements, and stored procedures, which do not
return datasets.

TUniScript
Executes sequences of SQL statements, and provides control
over the execution process.

TUniMetaData Allows to retrieve embracing metadata on specified SQL object

TUniUpdateSQL Lets you tune update operations for a DataSet component.

TUniDataSource
Provides an interface for connecting data-aware controls on a
form and UniDAC dataset components.

TUniLoader Provides quick loading data to a database.

TUniDump
Serves to store a database or its parts as a script and also to
restore database from received script.

TUniSQLMonitor Interface for monitoring dynamic SQL execution.

TUniConnectDial
og

Allows you to build custom prompts for provider name, server
name, port number, database, user name, and password.

TUniAlerter Used to send and receive database events.

TVirtualTable
Dataset that stores data in memory. This component is placed
on the Data Access page of the Component palette.

TVirtualDataSet Dataset that processes arbitrary non-tabular data.

TVirtualQuery
Dataset that allows to use SQL statements to retrieve data from
in-memory datasets or simultaneously from several different
RDBMS'es.

TCRBatchMove
Transfers data between all types of TDataSet descendants. This
component is placed on the Data Access page of the
Component palette.

UniDAC Database providers

General Information 67

© 2024 Devart

TAccessUniProvi
der

Links the Access provider to an application.

TAdvantageUniP
rovider

Links the Advantage provider to an application.

TASEUniProvide
r

Links the ASE provider to an application.

TDB2UniProvide
r

Links the DB2 provider to an application.

TDBFUniProvide
r

Links the DBF provider to an application.

TInterBaseUniPr
ovider

Links the InterBase provider to an application.

TMongoDBUniPr
ovider

Links the MongoDB provider to an application.

TMySQLUniProvi
der

Links the MySQL provider to an application.

TNexusDBUniPr
ovider

Links the NexusDB provider to an application.

TODBCUniProvi
der

Links the ODBC provider to an application.

TOracleUniProvi
der

Links the Oracle provider to an application.

TPostgreSQLUni
Provider

Links the PostgreSQL provider to an application.

TRedshiftUniProv
ider

Links the Amazon Redshift provider to an application.

TSQLServerUniP
rovider

Links the SQL Server provider to an application.

TSQLiteUniProvi
der

Links the SQLite provider to an application.

Universal Data Access Components68

© 2024 Devart

UniDAC Cloud providers

TBigCommerce
UniProvider

Links the BigCommerce provider to an application.

TDynamicsCRM
UniProvider

Links the Dynamics CRM provider to an application.

TFreshBooksUni
Provider

Links the FreshBooks provider to an application.

TBigQueryUniPr
ovider

Links the Google BigQuery provider to an application.

THubSpotUniPro
vider

Links the HubSpot provider to an application.

TMagentoUniPro
vider

Links the Magento provider to an application.

TMailChimpUniP
rovider

Links the MailChimp provider to an application.

TNetSuiteUniPro
vider

Links the NetSuite provider to an application.

TQuickBooksUni
Provider

Links the QuickBooks provider to an application.

TSalesforceUniP
rovider

Links the Salesforce provider to an application.

TSalesforceMCU
niProvider

Links the Salesforce MC provider to an application.

TSugarCRMUniP
rovider

Links the SugarCRM provider to an application.

TZohoCRMUniPr
ovider

Links Zoho CRM provider to an application.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

General Information 69

© 2024 Devart

2.7 Hierarchy Chart

Many UniDAC classes are inherited from standard VCL/LCL classes. The inheritance

hierarchy chart for UniDAC is shown below. The UniDAC classes are represented by

hyperlinks that point to their description in this documentation. A description of the standard

classes can be found in the documentation of your IDE.

TObject

|-TPersistent

|-TComponent

| |-TCustomConnection

| | |-TCustomDAConnection

| | |-TUniConnection

| |-TDataSet

| | |-TMemDataSet

| | |-TCustomDADataSet

| | | |-TCustomUniDataSet

| | | | |-TUniQuery

| | | | |-TUniStoredProc

| | | | |-TUniTable

| | | |-TDAMetaData

| | | |-TUniMetaData

| | |-TVirtualTable

| |-TDataSource

| | |-TCRDataSource

| | |-TUniDataSource

| |-T:Devart.Dac.DADataAdapter

| | |-T:Devart.UniDac.UniDataAdapter

| |-TCRBatchMove

| |-TCustomConnectDialog

| | |-TUniConnectDialog

| |-TCustomDASQL

| | |-TUniSQL

| |-TCustomDASQLMonitor

Universal Data Access Components70

© 2024 Devart

| | |-TUniSQLMonitor

| |-TDADump

| | |-TUniDump

| |-TDALoader

| | |-TUniLoader

| |-TDAScript

| | |-TUniScript

| |-TDATransaction

| | |-TUniTransaction

| |-TDAAlerter

| | |-TUniAlerter

| |-TCREncryptor

| | |-TUniEncryptor

| |-TCustomDAUpdateSQL

| | |-TUniUpdateSQL

| |-TUniProvider

|-TSharedObject

|-TBlob

 |-TCompressedBlob

 |-TUniBlob

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

2.8 Editions

Universal Data Access Components comes in three editions: Express, Standard, and

Professional.

The Express edition is free. It includes the UniDAC common engine, but does not include any

data providers and additional components. UniDAC Express Edition supports only the

following data providers: Oracle, SQL Server, MySQL, InterBase (Firebird), PostgreSQL, and

SQLite, which are installed with ODAC, SDAC, MyDAC, IBDAC, PgDAC, and LiteDAC,

respectively.

The Standard edition includes the UniDAC common engine and data providers.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

General Information 71

© 2024 Devart

The Professional edition shows off the full power of UniDAC, including mobile application

development, data encryption, and additional components for working with databases, such

as TUniAlerter, TUniDump, TUniMetaData, TCRBatchMove, etc. Professional Edition also

includes the Direct mode for Oracle, SQL Server, MySQL, and PostgreSQL, and static library

linking – for SQLite. In addition, UniDAC Professional Edition includes the DataSet Manager

tool, which is intended to organize datasets in your application.

You can get Source Access to UniDAC Professional Edition by purchasing a special UniDAC

Professional Edition with Source Code, which includes the source code of all component

classes. The source code of DataSet Manager and Migration Wizard is not distributed. The

source code of the Direct mode for Oracle and SQL Server is distributed obfuscated, and for

SQLite – as precompiled packages.

The matrix below compares features of UniDAC editions. See Features for the detailed list of

UniDAC features.

UniDAC Edition Matrix

Features Express Standard
Profession

al

Direct Connectivity

Oracle

SQL Sever

MySQL

PostgreSQL

SQLite

ASE (SAP Sybase Adaptive Server Enterprise)

Universal Data Access Components72

© 2024 Devart

DBF

Desktop Application Development

Windows

macOS

Linux

Mobile Application Development

iOS

Android

Data Access Components

Base Components:
TUniConnection
TUniQuery
TUniSQL
TUniTable
TUniStoredProc
TUniUpdateSQL
TUniDataSource

Script Executing
TUniScript

Transactions managing
TUniTransaction

Fast data loading into the server
TUniLoader

Database Specific Components

General Information 73

© 2024 Devart

Messaging between sessions and applications
TUniAlerter

Obtaining metadata about database objects
TUniMetaData

Storing a database as a script
TUniDump

Database Activity Monitoring

Monitoring of per-component SQL execution
TUniSQLMonitor

Additional Components

Advanced connection dialog
TUniConnectDialog

Data encryption and decryption
TUniEncryptor

Data storing in memory table
TVirtualTable

Dataset that wraps arbitrary non-tabular data
TVirtualDataSet

SQL queries against TDataSet descendants
TVirtualQuery

Advanced DBGrid with extended functionality
TCRDBGrid

Records transferring between datasets
TCRBatchMove

Database Providers

Access

http://devart.com/crgrid/

Universal Data Access Components74

© 2024 Devart

Advantage

Amazon Redshift

ASE

DB2

DBF

InterBase/Firebird

MongoDB

MySQL

NexusDB

ODBC

Oracle

PostgreSQL

SQLite

SQL Server

Cloud Providers

General Information 75

© 2024 Devart

BigCommerce

Dynamics 365

FreshBooks

Google BigQuery

HubSpot

Magento

Mailchimp

NetSuite

QuickBooks

Salesforce

Saleforce MC

Sugar CRM

Zoho CRM

Design-Time Features

Enhanced component and property editors

Universal Data Access Components76

© 2024 Devart

Migration Wizard

DataSet Manager

Cross IDE Support

Lazarus and Free Pascal Support

1 Available only if included in the data provider edition.

2 Available only in Professional Edition with Source Code.

3 The required ODBC driver is sold and distributed separately from UniDAC.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

2.9 Licensing

PLEASE READ THIS LICENSE AGREEMENT CAREFULLY. BY INSTALLING OR USING

THIS SOFTWARE, YOU INDICATE ACCEPTANCE OF AND AGREE TO BECOME BOUND

BY THE TERMS AND CONDITIONS OF THIS LICENSE. IF YOU DO NOT AGREE TO THE

TERMS OF THIS LICENSE, DO NOT INSTALL OR USE THIS SOFTWARE AND

PROMPTLY RETURN IT TO DEVART.

INTRODUCTION
This Devart end-user license agreement ("Agreement") is a legal agreement between you

(either an individual person or a single legal entity) and Devart, for the use of UniDAC software

application, source code, demos, intermediate files, printed materials, and online or electronic

documentation contained in this installation file. For the purpose of this Agreement, the

software program(s) and supporting documentation will be referred to as the "Software".

LICENSE

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

General Information 77

© 2024 Devart

1. GRANT OF LICENSE

The enclosed Software is licensed, not sold. You have the following rights and privileges,

subject to all limitations, restrictions, and policies specified in this Agreement.

1.1. If you are a legally licensed user, depending on the license type specified in the

registration letter you have received from Devart upon purchase of the Software, you are

entitled to either:

install and use the Software on one or more computers, provided it is used by 1 (one) for

the sole purposes of developing, testing, and deploying applications in accordance with this

Agreement (the "Single Developer License"); or

install and use the Software on one or more computers, provided it is used by up to 4 (four)

developers within a single company at one physical address for the sole purposes of

developing, testing, and deploying applications in accordance with this Agreement (the

"Team Developer License"); or

install and use the Software on one or more computers, provided it is used by developers in

a single company at one physical address for the sole purposes of developing, testing, and

deploying applications in accordance with this Agreement (the "Site License").

1.2. If you are a legally licensed user of the Software, you are also entitled to:

make one copy of the Software for archival purposes only, or copy the Software onto the

hard disk of your computer and retain the original for archival purposes;

develop and test applications with the Software, subject to the Limitations below;

create libraries, components, and frameworks derived from the Software for personal use

only;

deploy and register run-time libraries and packages of the Software, subject to the

Redistribution policy defined below.

1.3. You are allowed to use evaluation versions of the Software as specified in the Evaluation

section.

No other rights or privileges are granted in this Agreement.

2. LIMITATIONS

Universal Data Access Components78

© 2024 Devart

Only legally registered users are licensed to use the Software, subject to all of the conditions

of this Agreement. Usage of the Software is subject to the following restrictions.

2.1. You may not reverse engineer, decompile, or disassemble the Software.

2.2. You may not build any other components through inheritance for public distribution or

commercial sale.

2.3. You may not use any part of the source code of the Software (original or modified) to

build any other components for public distribution or commercial sale.

2.4. You may not reproduce or distribute any Software documentation without express written

permission from Devart.

2.5. You may not distribute and sell any portion of the Software without integrating it into your

Applications as Executable Code, except a Trial version that can be distributed for free as

original Devart's UniDAC Trial package.

2.6. You may not transfer, assign, or modify the Software in whole or in part. In particular, the

Software license is non-transferable, and you may not transfer the Software installation

package.

2.7. You may not remove or alter any Devart's copyright, trademark, or other proprietary rights

notice contained in any portion of Devart units, source code, or other files that bear such a

notice.

3. REDISTRIBUTION

The license grants you a non-exclusive right to compile, reproduce, and distribute any new

software programs created using UniDAC. You can distribute UniDAC only in compiled

Executable Programs or Dynamic-Link Libraries with required run-time libraries and

packages.

All Devart's units, source code, and other files remain Devart's exclusive property.

4. TRANSFER

You may not transfer the Software to any individual or entity without express written

permission from Devart. In particular, you may not share copies of the Software under “Single

Developer License” and “Team License” with other co-developers without obtaining proper

license of these copies for each individual.

General Information 79

© 2024 Devart

5. TERMINATION

Devart may immediately terminate this Agreement without notice or judicial resolution in the

event of any failure to comply with any provision of this Agreement. Upon such termination

you must destroy the Software, all accompanying written materials, and all copies.

6. EVALUATION

Devart may provide evaluation ("Trial") versions of the Software. You may transfer or

distribute Trial versions of the Software as an original installation package only. If the Software

you have obtained is marked as a "Trial" version, you may install and use the Software for a

period of up to 60 calendar days from the date of installation (the "Trial Period"), subject to the

additional restriction that it is used solely for evaluation of the Software and not in conjunction

with the development or deployment of any application in production. You may not use

applications developed using Trial versions of the Software for any commercial purposes.

Upon expiration of the Trial Period, the Software must be uninstalled, all its copies and all

accompanying written materials must be destroyed.

7. WARRANTY

The Software and documentation are provided "AS IS" without warranty of any kind. Devart

makes no warranties, expressed or implied, including, but not limited to, the implied

warranties of merchantability and fitness for a particular purpose or use.

8. SUBSCRIPTION AND SUPPORT

The Software is sold on a subscription basis. The Software subscription entitles you to

download improvements and enhancement from Devart’s web site as they become available,

during the active subscription period. The initial subscription period is one year from the date

of purchase of the license. The subscription is automatically activated upon purchase, and

may be subsequently renewed by Devart, subject to receipt applicable fees. Licensed users

of the Software with an active subscription may request technical assistance with using the

Software over email from the Software development. Devart shall use its reasonable

endeavours to answer queries raised, but does not guarantee that your queries or problems

will be fixed or solved.

Devart reserves the right to cease offering and providing support for legacy IDE versions.

9. COPYRIGHT

Universal Data Access Components80

© 2024 Devart

The Software is confidential and proprietary copyrighted work of Devart and is protected by

international copyright laws and treaty provisions. You may not remove the copyright notice

from any copy of the Software or any copy of the written materials, accompanying the

Software.

This Agreement contains the total agreement between the two parties and supersedes any

other agreements, written, oral, expressed, or implied.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

2.10 Getting Support

This page lists several ways you can find help with using UniDAC and describes the UniDAC

Priority Support program.

Support Options
There are a number of resources for finding help on installing and using UniDAC.

You can find out more about UniDAC installation or licensing by consulting the Licensing

and Installation sections.

You can get community assistance and technical support on the UniDAC Community

Forum.

You can get advanced technical assistance by UniDAC developers through the UniDAC

Priority Support program.

If you have a question about ordering UniDAC or any other Devart product, please contact

sales@devart.com.

UniDAC Priority Support
UniDAC Priority Support is an advanced product support service for getting expedited

individual assistance with UniDAC-related questions from the UniDAC developers

themselves. Priority Support is carried out over email and has two business days response

policy. Priority Support is available for users with an active UniDAC Subscription.

To get help through the UniDAC Priority Support program, please send an email to

support@devart.com describing the problem you are having. Make sure to include the

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://support.devart.com/portal/en/community
https://support.devart.com/portal/en/community
mailto:sales@devart.com
mailto:support@devart.com

General Information 81

© 2024 Devart

following information in your message:

The version of Delphi or C++Builder you are using.

Your UniDAC Registration number.

Full UniDAC edition name and version number. You can find both of these from the UniDAC

| UniDAC About menu in the IDE.

Versions of the server and client you are using.

A detailed problem description.

If possible, a small test project that reproduces the problem. Please include definitions for

all database objects and avoid using third-party components.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

3 Getting Started

This page contains a quick introduction to setting up and using the Universal Data Access

Components library. It gives a walkthrough for each part of the UniDAC usage process and

points out the most relevant related topics in the documentation.

What is UniDAC?

Installing UniDAC.

Working with the UniDAC demo projects.

Compiling and deploying your UniDAC project.

Using the UniDAC documentation.

How to get help with UniDAC.

What is UniDAC?
Universal Data Access Components (UniDAC) is a component library that provides

connectivity to Oracle, SQL Server, MySQL, InterBase, Firebird, PostgreSQL, SQLite, DB2,

Microsoft Access, Advantage Database Server, Adaptive Server Enterprise, DBF, NexusDB,

and other databases (using ODBC provider) for Delphi, C++Builder and Lazarus (FPC), and

helps you develop fast cross-database applications with these environments.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components82

© 2024 Devart

Many UniDAC classes are based on VCL, LCL and FMX classes and interfaces. UniDAC is a

complete replacement for Borland Database Engine, provides native database connectivity,

and is specifically designed as a universal interface to access different kinds of databases.

An introduction to UniDAC is provided in the Overview section.

A list of the UniDAC features you may find useful is listed in the Features section.

An overview of the UniDAC component classes is provided in the Components List section.

Installing UniDAC
To install UniDAC, complete the following steps.

1. Choose and download the version of the UniDAC installation program that is compatible

with your IDE. For instance, if you are installing UniDAC 1.00, you should use the following

files:

For BDS 2006 and Turbo - unidac100d10*.exe

For Delphi 7 - unid100d7*.exe

For more information, visit the the UniDAC download page.

2. Close all running IDEs.

3. Launch the UniDAC installation program you downloaded in the first step and follow the

instructions to install UniDAC.

By default, the UniDAC installation program should install compiled UniDAC libraries

automatically on all IDEs.

To check if UniDAC has been installed properly, launch your IDE and make sure that a

UniDAC page has been added to the Component palette and that a UniDAC menu was added

to the Menu bar.

If you have bought UniDAC Standard Edition with Source Code or UniDAC Professional

Edition with Source Code, you will be able to download both the compiled version of UniDAC

and the UniDAC source code. The installation process for the compiled version is standard,

as described above.The UniDAC source code must be compiled and installed manually.

Consult the supplied ReadmeSrc.html file for more details.

To find out what gets installed with UniDAC or to troubleshoot your UniDAC installation, visit

http://docwiki.embarcadero.com/RADStudio/Tokyo/en/BDE
https://www.devart.com/unidac/download.html

Getting Started 83

© 2024 Devart

the Installation topic.

Working with the UniDAC demo projects
The UniDAC installation package includes a number of demo projects that demonstrate

UniDAC capabilities and use patterns. The UniDAC demo projects are automatically installed

in the UniDAC installation folder.

To quickly get started working with UniDAC, launch and explore the introductory UniDAC

demo project, UniDACDemo, from your IDE. This demo project is a collection of demos that

show how UniDAC can be used. The project creates a form which contains an explorer panel

for browsing the included demos and a view panel for launching and viewing the selected

demo.

UniDACDemo Walkthrough
1. Launch your IDE.

2. Choose File | Open Project from the menu bar

3. Find the UniDAC directory and open the UniDACDemo project. This project should be

located in the Demos\UniDACDemo folder.

For example, if you are using Borland Developer Studio 2006, the demo project may be found at

\Program Files\Devart\UniDAC for Delphi 2006\Demos\Win32\UniDACDemo

\UniDACDemo.bdsproj

4. Select Run | Run or press F9 to compile and launch the demo project. UniDACDemo

should start, and a full-screen UniDAC Demo window with a toolbar, an explorer panel, and

a view panel will open. The explorer panel will contain a list of all demo sub-projects

included in UniDACDemo, and the view panel will contain an overview of each included

demo.

At this point, you will be able to browse through the available demos, read their descriptions,

view their source code, and see the functionality provided by each demo for interacting with a

server. However, you will not be able to actually retrieve data from a server or execute

commands until you connect to the database.

5. Click on the "Connect" button in the UniDACDemo toolbar. A Connect dialog box will open.

Select the required provider from the list, and enter the connection parameters to connect

Universal Data Access Components84

© 2024 Devart

to your server, and click "Connect" in the dialog box. Set of connection parameters

depends on the selected provider.

Now you have a fully functional interface to your server. You will be able to go through the

different demos, to browse tables, create and drop objects, and execute commands.

Warning! All changes you make to the database you are connected to, including creating

and dropping objects used by the demo, will be permanent. Make sure you specify a test

database in the connection step.

6. Click on the "Create" button to create all objects that will be used by UniDACDemo. If some

of these objects already exist in the database you have connected to, an error with the error

message like the following will appear.

"An error has occurred: ORA00955: name is already being used by an existing object. ...

Ignore this exception?"

This is a standard warning from the object execution script. Click "Yes to All" to ignore this

message. UniDACDemo will create the UniDACDemo objects on the server you have

connected to.

7. Choose a demo that demonstrates an aspect of working with UniDAC that you are

interested in, and play with the demo frame in the view window on the right. For example, to

find out more about how to work with TUniTable component, select the Table demo from

the "Working with Components" folder. A simple table browser will open in the view panel

which will let you open a table in your database by specifying its name and clicking on the

"Open" button.

8. Click on the "Demo source" button in the UniDACDemo toolbar to find out how the demo

you have selected was implemented. The source code behind the demo project will appear

in the view panel. Try to find the places where UniDAC components are used to connect to

the database.

9. Click on the "Form as text" button in the UniDACDemo toolbar to view the code behind the

interface to the demo. Try to find the places where UniDAC components are created on

the demo form.

10.Repeat these steps for other demos listed in the explorer window. The available demos

are organized in three folders.

Getting Started 85

© 2024 Devart

Working with components

A collection of projects that show how to work with the basic UniDAC components.

General demos

A collection of projects that show off the UniDAC technology and demonstrate some ways

of working with data.

Server-specific demos

A collection of projects that demonstrate how to incorporate features of specific database

servers.

11.When you are finished working with the project, click on the "Drop" button in the

UniDACDemo toolbar to remove all schema objects added in Step 6.

Other UniDAC demo projects

UniDAC is accompanied by a number of other demo projects. A description of all UniDAC

demos is located in the Demo Projects topic.

Compiling and deploying your UniDAC project

Compiling UniDAC-based projects

By default, to compile a project that uses UniDAC classes, your IDE compiler needs to have

access to the UniDAC dcu (obj) files. If you are compiling with runtime packages, the

compiler will also need to have access to the UniDAC bpl files. All appropriate settings for

both these scenarios should take place automatically during the installation of

UniDAC. You should only need to modify your environment manually if you are using one of

the UniDAC editions that comes with source code - UniDAC Professional Edition with Source

Code or UniDAC Standard Edition with Source Code.

You can check that your environment is properly configured by trying to compile one of the

UniDAC demo projects. If you have no problems compiling and launching the UniDAC demos,

your environment has been properly configured.

For more information about which library files and environment changes are needed for

compiling UniDAC-based projects, consult the Installation topic.

Universal Data Access Components86

© 2024 Devart

Deploying UniDAC-based projects

To deploy an application that uses UniDAC, you will need to make sure the target workstation

has access to the following files.

The Client software, if connecting not in the Direct mode.

The UniDAC bpl files, if compiling with runtime packages.

The UniDAC assembly files, if using VCL for .NET components.

If you are evaluating deploying projects with UniDAC Trial Edition, you will also need to deploy

some additional bpl files with your application even if you are compiling without runtime

packages. As another trial limitation for C++Builder, applications written with UniDAC Trial

Edition for C++Builder will only work if the C++Builder IDE is launched. More information

about UniDAC Trial Edition limitations is provided here.

A list of the files which may need to be deployed with UniDAC-based applications is included

in the Deployment topic.

Using the UniDAC documentation

The UniDAC documentation describes how to install and configure UniDAC, how to use

UniDAC Demo Projects, and how to use the UniDAC libraries.

The UniDAC documentation includes a detailed reference of all UniDAC components and

classes. Many of the UniDAC components and classes inherit or implement members from

other VCL and LCL classes and interfaces. The product documentation also includes a

summary of all members within each of these classes. To view a detailed description of a

particular component, look it up in the Components List section. To find out more about a

specific standard VCL or LCL class a UniDAC component is inherited from, see the

corresponding topic in your IDE documentation.

At install time, the UniDAC documentation is integrated into your IDE. It can be invoked from

the UniDAC menu added to the Menu Bar, or by pressing F1 in Object Inspector or on a

selected code segment.

How to get help with UniDAC

There are a number of resources for finding help on using UniDAC classes in your project.

If you have a question about UniDAC licensing, consult the Licensing section.

Getting Started 87

© 2024 Devart

You can get community assistance and UniDAC technical support on the UniDAC Support

Forum.

To get help through the UniDAC Priority Support program, send an e-mail to the UniDAC

development team at unidac@devart.com.

If you have a question about ordering UniDAC or any other Devart product, contact

sales@devart.com.

For more information, consult the Getting Support topic.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

3.1 Installation

This topic contains the environment changes made by the UniDAC installer. If you are having

problems with using UniDAC or compiling UniDAC-based products, check this list to make

sure your system is properly configured.

Compiled versions of UniDAC are installed automatically by the UniDAC Installer for all

supported IDEs except for Lazarus. Versions of UniDAC with Source Code must be installed

manually. Installation of UniDAC from sources is described in the supplied ReadmeSrc.html

file.

Before installing UniDAC ...
Two versions of UniDAC cannot be installed in parallel for the same IDE, and, since the

Devart Data Access Components products have some shared bpl files, newer versions of

UniDAC may be incompatible with older versions of ODAC, SDAC, MyDAC, IBDAC, and

PgDAC.

So before installing a new version of UniDAC, uninstall any previous version of UniDAC you

may have, and check if your new install is compatible with other Devart Data Access

Components products you have installed. For more information please see Using several

products in one IDE. If you run into problems or have any compatibility questions, please

email unidac@devart.com

Note: You can avoid performing UniDAC uninstallation manually when upgrading to a new

version by directing the UniDAC installation program to overwrite previous versions. To do

https://support.devart.com/portal/en/community/delphi-data-access-components
https://support.devart.com/portal/en/community/delphi-data-access-components
mailto:unidac@devart.com
mailto:sales@devart.com
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
mailto:unidac@devart.com

Universal Data Access Components88

© 2024 Devart

this, execute the installation program from the command line with a /force parameter (Start

| Run and type unidacXX.exe /force, specifying the full path to the appropriate version of

the installation program).

Installed packages

Note: %UniDAC% denotes the path to your UniDAC installation directory.

Delphi/C++Builder Win32 project packages

Name Description Location

dacXX.bpl DAC run-time package Delphi\Bin; Windows\System32

dacvclXX.bpl*
DAC VCL support
package

Delphi\Bin

dcldacXX.bpl
DAC design-time
package

Delphi\Bin

unidacXX.bpl
UniDAC run-time
package

Delphi\Bin; Windows\System32

unidacvclXX.bpl* VCL support package Delphi\Bin

dclunidacXX.bpl
UniDAC design-time
package

Delphi\Bin

XXproviderXX.bpl
UniDAC providers
packages

Delphi\Bin; Windows\System32

crcontrolsXX.bpl TCRDBGrid component Delphi\Bin

Additional packages for using UniDAC managers and wizards

Name Description Location

datasetmanagerXX.
bpl

DataSet Manager
package

Delphi\Bin

Environment Changes
To compile UniDAC-based applications, your environment must be configured to have

access to the UniDAC libraries. Environment changes are IDE-dependent.

For all instructions, replace %UniDAC% with the path to your UniDAC installation directory

Delphi
%UniDAC%\Lib should be included in the Library Path accessible from Tools |

Getting Started 89

© 2024 Devart

Environment options | Library.

The UniDAC Installer performs Delphi environment changes automatically for compiled

versions of UniDAC.

C++Builder

C++Builder 6:

$(BCB)\UniDAC\Lib should be included in the Library Path of the Default Project

Options accessible from Project | Options | Directories/Conditionals.

$(BCB)\UniDAC\Include should be included in the Include Path of the Default Project

Options accessible from Project | Options | Directories/Conditionals.

C++Builder 2006, 2007:

$(BCB)\UniDAC\Lib should be included in the Library search path of the Default Project

Options accessible from Project | Default Options | C++Builder | Linker | Paths and Defines.

$(BCB)\UniDAC\Include should be included in the Include search path of the Default

Project Options accessible from Project | Default Options | C++Builder | C++ Compiler |

Paths and Defines.

The UniDAC Installer performs C++Builder environment changes automatically for compiled

versions of UniDAC.

Lazarus

The UniDAC installation program only copies UniDAC files. You need to install UniDAC

packages to Lazarus IDE manually. Open %UniDAC%\Source\Lazarus1\dclunidac10.lpk (for

Trial version %UniDAC%\Packages\dclunidac10.lpk) file in Lazarus and press the Install

button. After that Lazarus IDE will be rebuilded with UniDAC packages.

Do not press the Compile button for the package. Compiling will fail because there are no

UniDAC sources.

Installation of Additional Components and Add-ins

DBMonitor

DBMonitor is a an easy-to-use tool to provide visual monitoring of your database applications.

Universal Data Access Components90

© 2024 Devart

It is provided as an alternative to Borland SQL Monitor which is also supported by UniDAC.

DBMonitor is intended to hamper application being monitored as little as possible. For more

information, visit the DBMonitor page online.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

3.2 Migration Wizard

Note: Migration Wizard is only available for Delphi.

UniDAC Migration Wizard allows you to convert your BDE, IBX, ADO, dbGo, ODAC, SDAC,

MyDAC, IBDAC, PgDAC, LiteDAC, AnyDAC, FireDAC, and FIBPlus projects to UniDAC.

This wizard replaces the database components in a specified project (.dfm and .pas-files)

with UniDAC components.

To convert a project, perform the following steps:

1. Select UniDAC Migration Wizard from the UniDAC menu.

2. Select Replace components and choose the type of the components to replace

corresponding ones with UniDAC and press the Next button.

3. Select the location of the files to search - current open project or disc folder.

4. If you have selected Disc folder on the previous step, specify the required folder and

specify whether to process subfolders. Press the Next button.

5. Select whether to make backup (it is highly recommended to make a backup), backup

location, and log parameters, and press the Next button. Default backup location is

RBackup folder in your project folder.

6. Check your settings and press the Finish button to start the conversion operation.

7. The project should be saved before conversion. You will be asked before saving it. Click

Yes to continue project conversion. After the project conversion it will be reopened.

The Wizard just replaces all standard database components. Probably you will need to make

some changes manually to compile your application successfully.

If some problems occur while making changes, you can restore your project from backup file.

To do this perform the following steps:

https://www.devart.com/dbmonitor/
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Getting Started 91

© 2024 Devart

1. Select UniDAC Migration Wizard from the UniDAC menu.

2. Select Restore original files from backup and press the Next button.

3. Select the backup file. By default it is RExpert.reu file in RBackup folder of your converted

project. Press the Next button.

4. Check your settings and press the Finish button to start the conversion operation.

5. Press Yes in the dialog that appeared.

Your project will be restored to its previous state.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

3.3 UniDAC Basics

Introduction

Connecting to the Database

Selecting Data

Executing Queries

Editing Data

Executing Stored Procedures

Creating Master/Detail Relations

Unified SQL

Introduction
Universal Data Access Components (UniDAC) is a powerful library of nonvisual cross-

database data access components for Delphi, C++Builder and Lazarus(Free Pascal). The

UniDAC library is designed to help programmers develop faster and cleaner cross-database

applications. UniDAC is a complete replacement for standard database connectivity solutions

and presents an efficient native alternative to the Borland Database Engine and dbExpress for

access to Oracle, SQL Server, MySQL, InterBase, Firebird, SQLite, DB2, Microsoft Access,

Advantage Database Server, Adaptive Server Enterprise, DBF, NexusDB, and other

databases (using ODBC provider).

UniDAC is based on the well-known Data Access Components from Devart such as ODAC,

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components92

© 2024 Devart

SDAC, MyDAC, IBDAC, and PgDAC.

This article provides an overview of the concepts and tasks you will apply when you work with

UniDAC.

Connecting to the Database

Connecting to the Database in Design-Time

For UniDac component using you have to do following steps:

Create an empty application that will be used to work with UniDAC components. Select File

| New | VCL Forms Application from the Delphi menu.

Find UniDAC page on the component palette and drop TUniConnection component on the

form.

Set the main properties of TUniConnection using TUniConnection editor. Double click the

TUniConnection component on the form to open the editor.

Select a provider name corresponding to your database from the Provider drop-down

combobox. For example, select Oracle for connecting to an Oracle database.

Enter the following connection parameters: user name, password, server, database, and

port into the editor. Some of connection parameters are not used, depending on the

selected provider. For Oracle you need to enter user name, password, and server, for

example. Server is a TNS alias name of an Oracle database. You can select value for

Server from the drop-down list or enter it manually.

Click the Connect button. If the connection is established successfully the editor closes

automatically.

Open the editor again by double-clicking the TUniConnection component and select the

Options page. Here you can enter some options specific to the provider. Schema is a

https://www.devart.com/dac.html

Getting Started 93

© 2024 Devart

useful option for an Oracle database. We will use objects from the "SCOTT" sample

schema in this example. So, enter "SCOTT" as a value for Schema.

Connecting to the Database at Run-Time

Set the TUniConnection parameters and open it at run-time. The following example shows

how to do this:

UniConnection1: TUniConnection;
...
UniConnection1.ProviderName := 'Oracle';
UniConnection1.Username := 'scott';
UniConnection1.Password := 'tiger';
UniConnection1.Server := 'ORA1020';
UniConnection1.SpecificOptions.Values['Schema'] := 'SCOTT';
UniConnection1.Open;

Each line in the SpecificOptions property has the following format:

<OptionName>=<Value>. You can add options using the Add method:

UniConnection1.SpecificOptions.Add('Schema=SCOTT');

But it is better to use the Values property of TStrings because this property does not add a

new line if an option with the same name already exists. Instead it replaces the text after '='

with a new value.

To close the connection use the Close method:

UniConnection1.Close;

You should link all the providers that you use in the application. To link a provider, add its unit

to the USES list. For Oracle add the OracleUniProvider to USES:

uses ..., OracleUniProvider;

Universal Data Access Components94

© 2024 Devart

The provider unit can be easily added by help of the UniDAC Providers palette page. Select

this page, find the OracleUniProvider component and drop it on the form. IDE will add the

corresponding unit to USES automalically if it is not added yet.

Selecting Data
The TUniQuery and TUniTable components allow you to select data. To do it, drop

TUniQuery component into the form. For data selecting you have to establish a connection to

the database. You need to set the Connection property for most components. If there is a

TUniConnection component into the form, UniDAC automatically sets the Connection

property to this component.

For the TUniQuery you need to set the SQL property. Double click the TUniQuery component

to open the TUniQuery editor. On the first page of the editor you can enter the text for the SQL

property.

TUniSQL component is used to execute queries without recordset. The TUniSQL is not a

TDataSet descendant like TUniQuery. TUniSQL is a simple component that provides the

best performance.

It is used in the same way as the TUniQuery. If you want to define SQL and parameters -

use TUniSQL editor at design-time. You can define SQL and parameters at run-time too. To

execute query you have to assign a value for the SQL property and call the Execute method.

If you connect to the SCOTT sample schema, you can enter:

SELECT * FROM emp

to select data from the EMP table.

Click the OK button to save changes and close the editor. To execute the query, you can

change the Active property to True in Object Inspector, or call the Open method in your

program:

Getting Started 95

© 2024 Devart

UniQuery1: TUniQuery;
...
UniQuery1.Connection := UniConnection1;
UniQuery1.SQL.Text := 'SELECT * FROM emp';
UniQuery1.Open;

The Displaying Data

Drop TDataSource and TDBGrid components into the form to see data from TUniQuery. You

can use standard TDataSource from the Data Access palette page or TUniDataSource

component from the UniDAC page. These components have same functionality but

TUniDataSource sets the DataSet property automatically.

Set the DataSet property of TDataSource to UniQuery1 (if it is not set automatically). Then

set the DataSource property of TDBGrid to DataSource1. If the Active property of UniQuery

is True, DBGrid will display data.

To close the TUniQuery use its Close method or set its Active property to False.

UniQuery with data always has a current record. Current record is changed while you move

across the DBGrid.

Current record can be changed programmatically by help of the First, Last, Next, Prior,

Locate, and LocateEx methods of the TUniQuery.

Working with Fileds

The TUniQuery has a Fields collection containing one TField object for each field in your

query. You can get a reference to the TField object by field number or by using FieldByName

method:

UniQuery1.Fields[0];
UniQuery1.FieldByName('EMPNO');

Universal Data Access Components96

© 2024 Devart

TField object can read data from the current record. Use a Value property of TField or typed

properties like AsInteger, AsString, etc.

For example, you can copy data from the TUniQuery to a TMemo component using the

following code:

var
 Empno: integer;
 Ename: string;
begin
 Memo1.Lines.Clear;
 UniQuery1.Open;
 UniQuery1.First;
 while not UniQuery1.Eof do begin
 Empno := UniQuery1.FieldByName('EMPNO').AsInteger;
 Ename := UniQuery1.FieldByName('ENAME').AsString;
 Memo1.Lines.Add(IntToStr(Empno) + ' ' + Ename);
 UniQuery1.Next;
 end;
 UniQuery1.Close;
end;

The Next method sets the Eof property of TUniQuery to True if it cannot move to the next

record because there are no more records.

The TUniQuery creates and destroys fields dynamically when you open and close the query.

Sometimes you need to create persistent fields generated with the form. To create persistent

fields, right click TUniQuery component and select Fields Editor from the context menu.

Fields Editor window will be opened. Right click inside the Fields Editor window and select

Add all fields from the menu. Now you will see the list of fields in the window.

Fields are created as the components on the form. IDE adds corresponding variable of form

class for each field. You can rewrite the previous code example using the persistent field

variables:

...
 while not UniQuery1.Eof do begin

Getting Started 97

© 2024 Devart

 Empno := UniQuery1EMPNO.AsInteger;
 Ename := UniQuery1ENAME.AsString;
 Memo1.Lines.Add(IntToStr(Empno) + ' ' + Ename);
 UniQuery1.Next;
 end;
...

We recommend use TUniTable to select data from one table. You don't need to write SQL

statement for TUniTable. You set the TableName property and TUniTable automatically

generates SQL statement to get data from this table.

Drop the TUniTable into the form and double-click the component to open TUniTable editor.

You can enter value for the TableName property and for OrderFields and FilterSQL properties

in the editor.

When OrderFields and FilterSQL properties are empty, TUniTable generates simple SQL

statement like

SELECT * FROM emp

If you set values for OrderFields or FilterSQL, corresponding ORDER BY or WHERE clauses

will be added to the statement.

Executing Queries
TUniQuery can be used not only for selecting data but for executing any queries supported by

database server.

For example, you can change records in the EMP table by using the TUniQuery with

UPDATE statement. Drop the TUniQuery component on the form and double click it to open

the editor. Enter the following text for SQL:

UPDATE emp SET sal = sal + 1 WHERE empno = 10

The query can be executed at design-time from the editor using the Execute button. To

execute the query at run-time, call the Execute method of TUniQuery.

Universal Data Access Components98

© 2024 Devart

UniQuery1.Execute;

Parameters

Queries don't use fixed values in "SET" or "WHERE" clause in general. For example, your

program can get the new values for "SAL" and "EMPNO" fields from the user.

You can use parameters for this purpose:

UPDATE emp SET sal = :sal WHERE empno = :empno

Parameters are marked using ':' (colon) and parameter name.

Values of the parameters can be set at run-time, and the server replaces parameter names

with the values during the query execution.

After the query with parameters was defined into the SQL tab of the TUniQuery editor, go to

the Parameters tab. Here you have to set DataType and ParamType for each parameter

At run-time you can access the parameters by number or by name using the Params

collection of TUniQuery.

UniQuery2.Params[0];
UniQuery2.ParamByName('SAL');

Use the following code to execute query with parameters:

UniQuery2.ParamByName('SAL').AsFloat := 100;
UniQuery2.ParamByName('EMPNO').AsInteger := 10;
UniQuery2.Execute;

Each parameter is substituted only by single value in the SQL statement.

Macros

Any part of statement (table name, for example) can be changed dynamically with macros.

The macros are marked with '&' (ampersand) and macro name:

SELECT * FROM ¯o1

The macros are accessed by number or name from the Macros collection of TUniQuery

component in your program code.

Getting Started 99

© 2024 Devart

UniQuery3.Macros[0];
UniQuery3.MacroByName('MACRO1');

The value of a macro can be set by the Value property of a TMacro. For example:

UniQuery3.MacroByName('MACRO1').Value := 'emp';

or

UniQuery3.MacroByName('MACRO1').Value := 'emp ORDER BY ename';

Editing Data
All of the datasets components described above are editable. Call the Edit method to begin

editing. Call the Post or Cancel method to finish editing. If you call Post, the changes are

passed to the database server. If you call Cancel, changes will be revoked.

UniQuery1.Edit;
UniQuery1.FieldByName('HIREDATE') := Now;
UniQuery1.FieldByName('SAL') := 1000;
UniQuery1.Post;

Database Controls like TDBGrid or TDBEdit allow user for data editing.

Run the test application.

You can edit any cell in DBGrid linked to TUniQuery. The Edit method called automatically,

when editing starts. The Post method is called, when another record is selected. To cancel

your changes in the current record, press the ESC key.

A new record can be inserted by the Insert or Append method. The Append method adds

record to the end of dataset. The Insert method inserts record in the current position. After

one of these methods is called, you should assign values to the fields and call the Post

method:

UniQuery1.Append;
UniQuery1.FieldByName('EMPNO') := -1;
UniQuery1.FieldByName('ENAME') := 'NEW EMP';
UniQuery1.FieldByName('HIREDATE') := Now;
UniQuery1.FieldByName('SAL') := 2000;
UniQuery1.Post;

To delete record in the current position, call the Delete method.

UniDAC executes "INSERT", "UPDATE", or "DELETE" statement to apply changes to the

database.

Debugging

Universal Data Access Components100

© 2024 Devart

UniDAC can show SQL statements in dialog window before execution. Set the Debug

property of TUniQuery to True to see SQL statements of your query. For profiling in real-time

you have to add the UniDacVcl unit to the USES list. Then run the application. You see the

SELECT statement at startup. Try to edit a record, add a new record, and delete this record.

You will see the corresponding update statements in the Debug window.

Updating table property

If more than one table is specified in the query, UniDAC allows you to update data only in one

table. Fields from other tables become read-only. For example, change the SQL property of

UniQuery1 to the following:

SELECT e.*, d.dname
FROM emp e INNER JOIN dept d ON e.deptno = d.deptno

Now you can edit all the fields except the last field DNAME.

UpdatingTable property contains a name of the table that will be updated.

UniDAC uses the first table specified after "SELECT" or the first table pointed after "FROM"

as default updating table, depending from the current data provider.

If your query contains several tables, it is recommended to always set the UpdatingTable

property to the table you want to edit.

General field information

UniDAC requires information about key fields of the updating table to generate "WHERE"

clause of "UPDATE" and "DELETE" statements. Some servers like SQL Server return this

information when a query is executed. Oracle and other database servers do not return

information about key fields, so UniDAC performs the additional query to the database to get

key fields. You can set the KeyFields property of TUniQuery manually. In this case an

additional query is not executed.

Complex queries

If you set a complex query to the SQL property, UniDAC may not be able to generate the

correct update statements. Or you need custom SQL statements to apply changes to the

database (for example, you can apply changes using stored procedures instead of "INSERT",

"UPDATE", and "DELETE" statements). You can use the SQLInsert, SQLUpdate, and

SQLDelete properties of TUniQuery to set custom update statements. If you double-click one

Getting Started 101

© 2024 Devart

of these properties in Object Inspector, the Update SQLs page of the TUniQuery editor is

opened.

A field value in the update queries can be referenced by the parameter with the same name

as field name. For example, use the following statement in the SQLUpdate property to save

changes to "ENAME" and "SAL" fields.

UPDATE emp SET ename = :ename, sal = :sal
WHERE empno = :empno

Old parameters

You can reference to an old value of the field by adding "OLD_" prefix to the parameter name.

For example, if user can change value of EMPNO field, you need to use the old value of this

field in the "WHERE" condition:

UPDATE emp SET empno = :empno, ename = :ename, sal = :sal
WHERE empno = :OLD_empno

SQL generator

For simple SQL-queries SQL properties can be updated automatically on the SQL generator

tab. Go to the SQL Generator page of the query editor. If your query has several tables in the

"FROM" clause, select table to update in the Table Name combobox. You can select

statement types to be generated, key fields, and data fields.

Click the Generate SQL button. The update statements are generated and the editor

changes the current page to Update SQLs. Now you can make changes in the generated

statements.

Using stored procedures

Stored procedure can be used in the update statements. The procedure for insert is similar to

following (example for Oracle):

CREATE OR REPLACE PROCEDURE DEPT_INSERT
 (pDNAME VARCHAR, pLOC VARCHAR)
AS
BEGIN
 INSERT INTO DEPT (DNAME, LOC) VALUES (pDNAME, pLOC);

Universal Data Access Components102

© 2024 Devart

END;

An SQL statement for stored procedure call can be written manually or created by generator.

Go to the Stored Proc Call Generator page, select the stored procedure name, select the

statement type and click the Generate button.

Executing Stored Procedures
TUniStoredProc allows you to execute a stored procedure.

Drop TUniStoredProc on the form and double-click it. TUniStoredProc editor will be opened.

Enter the stored procedure name or select it from the list. For example, you can select

"EMP_INS" procedure from the previous topic.

When you move focus to another control or press the Create SQL button (), the editor

creates SQL statement for calling the procedure. You can see it in the box below the stored

procedure name.

If the procedure has parameters, they will be added to the generated SQL statement and to

the Params property.

To call the procedure at run-time use the Execute method. You may also set the stored

procedure name and generate SQL statement for calling the stored procedure at run-time.

Call the PrepareSQL method to generate SQL statement for stored procedure. After that

Params collection is filled, and you can assign values to the parameters.

UniStoredProc1.StoredProcName := 'DEPT_INSERT';
UniStoredProc1.PrepareSQL;
UniStoredProc1.ParamByName('PDNAME').AsString := 'DEPT 1';
UniStoredProc1.ParamByName('PLOC').AsString := 'California';
UniStoredProc1.Execute;

Getting Started 103

© 2024 Devart

Creating Master/Detail Relations
Imagine that you have two tables, and second table has a field (foreign key) that references

the primary key of the first table. For example, the "SCOTT" sample schema in the Oracle

database has "DEPT" and "EMP" tables. "DEPT" contains the list of departments, and "EMP"

contains the list of employes. "DEPT" table has DEPTNO primary key. "EMP" also has the

DEPTNO field. This field references the "DEPT" table and contains a number of the

department where an employee works.

If you have two TUniQuery or TUniTable components, you can link them in a master/detail

relation. The detail dataset shows only records corresponding to the current record in the

master dataset.

For example, drop two TUniTable components on the form. Set the Name property of the first

table to "DeptTable", and TableName property to "Dept". Set the Name property of the

second table to "EmpTable", and TableName property to "Emp". Set the Active property of

both tables to True.

Drop two TUniDataSource components on the form, set their names to "DeptDS" and

"EmpDS", and link them to the corresponding tables. Then drop two TDBGrid components

and link them to the corresponding data sources.

Set the MasterSource property of EmpTable to "DeptDS". Double-click the MasterFields

property of EmpTable in Object Inspector. It will open the editor for linking fields between

details and master. Select the DEPTNO field in both left and right list and click the Add button.

Click the OK button to close the dialog.

Now EmpTable displays only employes from the current department. If you change the

current record in DeptTable, EmpTable is automatically refreshed and displays another

employes.

When you set MasterSource for TUniTable or TUniQuery, its SQL is automatically modified.

Fields that you linked are added to the WHERE condition:

SELECT * FROM EMP
WHERE DEPTNO = :DEPTNO

The parameter value is set from the corresponding field of the master dataset, then the query

is executed. When you change the current record in the master, the parameter value in the

detail is changed, and the detail query is reexecuted.

Universal Data Access Components104

© 2024 Devart

Text parameters, corresponding to the master fields, can be added to the SQL text manually.

In this case you don't need to set the MasterFields property, just set the MasterSource

property. UniDAC sets values for parameters automatically if the master dataset has fields

with the same name.

When the current record in the master is changed, the detail query is reexecuted each time.

You can avoid this by using local master/detail. Set Options.LocalMasterDetail to True for

TUniTable or TUniQuery. In this case parameters are not added to the detail query. This

query is executed only one time and returns all records. UniDAC filters these records locally

to display only records corresponding to the master record.

Unified SQL
Unified SQL includes special directives, macros, literals, and functions. You can use Unified

SQL to write SQL statements that are independent from used provider and database. There

are several ways to do it. First way is using connection macros and IF directive. UniDAC

automatically defines the macro that corresponds to the selected provider in this way. For

example, if you select Oracle provider, Oracle macros is defined. If you want to use "EMP1"

table for Oracle and "EMP2" table for SQL Server, you can assign the following to the SQL

property of TUniQuery:

{if ORACLE}
SELECT * FROM EMP1
{else}
{if SQLSERVER}
SELECT * FROM EMP2
{else}
SELECT * FROM EMP
{endif}
{endif}

To define macros at design-time, open the TUniConnection editor and select Macros page.

Fill Name and Value boxes at the bottom of the page. Then press the Add button. You can

use the added macro in IF directive or directly in SQL statements.

For example, if you define macro "EMP_TABLE" with value "EMP", you can write the following

SQL statement:

Getting Started 105

© 2024 Devart

SELECT * FROM {EMP_TABLE}

The several macros with the same name but different value and conditions can be defined.

Condition is the name of another macro. If the macro, specified in condition, is enabled, the

current macro is also enabled and its value replaces the macro name in SQL statements. If

the macro specified in condition is not enabled, the current macro is not enabled also.

The macros corresponding to the providers in Condition can be used. For example, you can

add two more macros with name "EMP_TABLE": one with Value = EMP1 and Condition =

ORACLE, another with Value = EMP2 and Condition = SQLSERVER. In this case the query

SELECT * FROM {EMP_TABLE}

is equivalent for the query with IF directives from the first example.

The Macros collection of TUniConnection can be used for macros adding at run-time:

UniConnection1.Macros.Add('EMP_TABLE', 'EMP');
UniConnection1.Macros.Add('EMP_TABLE', 'EMP1', 'ORACLE');
UniConnection1.Macros.Add('EMP_TABLE', 'EMP2', 'SQLSERVER');

Unified SQL defines unified literals for date, time and timestamp values. For example:

SELECT * FROM emp WHERE HIREDATE > {date '1982-01-15'}

For Oracle, this statement is converted to the following:

SELECT * FROM emp WHERE HIREDATE > TO_DATE('1982-01-15', 'YYYY-MM-DD')

Unified SQL supports also functions. Functions are marked in SQL statements using 'fn'

keyword. For example,

SELECT {fn TRIM(EName)} FROM emp

evaluates to

SELECT TRIM(EName) FROM emp

it is the counterpart in the DBMS. But in MS SQL Server there is no single corresponding

function, so the expression evaluates to

SELECT LTRIM(RTRIM(EName)) FROM emp

The treated article presented general definition of UniDAC components and them usage. For

detailed information please look UniDAC documentation. The UniDAC documentation

includes an useful articles and a detailed reference of all UniDAC components and classes.

Universal Data Access Components106

© 2024 Devart

If you want to download trial version of UniDAC, please visit https://www.devart.com/unidac/

download.html. For information about getting the UniDAC, visit the How to Order section. If

you have a question about UniDAC or any other Devart product, contact sales@devart.com.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

3.4 Demo Projects

UniDAC includes a number of demo projects that show off the main UniDAC functionality and

development patterns.

UniDAC demo projects consist of one large project called UniDACDemo with demos for all

main UniDAC components, use cases, and data access technologies, and a number of

smaller projects on how to use UniDAC in different IDEs and how to integrate UniDAC with

third-party components.

Most demo projects are built for Delphi. There are only two UniDAC demos for C++Builder.

However, the C++Builder distribution includes source code for all other demo projects as

well.

Where are the UniDAC demo projects located?
In most cases all UniDAC demo projects are located in "%UniDAC%\Demos\".

In Delphi 2007 for Win32 under Windows Vista all UniDAC demo projects are located in "My

Documents\Devart\UniDAC for Delphi 2007\Demos", for example, "C:\Documents and

Settings\All Users\Documents\Devart\UniDAC for Delphi 2007\Demos\".

The structure of the demo project directory depends on the IDE version you are using.

For most new IDEs the structure will be as follows.

Demos

|—UniDACDemo [The main UniDAC demo project]

|—Performance [Demo project, that compares performance of UniDAC

with another components (BDE, ADO, dbExpress)]

|—ThirdParty

| |— [A collection of demo projects on integration with third-

https://www.devart.com/unidac/download.html
https://www.devart.com/unidac/download.html
https://www.devart.com/unidac/ordering.html
mailto:sales@devart.com
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Getting Started 107

© 2024 Devart

party components]

|—Miscellaneous

 |— [Some other demo projects on design technologies]

UniDACDemo is the main demo project that shows off all the UniDAC functionality. The other

directories contain a number of supplementary demo projects that describe special use

cases. A list of all samples in the UniDAC demo project and a description for the

supplementary projects is provided in the following section.

Note: This documentation describes ALL UniDAC demo projects. The actual demo projects

you will have installed on your computer depend on your UniDAC version, UniDAC edition,

and the IDE version you are using. The integration demos may require installation of third-

party components to compile and work properly.

Instructions for using the UniDAC demo projects
To explore a UniDAC demo project,

1. Launch your IDE.

2. In your IDE, choose File|Open Project from the menu bar.

3. Find the directory you installed UniDAC to and open the Demos folder.

4. Browse through the demo project folders located here and open the project file of the demo

you would like to use.

5. Compile and launch the demo. If it exists, consult the ReadMe file for more details.

The executed version of the demo will contain a sample application written with UniDAC or a

navigable list of samples and sample descriptions. To properly use each sample, you will

need to connect to a working server.

The included sample applications are fully functional. To use the demos, you have to first set

up a connection to a server. You can do so by clicking on the "Connect" button.

Many demos may also use some database objects. If so, they will have two object

manipulation buttons, "Create" and "Drop". If your demo requires additional objects, click

"Create" to create necessary database objects. When you are done with a demo, click "Drop"

to remove all objects used for the demo from your database.

Universal Data Access Components108

© 2024 Devart

Note: The UniDAC demo directory includes two sample SQL scripts for creating and

dropping all test schema objects used in the UniDAC demos. You can modify and execute

this script manually, if you like. This will not change the behavior of the demos.

You can find a complete walkthrough for the main UniDAC demo project in the Getting Started

topic. Other UniDAC demo projects include a ReadMe file with individual building and

launching instructions.

Demo project descriptions

UniDACDemo

UniDACDemo is one large project which includes two collections of demos.

Working with components

A collection of samples that show how to work with the basic UniDAC components.

General demos

A collection of samples that show off the UniDAC technology and demonstrate some ways

to work with data.

UniDACDemo can be opened from %UniDAC%\Demos\UniDACDemo\unidacdemo.dpr

(.bdsproj, or .dproj). The following table describes all demos contained in this project.

Working with Components

Name Description

ConnectDialog

Demonstrates how to customize the UniDAC connect dialog .
Changes the standard UniDAC connect dialog to two custom connect
dialogs. The first customized sample dialog is inherited from the
TForm class, and the second one is inherited from the default
UniDAC connect dialog class.

CRDBGrid
Demonstrates how to work with the TCRDBGrid component. Shows
off the main TCRDBGrid features, like filtering, searching, stretching,
using compound headers, and more.

Query

Demonstrates working with TUniQuery , which is one of the most
useful UniDAC components. Includes many TUniQuery usage
scenarios. Demonstrates how to execute queries, edit data, and
export it to XML files, shows how to perform local filtering,
demonstrates several different kinds of record locking and refreshing,

Getting Started 109

© 2024 Devart

and working with FetchAll mode.
Note: This is a very good introductory demo. We recommend starting
here when first becoming familiar with UniDAC.

Sql
Uses TUniSQL to execute SQL statements. Demonstrates how to
work with parameters in SQL, prepare SQL statements, and create
stored procedures calls by UniDAC means.

StoredProc Uses TUniStoredProc to access editable recordsets in the client
application returned from a stored procedure.

Table

Demonstrates how to use TUniTable to work with data from a single
table on the server without manually writing any SQL queries.
Performs server-side data sorting and filtering and retrieves results
for browsing and editing.

Transaction

Demonstrates the main approaches for setting up distributed
transactions with the TUniTransaction component. Shows how to
manage transactions, tune the transaction isolation level, and select
the coordinator for a distributed transaction.

UpdateSQL
Demonstrates using the TUniUpdateSQL component to customize
update commands. Lets you optionally use TUniSQL and TUniQuery
objects for carrying out insert, delete, query, and update commands.

VirtualTable

Demonstrates working with the TVirtualTable component. This
sample shows how to fill virtual dataset with data from other datasets,
filter data by a given criteria, locate specified records, perform file
operations, and change data and table structure.

General Demos

Name Description

CachedUpdate
s

Demonstrates how to perform the most important tasks of working
with data in the CachedUpdates mode, including highlighting
uncommitted changes, managing transactions, and committing
changes in a batch.

FilterAndIndex
Demonstrates UniDAC's local storage functionality. This sample
shows how to perform local filtering, sorting , and locating by multiple
fields, including by calculated and lookup fields.

MasterDetail

Uses UniDAC functionality to work with master/detail relationships.
This sample shows how to use local master/detail functionality.
Demonstrates different kinds of master/detail linking, including linking
by SQL, by simple fields, and by calculated fields.

Pictures

Uses UniDAC functionality to work with BLOB fields and graphics.
The sample demonstrates how to retrieve binary data from database
and display it on visual components. Sample also shows how to load
and save pictures to files and to the database.

Text
Uses UniDAC functionality to work with text. The sample
demonstrates how to retrieve text data from database and display it

Universal Data Access Components110

© 2024 Devart

on visual components. Sample also shows how to load and save text
to files and to the database.

Supplementary Demo Projects
UniDAC also includes a number of additional demo projects that describe some special use

cases, show how to use UniDAC in different IDEs and give examples of how to integrate it

with third-party components. These supplementary UniDAC demo projects are sorted into

subfolders in the %UniDAC%\Demos\ directory.

Location Name Description

ThirdParty

FastReport

Demonstrates how UniDAC can be
used with FastReport components.
This project consists of two parts.
The first part is several packages
that integrate UniDAC components
into the FastReport editor. The
second part is a demo application
that lets you design and preview
reports with UniDAC technology in
the FastReport editor.

InfoPower

Uses InfoPower components to
display recordsets retrieved with
UniDAC. This demo project displays
an InfoPower grid component and
fills it with the result of a UniDAC
query. Shows how to link UniDAC
data sources to InfoPower
components.

IntraWeb

A collection of sample projects that
show how to use UniDAC
components as data sources for
IntraWeb applications. Contains
IntraWeb samples for setting up a
connection, querying a database
and modifying data and working
with CachedUpdates and
MasterDetail relationships.

QuickRepo
rt

Lets you launch and view a
QuickReport application based on
UniDAC. This demo project lets you
modify the application in design-
time.

Getting Started 111

© 2024 Devart

ReportBuil
der

Uses UniDAC data sources to
create a ReportBuilder report that
takes data from a database. Shows
how to set up a ReportBuilder
document in design-time and how to
integrate UniDAC components into
the Report Builder editor to perform
document design in run-time.

Miscellaneous

CBuilder

A general demo project about how to
create UniDAC-based applications
with C++Builder. Lets you execute
SQL scripts and work with result sets
in a grid. This is one of the two
UniDAC demos for C++Builder.

Dll

Demonstrates creating and loading
DLLs for UniDAC-based projects.
This demo project consists of two
parts - a UniDll project that creates a
DLL of a form that sends a query to
the server and displays its results,
and a UniExe project that can be
executed to display a form for
loading and running this DLL. Allows
you to build a dll for one UniDAC-
based project and load and test it
from a separate application.

FailOver

Demonstrates the recommended
approach to working with unstable
networks. This sample lets you
perform transactions and updates in
several different modes, simulate a
sudden session termination, and
view what happens to your data state
when connections to the server are
unexpectedly lost. Shows off
CachedUpdates, LocalMasterDetail,
FetchAll, Pooling, and different
Failover modes.

Midas

Demonstrates using MIDAS
technology with UniDAC. This
project consists of two parts: a
MIDAS server that processes
requests to the database and a thin
MIDAS client that displays an
interactive grid. This demo shows

Universal Data Access Components112

© 2024 Devart

how to build thin clients that display
interactive components and
delegate all database interaction to
a server application for processing.

VirtualTabl
eCB

Demonstrates working with the
TVirtualTable component. This
sample shows how to fill virtual
dataset with data from other
datasets, filter data by a given
criteria, locate specified records,
perform file operations, and change
data and table structure. This is one
of the two demo projects for C+
+Builder.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

3.5 Deployment

UniDAC applications can be built and deployed with or without runtime libraries. You can

dynamically load packages by choosing Link with runtime packages in the Project Options

dialog box. In earlier versions of Delphi, the option is called Build with runtime packages.

Deploying Windows Applications Built Without Runtime
Packages
It is not required to deploy any files with a UniDAC application built without runtime packages,

provided you have UniDAC Standard or Professional Edition. Make sure that your application

does not use runtime packages (Link with runtime packages is not selected).

Trial Limitation Warning

If you are deploying a UniDAC Trial application, these UniDAC libraries and their

dependencies are required even when your application is built without runtime packages (XX

depends on the version of your IDE).

dacXX.bpl mandatory
unidacXX.bpl mandatory
rtlXX.bpl mandatory
dbrtlXX.bpl mandatory

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Getting Started 113

© 2024 Devart

vcldbXXX.bpl mandatory

Deploying Windows Applications Built with Runtime
Packages
You can build applications with runtime packages by selecting Link with runtime packages in

Project Options before compiling the application. You must deploy these BPL files with your

application (XX depends on the version of your IDE or the name of the provider).

dacXX.bpl mandatory
unidacXX.bpl mandatory
XXproviderXX.b
pl

for each necessary provider

dacvclXX.bpl if an application uses the UniDacVcl unit

unidacvclXX.bp
l

if an application uses the UniDacVcl unit

dacfmxXX.bpl if an application uses the UniDacFmx unit

unidacfmxXX.bp
l

if an application uses the UniDacFmx unit

XXdacXX.bpl for each necessary provider (only in Express Edition)

crcontrolsXX.b
pl

if an application uses the CRDBGridcomponent

tdsproviderXX.
bpl

if an application connects in the Direct mode

odbcproviderXX
.bpl

if an application connects through an ODBC driver

vqueryXX.bpl if an application connects to DBF files

If you have UniDAC Express Edition, you must deploy XdacXX.bpl with your application

because in Express Edition, XXproviderXX.bpl is just a wrapper around XdacXX.bpl. It is not

required to deploy the XdacXX.bpl file with the application if you have UniDAC Professional or

Standard Edition because the XXproviderXX.bpl file already includes the functionality of

XdacXX.bpl.

Note that UniDAC Trial requires deployment of additional BPL files regardless of Link with

runtime packages.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components114

© 2024 Devart

4 Using UniDAC

This section describes the basics of using Universal Data Access Components

Connecting to Database

Updating data with UniDAC

Master/Detail Relationships

Data Types

Data Type Mapping

Data Encryption

Working in an Unstable Network

Disconnected Mode

Increasing Performance

Macros

Connection Pooling

DataSet Manager

Network Tunneling

Executing Stored Procedures

Transactions

Unified SQL

DBMonitor

Writing GUI Applications with UniDAC

Compatibility with Previous Versions

64-bit Development with Embarcadero RAD Studio XE2

Database Specific Aspects of 64-bit Development

Demo Projects

Deployment

С++ Builder Development for Android and iOS

© 1997-2024 Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Using UniDAC 115

© 2024 Devart

Devart. All Rights
Reserved.

4.1 Connecting to Database

This topic describes the procedure of connecting to databases with different providers, and

meaning of connection parameters.

Common connection properties

Provider

Username and Password

Server

Database

Port

Provider-specific properties

Oracle

SQL Server

MySQL

InterBase

PostgregSQL

SQLite

Common connection properties
Each database server requires its own set of parameters for connection (username,

password, etc.). Some of the parameters are the same for several servers, but the parameter

meaning may vary depending on the server. UniDAC provides all types of parameters for

supported database servers. If a parameter is not used for a certain provider, it will be

disabled in the connection dialog and not used for connection. UniDAC supports the following

parameters:

Provider

This is the first parameter that should be set. It specifies the provider that will be used for

connection, and other parameters that will be available.

Universal Data Access Components116

© 2024 Devart

Username and Password

These properties are used for each database provider to authenticate the client application.

Server

Commonly this property is used to provide the name or the IP address of the computer in the

network on which the database sever is located. If the Server property is empty for SQL

Server, MySQL, and InterBase providers, UniDAC will try to connect to localhost.

Oracle - in the Client mode you should specify the server name which appears in the

tnsnames.ora configuration file. You can also set the HomeName option to specify which of

the installed clients to use in the Client mode.

If you are connecting to the Oracle server in the Direct mode, value of the Server property

should be assigned in special format: Host:Port:SID. Host is the server's IP address or

DNS name, Port is the port number that the server listens to, SID is the Oracle System

Identifier of the server.

SQL Server - you should specify the computer name or IP address of the computer in the

network which is running SQL Server. If your SQL Server uses a port different from the

default one, you can connect to it specifying the port number in the following way:

HostName,PortNumber.

ASE, MySQL, and PostgreSQL - you should specify the computer name or IP address of

the computer in the network which is running database server.

ODBC - you should specify ODBC data source name (DSN), name of a file with data

source information (File DSN), or ODBC connection string

DB2 - you should specify the database name to the Server property

Database

This property is used for Access, Advantage, SAP Sybase ASE, DBF, InterBase, MySQL,

NexusDB, PostgreSQL, SQL Server, and SQLite providers. It specifies initial database for the

connection. On SAP Sybase ASE, MySQL, and SQL Server the Database value can be

changed when the connection is active without reconnect. If the Database is not assigned,

the behaviour of UniDAC will depend on the selected provider:

MySQL - the current database will not be selected. It means that you will need to explicitly

Using UniDAC 117

© 2024 Devart

specify the database name in your queries.

SQL Server and ASE - the default database for the current SQL Server login will be used as

a default database for the connection. For connecting to SQL Server Compact Edition this

property is used to provide the database file name.

Port

This property is used for SAP Sybase ASE, MySQL, and PostgreSQL providers. It specifies

the port number for TCP/IP connection.

MySQL - The default value is 3306.

PostgreSQL - The default value is 5432.

ASE - The default value is 5000.

Provider-specific properties
Along with the connection options described above, there are several specific options that

manage connection behaviour for each provider. These options are described in the Provider-

specific Notes articles for each provider: Oracle, SQL Server, MySQL, InterBase,

PostgreSQL, and SQLite. Open the article that corresponds to the provider you are interested

in, and find the specific options description for TUniConnection in the article. Several

important specific connection options will be described below.

Oracle

With the Oracle provider you can connect to the server in two modes: the Client mode, and

the Direct mode. Connecting in the Client mode requires Oracle client to be installed on the

client computer. Connecting in the Direct mode does not require Oracle client, however, this

mode has certain limitations. For more information, refer to the Connecting in Direct mode

section in the article Using UniDAC with Oracle.

SQL Server

The SQL Server provider can connect through one of the three client types that can be

changed using the OLEDBProvider specific option of TUniConnection. By default this option

is set to prAuto. This value means that the provider will try to open the SQL Native Provider

first. If this provider is not available, the OLE DB provider will be opened. In order to connect to

SQL Server Compact Edition, the OLEDBProvider option must be set to prCompact. This

Universal Data Access Components118

© 2024 Devart

value gives effect to all specific options which names start with Compact. The version of SQL

Server Compact Edition to be used should be specified in the CompactVersion specific

option. By default version of SQL Server Compact Edition will be chosen in accordance with

the database file version. If the file does not exist, or the file is not a valid database file, the

CompactVersion option will be used to determine which server version to load.

MySQL

The MySQL provider can connect to MySQL server directly or using the client library

libmysqld.dll. This behaviour is controlled by the Direct specific option. By default, Direct is

set to True. If you switch Direct to False, you will need to deploy libmysqld.dll with your

application.

In order to connect to a database with MySQL Embedded server, you should switch the value

of the Embedded specific option to True. Its default value is False. If Embedded is set to True,

the value of Direct is ignored. The Embedded Server library with the share directory should be

deployed with the application. The path to data should be specified in the configuration file of

Embedded Server.

InterBase

The InteBase provider can connect to the server through such network protocols as TCP/IP,

NetBEUI, and SPX. The network protocol that will be used for the connection can be specified

with the Protocol specific option.

PostgreSQL

The PostgreSQL provider connects to PostgreSQL server directly and does not use the

PostgreSQL client library.

SQLite

The SQLite provider can connect to DB using SQLite client library SQLite3. You can use

either an external SQLite3 library or embedded SQLite3 engine.This behaviour is controlled by

theoption. By default Direct is set to False and in this case the SQLite provider searches a

client library in directories specified in the PATH environment variable. SQLite can create the

database file automatically if it does not exist. For this the ForceCreateDatabase specific

option should be used.

© 1997-2024 Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Using UniDAC 119

© 2024 Devart

Devart. All Rights
Reserved.

4.2 Updating data with UniDAC

This topic describes common approaches to data edit with dataset components of UniDAC.

Automatic data updating

Extended setup of data updating

Caching updates

Default values/expressions

Autoincrement values generating

Getting newest data on time

Automatic data updating

TUniTable, TUniQuery, and TUniStoredProc are UniDAC components that allow retrieving

and editing data. To edit data with each of the components, specify key field names in the

KeyFields property. If KeyFields is an empty string, Oracle, PostgreSQL, InterBase, SQLite,

and all ODBC-based providers will try to request information about primary keys from the

server sending an additional query (this may negatively affect the performance). SQL Server

and MySQL providers will use the metainformation sent by the server together with data. The

SQL Server provider has the UniqueRecords option that allows automatically requesting

primary key fields from the table if they were omitted in the query.

If the dataset to be opened has no fields that uniquely identify a record, this problem can be

solved with Oracle, Firebird 2.0, PostgreSQL, and SQLite servers by the server means. With

the Oracle and SQLite servers you should add the RowID column to your query. With Firebird

2.0 - DB_KEY. With PostgreSQL server OID column can be used as key field if your table is

created with OIDs. More information about these fields you will find in the documentation of

the correspondent server.

Extended setup of data updating

For a dataset having data from several tables, only one table will be updatable by default. You

should specify the table name to be updatable in the UpdatingTable property, otherwise the

table to which belongs the first field in the field list will be updatable. If the SetFieldsReadOnly

option is set to True (by default), fields that are not used in automatically generated update

Universal Data Access Components120

© 2024 Devart

SQL statements are marked read-only. With the Oracle, PostgreSQL, and all ODBC-based

providers for complicated queries (statements that use multiple tables, Synonyms, DBLinks,

aggregated fields) we recommend to keep the ExtendedFieldsInfo option enabled.

If Insert/Post, Update, or RefreshRecord operation has affected more than one record,

UniDAC raises an exception. To suppress such exceptions, you should set the StrictUpdate

option to False.

For more flexible control over data modifications you can fill update SQL statements. They

are represented by the SQLInsert, SQLUpdate, SQLDelete, and SQLRefresh properties and

are executed automatically on Insert/Post, Edit/Post, Delete, and Refresh operations. At

design-time you can generate default update SQL statements at the SQL Generator tab in

component editor. The generated statements can be modified corresponding your needs. But

if the update queries are generated dynamically for each record, only changed values are sent

to the server.

For some particular cases this functionality is not enough. It can be extended with the

TUniUpdateSQL component. TUniUpdateSQL allows associating a separate TUniSQL/

TUniQuery/TUniStoredProc component for each update operation.

Caching updates

UniDAC allows caching updates at the client (so-called Cashed Updates mode), and then

post all updates in a batch. It means that changes are not reflected at the server immediately

after calling Post or Delete. All cached changes are posted to the server after calling the

ApplyUpdates method. The UpdateBatchSize option lets setting up the number of changes to

be posted at the same time.

Default values/expressions

If you have defined default values or expressions for columns in a database table, you can

setup UniDAC so that it requests these expressions from the server. These expressions will

be assigned to the DefaultExpression property of TField objects. If the DefaultExpression

values have already been filled, they are replaced. This behaviour is controlled by the

DefaultValues option, which is disabled by default.

Autoincrement values generating

When editing a dataset, it is often convenient not to fill key field values manually but

Using UniDAC 121

© 2024 Devart

automatically generate them. There are three ways to do it.

The first way, the most usable one, is to use server means for automatic generating of the

key field values.

SQL Server, MySQL, and SQLite allow defining autoincrement columns in the table. This

does not require additional handling at the client. For SAP Sybase ASE, Oracle, PostgreSQL,

and InterBase providers it is necessary to specify the KeySequence (KeyGenerator for

InterBase) specific option. Automatically generated values are reflected in the dataset

automatically.

The second way is to generate and fill the key field value in the BeforePost event handler. As

a rule this way requires executing a query to retrieve some information from the server. So

this way may be useful only in some particular cases.

The third way is to create the AFTER INSERT trigger that fills the field with the appropriate

value. But there is a problem with returning the value generated by the trigger. Although this

problem can be solved (see the next paragraph in this topic), this approach is considered

nonoptimal. So try choosing another approach if possible.

However, retrieving generated values can be disabled for SQL Server provider with the

QueryIdentity specific option. This should increase performance of records inserting.

Getting newest data on time

For certain situations UniDAC allows automatically refreshing records in the dataset in order

to keep their values up-to-date.

With RefreshOptions you can make UniDAC refresh the current record before editing, after

inserting or deleting. It is done by executing an additional query.

The DMLRefresh option allows refreshing the current record after insert or update similarly to

RefreshOptions, but it works in a different way. This allows achieving higher performance

than with RefreshOptions. DMLRefresh is not supported by the MySQL, SQLite, and ODBC-

based providers.

If you want to control which fields of the current record need to be refreshed after insert or

update, you should do the following: define in your update queries output parameters with

names that correspond the field names in your dataset, and set the ReturnParams option to

True. After the update query has been executed, dataset reads values of the output

Universal Data Access Components122

© 2024 Devart

parameters and puts them into fields with the correspondent names.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

4.3 Master/Detail Relationships

Master/detail (MD) relationship between two tables is a very widespread one. So it is very

important to provide an easy way for database application developer to work with it. Lets

examine how UniDAC implements this feature.

Suppose we have classic MD relationship between "Department" and "Employee" tables.

"Department" table has field Dept_No. Dept_No is a primary key.

"Employee" table has a primary key EmpNo and foreign key Dept_No that binds "Employee"

to "Department".

It is necessary to display and edit these tables.

UniDAC provides two ways to bind tables. First code example shows how to bind two

TCustomUniDataSet components into MD relationship via parameters.

procedure TForm1.Form1Create(Sender: TObject);
var
 Master, Detail: TUniQuery;
 MasterSource: TDataSource;
begin
 // create master dataset
 Master := TUniQuery.Create(Self);
 Master.SQL.Text := 'SELECT * FROM Department';
 // create detail dataset
 Detail := TUniQuery.Create(Self);
 Detail.SQL.Text := 'SELECT * FROM Employee WHERE Dept_No = :Dept_No';
 // connect detail dataset with master via TDataSource component
 MasterSource := TDataSource.Create(Self);
 MasterSource.DataSet := Master;
 Detail.MasterSource := MasterSource;
 // open master dataset and only then detail dataset
 Master.Open;
 Detail.Open;
end;

Pay attention to one thing: parameter name in detail dataset SQL must be equal to the field

name or the alias in the master dataset that is used as foreign key for detail table. After

opening detail dataset always holds records with Dept_No field value equal to the one in the

current master dataset record.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Using UniDAC 123

© 2024 Devart

There is an additional feature: when inserting new records to detail dataset it automatically fills

foreign key fields with values taken from master dataset.

Now suppose that detail table "Department" foreign key field is named DepLink but not

Dept_No. In such case detail dataset described in above code example will not autofill

DepLink field with current "Department".Dept_No value on insert. This issue is solved in

second code example.

procedure TForm1.Form1Create(Sender: TObject);
var
 Master, Detail: TUniQuery;
 MasterSource: TDataSource;
begin
 // create master dataset
 Master := TUniQuery.Create(Self);
 Master.SQL.Text := 'SELECT * FROM Department';
 // create detail dataset
 Detail := TUniQuery.Create(Self);
 Detail.SQL.Text := 'SELECT * FROM Employee';
 // setup MD
 Detail.MasterFields := 'Dept_No'; // primary key in Department
 Detail.DetailFields := 'DepLink'; // foreign key in Employee
 // connect detail dataset with master via TDataSource component
 MasterSource := TDataSource.Create(Self);
 MasterSource.DataSet := Master;
 Detail.MasterSource := MasterSource;
 // open master dataset and only then detail dataset
 Master.Open;
 Detail.Open;
end;

In this code example MD relationship is set up using MasterFields and DetailFields properties.

Also note that there are no WHERE clause in detail dataset SQL.

To defer refreshing of detail dataset while master dataset navigation you can use DetailDelay

option.

Such MD relationship can be local and remote, depending on the

TCustomDADataSet.Options.LocalMasterDetail option. If this option is set to True, dataset

uses local filtering for establishing master-detail relationship and does not refer to the server.

Otherwise detail dataset performs query each time when record is selected in master

dataset. Using local MD relationship can reduce server calls number and save server

resources. It can be useful for slow connection. CachedUpdates mode can be used for detail

dataset only for local MD relationship. Using local MD relationship is not recommended when

detail table contains too many rows, because in remote MD relationship only records that

correspond to the current record in master dataset are fetched. So, this can decrease

Universal Data Access Components124

© 2024 Devart

network traffic in some cases.

See Also
TCustomDADataSet.Options

TMemDataSet.CachedUpdates

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

4.4 Data Types

This topic describes in what way server data types are mapped to the Delphi field types and

demonstrates common approaches for working with large data types.

The table below represents the server data types mapped to certain Delphi field types by

default. There are several options that change the default mapping. These changes are

reflected in the table as footnotes.

Delp
hi
Type

Oracl
e
Type
s

SQL
Serv
er
Type
s

MyS
QL
Type

s [1]

Inter
Base
Type
s

Post
greS
QL
Type
s

SQLit
e
Type
s

ODB
C
Type
s

DB2
Type
s

Acce
ss
Type
s

Adva
ntage
Type
s

SAP
Syba
se
ASE
Type
s

Nexu
sDB

ftSm
alli
nt

NUMB
ER(p
, 0)
[2]
(p <
5)

SMAL
LINT

TINY
INT(
M)
(M >
1)
SMAL
LINT

SMAL
LINT

SMAL
LINT

TINY
INT
SMAL
LINT

SQL_
SMAL
LINT

SMAL
LINT

SMAL
LINT

SHOR
T

SMAL
LINT

SHOR
TINT
,
SMAL
LINT

ftWo
rd

-
TINY
INT

TINY
INT(
M)
UNSI
GNED
(M >
1)
SMAL
LINT
UNSI
GNED

- - -
SQL_
TINY
INT

- BYTE -
TINY
INT

WORD
,
BYTE
,
TINY
INT

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Using UniDAC 125

© 2024 Devart

YEAR

ftIn
tege
r

NUMB
ER(p
, 0)
[2]
(4 <
p <
10)

INT

MEDI
UMIN
T
MEDI
UMIN
T
UNSI
GNED
INT

INTE
GER

INTE
GER

INTE
GER
INT

SQL_
INTE
GER

INTE
GER

INTE
GER

INTE
GER

INT

INTE
GER,
AUTO
INC,
RECR
EV

ftLa
rgei
nt

NUMB
ER(p
, 0)
[2]
(9 <
p <
19)

BIGI
NT

BIT
INT
UNSI
GNED
BIGI
NT
BIGI
NT
UNSI
GNED

BIGI
NT

BIGI
NT

BIGI
NT

SQL_
BIGI
NT

BIGI
NT

- -
BIGI
NT

LARG
EINT
,
DWOR
D

ftFl
oat

NUMB
ER(p
, s)
[2]
BINA
RY
FLOA
T(FL
OAT)
BINA
RY
DOUB
LE

DECI
MAL(
p,
s)
[3]
FLOA
T
REAL

DECI
MAL(
p,
s)
[3]
FLOA
T
DOUB
LE

NUMB
ER(p
, s)
[3]
FLOA
T
DOUB
LE
PREC
ISIO
N

DECI

MAL[

3]
REAL
DOUB
LE
PREC
ISIO
N

DECI
MAL(
p,
s)
[3]
FLOA
T
DOUB
LE
PREC
ISIO
N

SQL_
DECI
MAL(
p,
s)
SQL_
NUME
RIC(
p,
s)
SQL_
REAL
SQL_
FLOA
T
SQL_
DOUB
LE

DECI
MAL(
p,
s)
REAL
DOUB
LE

DECI
MAL(
p,
s)
DOUB
LE

DECI
MAL(
p,
s)
DOUB
LE
CURD
OUBL
E
MONE
Y

DECI
MAL(
p,
s)
[3]
FLOA
T
REAL
MONE
Y
SMAL
LMON
EY

FLOA
T,
DOUB
LE
PREC
ISIO
N,
EXTE
NDED

ftBC
D

NUMB
ER(p
, s)
[2]
(p <
15)
and

DECI
MAL(
p,
s)
[3]
(p <
15)

DECI
MAL(
p,
s)
[3]
(p <
15)

DECI
MAL(
p,
s)
[3]
(p <
15)

DECI

MAL[

3]

DECI

MAL[

3]

SQL_
DECI
MAL
SQL_
NUME
RIC

DECI
MAL

DECI
MAL

DECI
MAL
CURD
OUBL
E
MONE
Y

DECI

MAL[

3]
MONE
Y
SMAL
LMON

DECI
MAL

Universal Data Access Components126

© 2024 Devart

(s <
5)

and
(s <
5)

and
(s <
5)

and
(s <
5)

EY

ftFM
TBcd

NUMB
ER(p
, s)
[2]
(14
< p
<
39)
and>
(4 <
s <
39)

DECI
MAL(
p,
s)
(14
< p
<
39)
and
(4 <
s <
39)

DECI
MAL(
p,
s)
[3]
(14
< p
<
39)
and
(4 <
s <
39)

DECI
MAL(
p,
s)
[3]
(14
< p
<
19)
and
(4 <
s <
19)

DECI

MAL[

3]

DECI

MAL[

3]

SQL_
DECI
MAL
SQL_
NUME
RIC

DECI
MAL

DECI
MAL

DECI
MAL
CURD
OUBL
E
MONE
Y

DECI

MAL[

3]
MONE
Y
SMAL
LMON
EY

-

ftCu
rren
cy

-

MONE
Y
SMAL
LMON
EY

- -
MONE
Y

MONE
Y

- - - - -
MONE
Y

ftBo
olea
n

- BIT

TINY

INT[

4]
BOOL
[4]
BOOL

EAN[

4]

BOOL
EAN

BOOL
EAN

BOOL
EAN

SQL_
BIT

-
BOOL
EAN

LOGI
CAL

BIT
BOOL
EAN

ftSt
ring

VARC
HAR2
NVAR
CHAR
2
VARC
HAR
CHAR
NCHA
R

RAW[

5]
INTE
RVAL
DAY

CHAR
VARC
HAR

CHAR
VARC
HAR
ENUM
SET
BINA

RY[6

]
VARB
INAR

Y[6]

CHAR
VARC
HAR

CHAR
VARC
HAR

CHAR
VARC
HAR

SQL_
CHAR
SQL_
VARC
HAR

CHAR
VARC
HAR

TEXT

CHAR
CICH
AR
VARC
HAR

CHAR
VARC
HAR
NCHA
R
NVAR
CHAR

VARC
HAR,
NULL
STRI
NG,
SHOR
TSTR
ING,
CHAR
,
SING
LECH
AR

Using UniDAC 127

© 2024 Devart

TO
SECO
ND
INTE
RVAL
DAY
TO
MONT
H
ROWI
D
UROW
ID

ftWi
deSt
ring

See
note
[7]

NCHA
R
NVAR
CHAR

See
note
[7]

See
note
[7]

See
note
[7]

See
note
[7]

SQL_
WCHA
R
SQL_
WVAR
CHAR
Aslo
See
note
[7]

GRAP
HIC
VARG
RAPH
IC
Also
See
note
[7]

See
note
[7]

See
note
[7]

UNIC
HAR
UNIV
ARCH
AR
Aslo
See
note
[7]

NSIN
GLEC
HAR,
NCHA
R,
NVAR
CHAR

ftMe
mo

LONG
Also
see
note
[8]

TEXT
NTEX

T[9]

TINY
TEXT
TEXT
MEDI
UMTE
XT
LONG
TEXT

BLOB
TEXT

TEXT
TEXT
CLOB

SQL_
LONG
VARC
HAR

LONG
VARC
HAR
CLOB

MEMO MEMO TEXT
TEXT
CLOB

ftWi
deMe
mo

See
note
[10]

NTEX

T[11

]

See
note
[10]

See
note
[10]

See
note
[10]

See
note
[10]

SQL_
WLON
GVAR
CHAR
See
note
[10]

LONG
VARG
RAPH
IC
DBCL
OB
See
note
[10]

See
note
[10]

See
note
[10]

UNIT
EXT
Also
See
note
[10]

NCLO
B

ftOr
aClo
b

CLOB
NCLO
B

- - - - - - - - - -
NCLO
B

ftBl
ob

LONG
RAW

IMAG
E

TINY
BLOB

BLOB
BINA

BYTE
A

BLOB
SQL_
LONG

LONG
VARC

- BLOB
IMAG
E

BLOB
,

Universal Data Access Components128

© 2024 Devart

BLOB
MEDI
UMBL
OB
LONG
BLOB
Spat
ial
Data
Type
s

RY
VARB
INAR
Y

HAR
FOR
BIT
DATA
BLOB

IMAG
E

ftOr
aBlo
b

BLOB - - -

LARG
E
OBJE
CT

- - - - - - -

ftBy
tes

-

BINA
RY
TIME
STAM
P

BINA
RY

- - -
SQL_
BINA
RY

CHAR
FOR
BIT
DATA

- RAW
BINA
RY

BYTE
ARRA
Y

ftVa
rByt
es

RAW
VARB
INAR
Y

VARB
INAR
Y

CHAR
VARC
HAR
(CHA
RSET
=
OCTE
TS)

-

BINA
RY
VARB
INAR
Y

SQL_
VARB
INAR
Y

VARC
HAR
FOR
BIT
DATA

-
VARB
INAR
Y

VARB
INAR
Y

-

ftDa
te

- - DATE DATE DATE DATE

SQL_
TYPE
_DAT
E

DATE - DATE - DATE

ftDa
teTi
me

DATE DATE
DATE
TIME

TIME
STAM
P

TIME
STAM
P

TIME
STAM
P
DATE
TIME

SQL_
TYPE
_TIM
ESTA
MP

TIME
STAM
P

DATE
TIME
STAM
P

DATE
DATE
TIME

ftTi
me

- - TIME TIME TIME TIME

SQL_
TYPE
_TIM
E

TIME - TIME - TIME

ftTi
meSt
amp

TIME
STAM
P
TIME

- - - - - - - - - - -

Using UniDAC 129

© 2024 Devart

STAM
P
WITH
TIME
ZONE

ftCu
rsor

REF
CURS
OR

- - -
REFC
URSO
R

- - - - - - -

ftGu
id

-

UNIQ
UEID
ENTI
FIER

- - - - - - - - - GUID

ftVa
rian
t

-
SQL_
VARI
ANT

- - - - - - - - - -

NOT
SUPP
ORTE
D

BFIL
E
OBJE
CT
XML

CURS
OR
XML
TABL
E

- - - -

SQL_
TYPE
_UTC
DATE
TIME
SQL_
TYPE
_UTC
TIME
SQL_
INTE
RVAL
SQL_
GUID

- - - - -

[1] - If the FieldsAsString option is True, all fields except BLOB and TEXT fields are mapped

to ftString

[2] - The Oracle provider maps the NUMBER data type with different precision and scale to

certain Delphi types depending on the provider options in the following way:

1. if scale equals zero, provider checks values of the specific options to choose the

correct Delphi type in the following order:

1.1 field precision is less or equal PrecisionSmallint (default is 4) - uses ftSmallint;

1.2 field precision is less or equal PrecisionInteger (default is 9) - uses ftInteger;

1.3 field precision is less or equal PrecisionLargeInt (default is 18) - uses ftLargeint;

Universal Data Access Components130

© 2024 Devart

2. if scale is greater than zero, the appropriate Delphi type is chosen using the

following sequence of rules:

.

2.1 field precision is less or equal PrecisionFloat (default is 0) - uses ftFloat;

2.2 EnableBCD is True and field precision, scale is less or equal PrecisionBCD (default is

14,4) - uses ftBCD;

2.3 EnableFMTBCD is True and field precision, scale is less or equal PrecisionFMTBCD

(default is 38,38) - uses ftFMTBCD;

2.4 uses ftFloat.

[3] - The appropriate Delphi type is chosen using the following sequence of rules:

1. EnableBCD is True and field precision, scale is less or equal 14,4 - uses ftBCD.

When using InterBaseUniProvider, set the SimpleNumericMap option to False;

2. EnableFMTBCD is True - uses ftFMTBCD;

3. uses ftFloat.

[4] - If the EnableBoolean option is True

[5] - If the RawAsString option is True

[6] - If the BinaryAsString is True

[7] - If the UseUnicode option is True, all server types mapped to ftString will be mapped to

ftWideString.

[8] - If the LongStrings option is False, and the field length is greater than 255, all server types

mapped to ftString will be mapped to ftMemo.

[9] - For all Delphi versions prior to BDS 2006.

[10] - If the UseUnicode option is True, in BDS 2006 and later versions all server types

mapped to ftMemo will be mapped to ftWideMemo.

[11] - For BDS 2006 and higher IDE versions.

Working with large objects

Server field types used to store large objects (BLOB, LOB, TEXT, etc.) are represented in

Delphi as TBlobField and TMemoField. The TWideMemoField field was added in Delphi 2006.

TBlobField is used to store binary objects.

Using UniDAC 131

© 2024 Devart

TMemoField is used to store single-byte and multibyte character data using database

character set.

TWideMemoField is used to store Unicode (UTF-16) data.

Generally there is no difference in working with these three field types in UniDAC. The

Pictures and Text demos demonstrate working with datasets that contain TBlobField and

TMemoField. If you want to insert a BLOB value into a table directly (without opening a

dataset), please take a look at the example below. It demonstrates inserting a new record

into the UniDAC_BLOB table with the TUniSQL component:

UniSQL.SQL.Text := 'INSERT INTO UniDAC_BLOB(ID, Title, Picture) VALUES (1, ''A new picture'', :BLOBValue)'
UniSQL.ParamByName('BLOBValue').LoadFromFile('World.bmp', ftBlob);
UniSQL.Execute;

If a BLOB value must be formed in you program, without using a file, and inserted into a field,

you can use the LoadFromStrem method:

var
 Stream: TStringStream;
begin
 Stream := TStringStream.Create('');
 try
 Stream.WriteString('The first line' + #13#10);
 Stream.WriteString('The second line');
 UniSQL.SQL.Text := 'INSERT INTO UniDAC_Text(ID, Title, TextField) VALUES (1, ''A new text value'', :TEXTValue)';
 UniSQL.ParamByName('TEXTValue').LoadFromStream(Stream, ftMemo);
 UniSQL.Execute;
 finally
 Stream.Free;
 end;

A BLOB values can be retrieved from the server in two ways. The first way is using a

SELECT query from the table containing a BLOB field:

UniQuery.SQL.Text := 'SELECT TextField FROM UniDAC_Text WHERE ID = 1';
UniQuery.Open;
(UniQuery.FieldByName('TextField') as TBlobField).SaveToFile('A_file_name');
UniQuery.Close;

The second way is to use output parameters like in the following example. Note that the query

may differ depending on your database server.

UniSQL.SQL.Text := 'SELECT :TEXTValue = TextField FROM UniDAC_Text WHERE ID = 1';
UniSQL.ParamByName('TEXTValue').ParamType := ptOutput;
UniSQL.Execute;
ShowMessage(UniSQL.ParamByName('TEXTValue').AsString);

See Also

Universal Data Access Components132

© 2024 Devart

TUniBlob

Pictures demo

Text demo

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

4.5 Data Type Mapping

Overview
Data Type Mapping is a flexible and easily customizable gear, which allows mapping

between DB types and Delphi field types.

In this article there are several examples, which can be used when working with all supported

DBs. In order to clearly display the universality of the Data Type Mapping gear, a separate DB

will be used for each example.

Data Type Mapping Rules
In versions where Data Type Mapping is not supported, UniDAC automatically sets the

correspondence between the DB data types and Delphi field types. DB data types can be

manually mapped to Delphi field types using the constants for Oracle, InterBase/Firebird,

MySQL, PostgreSQL, SQL Server, SQLite, SQLite, MS Access, Advantage DB Server, SAP

ASE, DB2, DBF, MongoDB, NexusDB, ODBC.

Here is an example with the numeric type in the following table of a PostgreSQL database:

CREATE TABLE numeric_types
(
 id integer NOT NULL,
 value1 numeric(5,2),
 value2 numeric(10,4),
 value3 numeric(15,6),
 CONSTRAINT pk_numeric_types PRIMARY KEY (id)
)

And Data Type Mapping should be used so that:

the numeric fields with Scale=0 in Delphi would be mapped to one of the field types:

TSmallintField, TIntegerField or TlargeintField, depending on Precision

to save precision, the numeric fields with Precision>=10 and Scalе<= 4 would be mapped

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Using UniDAC 133

© 2024 Devart

to TBCDField

and the numeric fields with Scalе>= 5 would be mapped to TFMTBCDField.

The above in the form of a table:

PostgreSQl data type Default Delphi field type
Destination Delphi field
type

numeric(4,0) ftFloat ftSmallint

numeric(10,0) ftFloat ftInteger

numeric(15,0) ftFloat ftLargeint

numeric(5,2) ftFloat ftFloat

numeric(10,4) ftFloat ftBCD

numeric(15,6) ftFloat ftFMTBCD

To specify that numeric fields with Precision <= 4 and Scale = 0 must be mapped to

ftSmallint, such a rule should be set:

var
 DBType: Word;
 MinPrecision: Integer;
 MaxPrecision: Integer;
 MinScale: Integer;
 MaxScale: Integer;
 FieldType: TfieldType;
begin
 DBType := pgNumeric;
 MinPrecision := 0;
 MaxPrecision := 4;
 MinScale := 0;
 MaxScale := 0;
 FieldType := ftSmallint;
 PgConnection.DataTypeMap.AddDBTypeRule(DBType, MinPrecision, MaxPrecision, MinScale, MaxScale, FieldType);
end;

This is an example of the detailed rule setting, and it is made for maximum

visualization.Usually, rules are set much shorter, e.g. as follows:

// clear existing rules
PgConnection.DataTypeMap.Clear;
// rule for numeric(4,0)
PgConnection.DataTypeMap.AddDBTypeRule(pgNumeric, 0, 4, 0, 0, ftSmallint);
// rule for numeric(10,0)
PgConnection.DataTypeMap.AddDBTypeRule(pgNumeric, 5, 10, 0, 0, ftInteger);
// rule for numeric(15,0)
PgConnection.DataTypeMap.AddDBTypeRule(pgNumeric, 11, rlAny, 0, 0, ftLargeint);
// rule for numeric(5,2)
PgConnection.DataTypeMap.AddDBTypeRule(pgNumeric, 0, 9, 1, rlAny, ftFloat);
// rule for numeric(10,4)
PgConnection.DataTypeMap.AddDBTypeRule(pgNumeric, 10, rlAny, 1, 4, ftBCD);

Universal Data Access Components134

© 2024 Devart

// rule for numeric(15,6)
PgConnection.DataTypeMap.AddDBTypeRule(pgNumeric, 10, rlAny, 5, rlAny, ftFMTBcd);

Rules order
When setting rules, there can occur a situation when two or more rules that contradict to

each other are set for one type in the database. In this case, only one rule will be applied —

the one, which was set first.

For example, there is a table in an Oracle database:

CREATE TABLE NUMBER_TYPES
(
 ID NUMBER NOT NULL,
 VALUE1 NUMBER(5,2),
 VALUE2 NUMBER(10,4),
 VALUE3 NUMBER(15,6),
 CONSTRAINT PK_NUMBER_TYPES PRIMARY KEY (id)
)

TBCDField should be used for NUMBER(10,4), and TFMTBCDField - for NUMBER(15,6)

instead of default fields:

Oracle data type Default Delphi field type Destination field type

NUMBER(5,2) ftFloat ftFloat

NUMBER(10,4) ftFloat ftBCD

NUMBER(15,6) ftFloat ftFMTBCD

If rules are set in the following way:

OraSession.DataTypeMap.Clear;
OraSession.DataTypeMap.AddDBTypeRule(oraNumber, 0, 9, rlAny, rlAny, ftFloat);
OraSession.DataTypeMap.AddDBTypeRule(oraNumber, 0, rlAny, 0, 4, ftBCD);
OraSession.DataTypeMap.AddDBTypeRule(oraNumber, 0, rlAny, 0, rlAny, ftFMTBCD);

it will lead to the following result:

Oracle data type Delphi field type

NUMBER(5,2) ftFloat

NUMBER(10,4) ftBCD

NUMBER(15,6) ftFMTBCD

But if rules are set in the following way:

OraSession.DataTypeMap.Clear;
OraSession.DataTypeMap.AddDBTypeRule(oraNumber, 0, rlAny, 0, rlAny, ftFMTBCD);

Using UniDAC 135

© 2024 Devart

OraSession.DataTypeMap.AddDBTypeRule(oraNumber, 0, rlAny, 0, 4, ftBCD);
OraSession.DataTypeMap.AddDBTypeRule(oraNumber, 0, 9, rlAny, rlAny, ftFloat);

it will lead to the following result:

Oracle data type Delphi field type

NUMBER(5,2) ftFMTBCD

NUMBER(10,4) ftFMTBCD

NUMBER(15,6) ftFMTBCD

This happens because the rule

OraSession.DataTypeMap.AddDBTypeRule(oraNumber, 0, rlAny, 0, rlAny, ftFMTBCD);

will be applied for the NUMBER fields, whose Precision is from 0 to infinity, and Scale is from

0 to infinity too. This condition is met by all NUMBER fields with any Precision and Scale.

When using Data Type Mapping, first matching rule is searched for each type, and it is used

for mapping. In the second example, the first set rule appears to be the first matching rule for

all three types, and therefore the ftFMTBCD type will be used for all fields in Delphi.

If to go back to the first example, the first matching rule for the NUMBER(5,2) type is the first

rule, for NUMBER(10,4) - the second rule, and for NUMBER(15,6) - the third rule. So in the

first example, the expected result was obtained.

So it should be remembered that if rules for Data Type Mapping are set so that two or more

rules that contradict to each other are set for one type in the database, the rules will be

applied in the specifed order.

Defining rules for Connection and Dataset
Data Type Mapping allows setting rules for the whole connection as well as for each DataSet

in the application.

For example, such table is created in SQL Server:

CREATE TABLE person
(
 id INT NOT NULL ,
 firstname VARCHAR(20) NULL ,

Universal Data Access Components136

© 2024 Devart

 lastname VARCHAR(30) NULL ,
 gender_code VARCHAR(1) NULL ,
 birth_dttm DATETIME NULL ,
 CONSTRAINT pk_person PRIMARY KEY CLUSTERED (id ASC) ON [PRIMARY]
)
GO

It is exactly known that the birth_dttm field contains birth day, and this field should be ftDate in

Delphi, and not ftDateTime. If such rule is set:

MSConnection.DataTypeMap.Clear;
MSConnection.DataTypeMap.AddDBTypeRule(msDateTime, ftDate);

all DATETIME fields in Delphi will have the ftDate type, that is incorrect. The ftDate type was

expected to be used for the DATETIME type only when working with the person table. In this

case, Data Type Mapping should be set not for the whole connection, but for a particular

DataSet:

MSQuery.DataTypeMap.Clear;
MSQuery.DataTypeMap.AddDBTypeRule(msDateTime, ftDate);

Or the opposite case. For example, DATETIME is used in the application only for date

storage, and only one table stores both date and time. In this case, the following rules setting

will be correct:

MSConnection.DataTypeMap.Clear;
MSConnection.DataTypeMap.AddDBTypeRule(msDateTime, ftDate);
MSQuery.DataTypeMap.Clear;
MSQuery.DataTypeMap.AddDBTypeRule(msDateTime, ftDateTime);

In this case, in all DataSets for the DATETIME type fields with the ftDate type will be created,

and for MSQuery - with the ftDateTime type.

The point is that the priority of the rules set for the DataSet is higher than the priority of the

rules set for the whole connection. This allows both flexible and convenient setting of Data

Type Mapping for the whole application. There is no need to set the same rules for each

DataSet, all the general rules can be set once for the whole connection. And if a DataSet with

an individual Data Type Mapping is necessary, individual rules can be set for it.

Rules for a particular field
Sometimes there is a need to set a rule not for the whole connection, and not for the whole

dataset, but only for a particular field.

Using UniDAC 137

© 2024 Devart

e.g. there is such table in a MySQL database:

CREATE TABLE item
(
 id INT NOT NULL AUTO_INCREMENT,
 name CHAR(50) NOT NULL,
 guid CHAR(38),
 PRIMARY KEY (id)
) ENGINE=MyISAM;

The guid field contains a unique identifier. For convenient work, this identifier is expected to

be mapped to the TGuidField type in Delphi. But there is one problem, if to set the rule like

this:

MyQuery.DataTypeMap.Clear;
MyQuery.DataTypeMap.AddDBTypeRule(myChar, ftGuid);

then both name and guid fields will have the ftGuid type in Delphi, that does not correspond to

what was planned. In this case, the only way is to use Data Type Mapping for a particular

field:

MyQuery.DataTypeMap.AddFieldNameRule('guid', ftGuid);

In addition, it is important to remember that setting rules for particular fields has the highest

priority. If to set some rule for a particular field, all other rules in the Connection or DataSet will

be ignored for this field.

Ignoring conversion errors
Data Type Mapping allows mapping various types, and sometimes there can occur the

problem with that the data stored in a DB cannot be converted to the correct data of the

Delphi field type specified in rules of Data Type Mapping or vice-versa. In this case, an error

will occur, which will inform that the data cannot be mapped to the specified type.

For example:

Database value Destination field type Error

'text value' ftInteger String cannot be converted
to Integer

1000000 ftSmallint Value is out of range

15,1 ftInteger Cannot convert float to
integer

Universal Data Access Components138

© 2024 Devart

But when setting rules for Data Type Mapping, there is a possibility to ignore data conversion

errors:

IBCConnection.DataTypeMap.AddDBTypeRule(ibcVarchar, ftInteger, True);

In this case, the correct conversion is impossible. But because of ignoring data conversion

errors, Data Type Mapping tries to return values that can be set to the Delphi fields or DB

fields depending on the direction of conversion.

Database value
Destination field
type

Result Result description

'text value' ftInteger 0
0 will be returned if
the text cannot be
converted to number

1000000 ftSmallint 32767

32767 is the max
value that can be
assigned to the
Smallint data type

15,1 ftInteger 15
15,1 was truncated to
an integer value

Therefore ignoring of conversion errors should be used only if the conversion results are

expected.

UniDAC and Data Type Mapping
When using UniDAC, there often occurs a hard-to-solve situation, when two similar types

from the DB have differnt types in Delphi. For greater clarity, there are examples below.

e.g. there is a project, which works with two DBs: Oracle and SQL Server. There is such

table created in each DB:

Oracle:

CREATE TABLE ITEM_INFO
(
 ID NUMBER NOT NULL,
 CODE VARCHAR2(10) NOT NULL,
 DESCRIPTION NVARCHAR2(250),
 CONSTRAINT PK_ITEM_INFO PRIMARY KEY (id)

Using UniDAC 139

© 2024 Devart

)

SQL Server:

CREATE TABLE item_info
(
 id INT NOT NULL ,
 code VARCHAR(10) NOT NULL ,
 description NVARCHAR(250) NULL ,
 CONSTRAINT pk_item_info PRIMARY KEY CLUSTERED (id ASC)
 ON [PRIMARY]
)
GO

The problem is due to that, when working with Oracle with the enabled UseUnicode option,

both CODE and DESCRIPTION fields will have the ftWideString type, and if the UseUnicode

option is disabled, both fields will have the ftString type. For SQL Server, the CODE field will

always be ftString, and the DESCRIPTION field will always be ftWideString. This problem

arises especially sharply when attempting to create persistent fields, because in this case,

when working with one of the providers, an error will always occur. Formerly, the only way to

avoid the error was to refuse using of persistent fields in such situations.

For the time being, this problem can be solved rather easily. Data Type Mapping can be set

for the Oracle provider:

UniConnection.DataTypeMap.Clear;
UniConnection.DataTypeMap.AddDBTypeRule(oraVarchar2, ftString);
UniConnection.DataTypeMap.AddDBTypeRule(oraNVarchar2, ftWideString);

Or Data Type Mapping can be set for SQL Server:

// for useUnicode = True in the Oracle data provider
UniConnection.DataTypeMap.Clear;
UniConnection.DataTypeMap.AddDBTypeRule(msVarchar, ftWideString);

or:

// for useUnicode = False in the Oracle data provider
UniConnection.DataTypeMap.Clear;
UniConnection.DataTypeMap.AddDBTypeRule(msNVarchar, ftString);

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

4.6 Data Encryption

UniDAC has built-in algorithms for data encryption and decryption. To enable encryption, you

should attach the TCREncryptor component to the dataset, and specify the encrypted fields.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components140

© 2024 Devart

When inserting or updating data in the table, information will be encrypted on the client side in

accordance with the specified method. Also when reading data from the server, the

components decrypt the data in these fields "on the fly".

For encryption, you should specify the data encryption algorithm (the EncryptionAlgorithm

property) and password (the Password property). On the basis of the specified password, the

key is generated, which encrypts the data. There is also a possibility to set the key directly

using the SetKey method.

When storing the encrypted data, in addition to the initial data, you can also store additional

information: the GUID and the hash. (The method is specified in the

TCREncryptor.DataHeader property).

If data is stored without additional information, it is impossible to determine whether the data

is encrypted or not. In this case, only the encrypted data should be stored in the column,

otherwise, there will be confusion because of the inability to distinguish the nature of the data.

Also in this way, the similar source data will be equivalent in the encrypted form, that is not

good from the point of view of the information protection. The advantage of this method is the

size of the initial data equal to the size of the encrypted data.

To avoid these problems, it is recommended to store, along with the data, the appropriate

GUID, which is necessary for specifying that the value in the record is encrypted and it must

be decrypted when reading data. This allows you to avoid confusion and keep in the same

column both the encrypted and decrypted data, which is particularly important when using an

existing table. Also, when doing in this way, a random initializing vector is generated before

the data encryption, which is used for encryption. This allows you to receive different results

for the same initial data, which significantly increases security.

The most preferable way is to store the hash data along with the GUID and encrypted

information to determine the validity of the data and verify its integrity. In this way, if there was

an attempt to falsify the data at any stage of the transmission or data storage, when

decrypting the data, there will be a corresponding error generated. For calculating the hash

the SHA1 or MD5 algorithms can be used (the HashAlgorithm property).

The disadvantage of the latter two methods - additional memory is required for storage of the

auxiliary information.

As the encryption algorithms work with a certain size of the buffer, and when storing the

additional information it is necessary to use additional memory, TCREncryptor supports

Using UniDAC 141

© 2024 Devart

encryption of string or binary fields only (ftString, ftWideString, ftBytes, ftVarBytes, ftBlob,

ftMemo, ftWideMemo). If encryption of string fields is used, firstly, the data is encrypted, and

then the obtained binary data is converted into hexadecimal format. In this case, data storage

requires two times more space (one byte = 2 characters in hexadecimal).

Therefore, to have the possibility to encrypt other data types (such as date, number, etc.), it is

necessary to create a field of the binary or BLOB type in the table, and then convert it into the

desired type on the client side with the help of data mapping.

It should be noted that the search and sorting by encrypted fields become impossible on the

server side. Data search for these fields can be performed only on the client after decryption

of data using the Locate and LocateEx methods. Sorting is performed by setting the

TMemDataSet.IndexFieldNames property.

Example.

Let's say there is an employee list of an enterprise stored in the table with the following data:

full name, date of employment, salary, and photo. We want all these data to be stored in the

encrypted form. Write a script for creating the table:

CREATE TABLE EMP (
EMPNO varbinary IDENTITY (1,1) NOT NULL PRIMARY KEY,
ENAME varbinary (2000),
HIREDATE varbinary (200),
SAL varbinary (200),
FOTO VARBINARY);

As we can see, the fields for storage of the textual information, date, and floating-point

number are created with the VARBINARY type. This is for the ability to store encrypted

information, and in the case of the text field - to improve performance. Write the code to

process this information on the client.

UniQuery.SQL.Text : = 'SELECT * FROM EMP';
UniQuery.Encryption.Encryptor : = UniEncryptor;
UniQuery.Encryption.Fields : = 'ENAME, HIREDATE, SAL, FOTO';
UniEncryptor.Password : = '11111';
UniQuery.DataTypeMap.AddFieldNameRule ('ENAME', ftString);
UniQuery.DataTypeMap.AddFieldNameRule ('HIREDATE', ftDateTime);
UniQuery.DataTypeMap.AddFieldNameRule ('SAL', ftFloat);
UniQuery.Open;

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components142

© 2024 Devart

4.7 Working in an Unstable Network

The following settings are recommended for working in an unstable network:

TCustomDAConnection.Options.LocalFailover = True
TCustomDAConnection.Options.DisconnectedMode = True
TDataSet.CachedUpdates = True
TCustomDADataSet.FetchAll = True
TCustomDADataSet.Options.LocalMasterDetail = True
AutoCommit = True

These settings minimize the number of requests to the server. Using

TCustomDAConnection.Options.DisconnectedMode allows DataSet to work without an active

connection. It minimizes server resource usage and reduces connection break probability. I.

e. in this mode connection automatically closes if it is not required any more. But every

explicit operation must be finished explicitly. That means each explicit connect must be

followed by explicit disconnect. Read Working with Disconnected Mode topic for more

information.

Setting the FetchAll property to True allows to fetch all data after cursor opening and to close

connection. If you are using master/detail relationship, we recommend to set the

LocalMasterDetail option to True.

It is not recommended to prepare queries explicitly. Use the CachedUpdates mode for

DataSet data editing. Use the TCustomDADataSet.Options.UpdateBatchSize property to

reduce the number of requests to the server.

If a connection breaks, a fatal error occurs, and the OnConnectionLost event will be raised if

the following conditions are fulfilled:

There are no active transactions;

There are no opened and not fetched datasets;

There are no explicitly prepared datasets or SQLs.

If the user does not refuse suggested RetryMode parameter value (or does not use the

OnConnectionLost event handler), UniDAC can implicitly perform the following operations:

 Connect;
 DataSet.ApplyUpdates;
 DataSet.Open;

I.e. when the connection breaks, implicit reconnect is performed and the corresponding

operation is reexecuted. We recommend to wrap other operations in transactions and fulfill

Using UniDAC 143

© 2024 Devart

their reexecuting yourself.

The using of Pooling in Disconnected Mode allows to speed up most of the operations

because of connecting duration reducing.

See Also
FailOver demo

Working with Disconnected Mode

TCustomDAConnection.Options

TCustomDAConnection.Pooling

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

4.8 Disconnected Mode

In disconnected mode a connection opens only when it is required. After performing all server

calls connection closes automatically until next server call is required. Datasets remain

opened when connection closes. Disconnected Mode may be useful for saving server

resources and operating in an unstable or expensive network. Drawback of using

disconnected mode is that each connection establishing requires some time for authorization.

If connection is often closed and opened it can slow down application work. We recommend

to use pooling to solve this problem. For additional information see

TCustomDAConnection.Pooling.

To enable disconnected mode set TCustomDAConnection.Options.DisconnectedMode to

True.

In disconnected mode a connection is opened for executing requests to the server (if it was

not opened already) and is closed automatically if it is not required any more. If the connection

was explicitly opened (the Connect method was called or the Connected property was

explicitly set to True), it does not close until the Disonnect method is called or the Connected

property is set to False explicitly.

The following settings are recommended to use for working in disconnected mode:

TDataSet.CachedUpdates = True
TCustomDADataSet.FetchAll = True
TCustomDADataSet.Options.LocalMasterDetail = True

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components144

© 2024 Devart

These settings minimize the number of requests to the server.

Disconnected mode features
If you perform a query with the FetchAll option set to True, connection closes when all data is

fetched if it is not used by someone else. If the FetchAll option is set to false, connection does

not close until all data blocks are fetched.

If explicit transaction was started, connection does not close until the transaction is

committed or rolled back.

If the query was prepared explicitly, connection does not close until the query is unprepared or

its SQL text is changed.

See Also
TCustomDAConnection.Options

FetchAll

Devart.UniDac.TUniQuery.LockMode

TCustomDAConnection.Pooling

TCustomDAConnection.Connect

TCustomDAConnection.Disonnect

Working in unstable network

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

4.9 Batch Operations

Data amount processed by modern databases grows steadily. In this regard, there is an

acute problem – database performance. Insert, Update and Delete operations have to be

performed as fast as possible. Therefore Devart provides several solutions to speed up

processing of huge amounts of data. So, for example, insertion of a large portion of data to a

DB is supported in the TUniLoader. Unfortunately, TUniLoader allows to insert data only – it

can’t be used for updating and deleting data.

The new version of Devart Delphi Data Access Components introduces the new mechanism

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Using UniDAC 145

© 2024 Devart

for large data processing — Batch Operations. The point is that just one parametrized Modify

SQL query is executed. The plurality of changes is due to the fact that parameters of such a

query will be not single values, but a full array of values. Such approach increases the speed

of data operations dramatically. Moreover, in contrast to using TUniLoader, Batch operations

can be used not only for insertion, but for modification and deletion as well.

Let’s have a better look at capabilities of Batch operations with an example of the

BATCH_TEST table containing attributes of the most popular data types.

Batch_Test table generating scripts

For Oracle:

CREATE TABLE BATCH_TEST
(
 ID NUMBER(9,0),
 F_INTEGER NUMBER(9,0),
 F_FLOAT NUMBER(12,7),
 F_STRING VARCHAR2(250),
 F_DATE DATE,
 CONSTRAINT PK_BATCH_TEST PRIMARY KEY (ID)
)

For MS SQL Server:

CREATE TABLE BATCH_TEST
(
 ID INT,
 F_INTEGER INT,
 F_FLOAT FLOAT,
 F_STRING VARCHAR(250),
 F_DATE DATETIME,
 CONSTRAINT PK_BATCH_TEST PRIMARY KEY (ID)
)

For PostgreSQL:

CREATE TABLE BATCH_TEST
(
 ID INTEGER,
 F_INTEGER INTEGER,
 F_FLOAT DOUBLE PRECISION,
 F_STRING VARCHAR(250),
 F_DATE DATE,
 CONSTRAINT PK_BATCH_TEST PRIMARY KEY (ID)
)

For InterBase:

CREATE TABLE BATCH_TEST
(
 ID INTEGER NOT NULL PRIMARY KEY,

Universal Data Access Components146

© 2024 Devart

 F_INTEGER INTEGER,
 F_FLOAT FLOAT,
 F_STRING VARCHAR(250),
 F_DATE DATE
)

For MySQL:

CREATE TABLE BATCH_TEST
(
 ID INT,
 F_INTEGER INT,
 F_FLOAT FLOAT,
 F_STRING VARCHAR(250),
 F_DATE DATETIME,
 CONSTRAINT PK_BATCH_TEST PRIMARY KEY (ID)
)

For SQLite:

CREATE TABLE BATCH_TEST
(
 ID INTEGER,
 F_INTEGER INTEGER,
 F_FLOAT FLOAT,
 F_STRING VARCHAR(250),
 F_DATE DATETIME,
 CONSTRAINT PK_BATCH_TEST PRIMARY KEY (ID)
)

Batch operations execution

To insert records into the BATCH_TEST table, we use the following SQL query:

 INSERT INTO BATCH_TEST VALUES (:ID, :F_INTEGER, :F_FLOAT, :F_STRING, :F_DATE)

When a simple insertion operation is used, the query parameter values look as follows:

Parameters

:ID :F_INTEGER :F_FLOAT :F_STRING :F_DATE

1 100 2.5 ‘String Value 1' 01.09.2015

After the query execution, one record will be inserted into the BATCH_TEST table.

When using Batch operations, the query and its parameters remain unchanged. However,

parameter values will be enclosed in an array:

Parameters

:ID :F_INTEGER :F_FLOAT :F_STRING :F_DATE
1 100 2.5 ‘String Value 1' 01.09.2015

Using UniDAC 147

© 2024 Devart

2 200 3.15 ‘String Value 2' 01.01.2000
3 300 5.08 ‘String Value 3' 09.09.2010
4 400 7.5343 ‘String Value 4' 10.10.2015
5 500 0.4555 ‘String Value 5' 01.09.2015

Now, 5 records are inserted into the table at a time on query execution.

How to implement a Batch operation in the code?

Batch INSERT operation sample

Let’s try to insert 1000 rows to the BATCH_TEST table using a Batch Insert operation:

var
 i: Integer;
begin
 // describe the SQL query
 UniQuery1.SQL.Text := 'INSERT INTO BATCH_TEST VALUES (:ID, :F_INTEGER, :F_FLOAT, :F_STRING, :F_DATE)';
 // define the parameter types passed to the query :
 UniQuery1.Params[0].DataType := ftInteger;
 UniQuery1.Params[1].DataType := ftInteger;
 UniQuery1.Params[2].DataType := ftFloat;
 UniQuery1.Params[3].DataType := ftString;
 UniQuery1.Params[4].DataType := ftDateTime;
 // specify the array dimension:
 UniQuery1.Params.ValueCount := 1000;
 // populate the array with parameter values:
 for i := 0 to UniQuery1.Params.ValueCount - 1 do begin
 UniQuery1.Params[0][i].AsInteger := i + 1;
 UniQuery1.Params[1][i].AsInteger := i + 2000 + 1;
 UniQuery1.Params[2][i].AsFloat := (i + 1) / 12;
 UniQuery1.Params[3][i].AsString := 'Values ' + IntToStr(i + 1);
 UniQuery1.Params[4][i].AsDateTime := Now;
 end;
 // insert 1000 rows into the BATCH_TEST table
 UniQuery1.Execute(1000);
end;

This command will insert 1000 rows to the table with one SQL query using the prepared array

of parameter values. The number of inserted rows is defined in the Iters parameter of the

Execute(Iters: integer; Offset: integer = 0) method. In addition, you can pass another

parameter – Offset (0 by default) – to the method. The Offset parameter points the array

element, which the Batch operation starts from.

We can insert 1000 records into the BATCH_TEST table in 2 ways.

All 1000 rows at a time:

UniQuery1.Execute(1000);

Universal Data Access Components148

© 2024 Devart

2×500 rows:

// insert first 500 rows
UniQuery1.Execute(500, 0);
// insert next 500 rows
UniQuery1.Execute(500, 500);

500 rows, then 300, and finally 200:

// insert 500 rows
UniQuery1.Execute(500, 0);
// insert next 300 rows starting from 500
UniQuery1.Execute(300, 500);
// insert next 200 rows starting from 800
UniQuery1.Execute(200, 800);

Batch UPDATE operation sample

With Batch operations we can modify all 1000 rows of our BATCH_TEST table just this

simple:

var
 i: Integer;
begin
 // describe the SQL query
 UniQuery1.SQL.Text := 'UPDATE BATCH_TEST SET F_INTEGER=:F_INTEGER, F_FLOAT=:F_FLOAT, F_STRING=:F_STRING, F_DATE=:F_DATE WHERE ID=:OLDID';
 // define parameter types passed to the query:
 UniQuery1.Params[0].DataType := ftInteger;
 UniQuery1.Params[1].DataType := ftFloat;
 UniQuery1.Params[2].DataType := ftString;
 UniQuery1.Params[3].DataType := ftDateTime;
 UniQuery1.Params[4].DataType := ftInteger;
 // specify the array dimension:
 UniQuery1.Params.ValueCount := 1000;
 // populate the array with parameter values:
 for i := 0 to 1000 - 1 do begin
 UniQuery1.Params[0][i].AsInteger := i - 2000 + 1;
 UniQuery1.Params[1][i].AsFloat := (i + 1) / 100;
 UniQuery1.Params[2][i].AsString := 'New Values ' + IntToStr(i + 1);
 UniQuery1.Params[3][i].AsDateTime := Now;
 UniQuery1.Params[4][i].AsInteger := i + 1;
 end;
 // update 1000 rows in the BATCH_TEST table
 UniQuery1.Execute(1000);
end;

Batch DELETE operation sample

Deleting 1000 rows from the BATCH_TEST table looks like the following operation:

var
 i: Integer;
begin
 // describe the SQL query

Using UniDAC 149

© 2024 Devart

 UniQuery1.SQL.Text := 'DELETE FROM BATCH_TEST WHERE ID=:ID';
 // define parameter types passed to the query:
 UniQuery1.Params[0].DataType := ftInteger;
 // specify the array dimension
 UniQuery1.Params.ValueCount := 1000;
 // populate the arrays with parameter values
 for i := 0 to 1000 - 1 do
 UniQuery1.Params[0][i].AsInteger := i + 1;
 // delete 1000 rows from the BATCH_TEST table
 UniQuery1.Execute(1000);
end;

Performance comparison
The example with BATCH_TEST table allows to analyze execution speed of normal

operations with a database and Batch operations:

DAC Name Operation Type
25 000 records

Standard
Operation (sec.)

Batch Operation
(sec.)

ODAC / UniDAC
(with
OracleUniProvider)

Insert 17.64 0.59
Update 18.28 1.20
Delete 16.19 0.45

LiteDAC / UniDAC
(with
SQLiteUniProvider)

Insert 2292 0.92
Update 2535 2.63
Delete 2175 0.44

PgDAC / UniDAC
(with
PostgreSQLUniPro
vider)

Insert 346.7 1.69
Update 334.4 4.59

Delete 373.7 2.05

IBDAC / UniDAC
(with
InterBaseUniProvi
der)

Insert 55.4 3.03
Update 81.9 3.58

Delete 61.3 0.91

MyDAC / UniDAC
(with
MySQLUniProvider
)

Insert 1138 11.02
Update 1637 26.72

Delete 1444 17.66

SDAC / UniDAC
(with
SQLServerUniProv
ider)

Insert 19.19 3.09
Update 20.22 7.67

Delete 18.28 3.14

The less, the better.

Universal Data Access Components150

© 2024 Devart

It should be noted, that the retrieved results may differ when modifying the same table on

different database servers. This is due to the fact that operations execution speed may differ

depending on the settings of a particular server, its current workload, throughput, network

connection, etc.

Thing you shouldn’t do when accessing parameters in Batch operations!

When populating the array and inserting records, we accessed query parameters by index. It

would be more obvious to access parameters by name:

for i := 0 to 9999 do begin
 UniQuery1.Params.ParamByName('ID')[i].AsInteger := i + 1;
 UniQuery1.Params.ParamByName('F_INTEGER')[i].AsInteger := i + 2000 + 1;
 UniQuery1.Params.ParamByName('F_FLOAT')[i].AsFloat := (i + 1) / 12;
 UniQuery1.Params.ParamByName('F_STRING')[i].AsString := 'Values ' + IntToStr(i + 1);
 UniQuery1.Params.ParamByName('F_DATE')[i].AsDateTime := Now;
end;

However, the parameter array would be populated slower, since you would have to define the

ordinal number of each parameter by its name in each loop iteration. If a loop is executed

10000 times – performance loss can become quite significant.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

4.10 Increasing Performance

This topic considers basic stages of working with DataSet and ways to increase performance

on each of these stages.

Connect
If your application performs Connect/Disconnect operations frequently, additional

performance can be gained using pooling mode (TCustomDAConnection.Pooling = True). It

reduces connection reopening time greatly (hundreds times). Such situation usually occurs in

web applications.

Execute
If your application executes the same query several times, you can use the

TCustomDADataSet.Prepare method or set the TDADataSetOptions.AutoPrepare property to

increase performance. For example, it can be enabled for Detail dataset in Master/Detail

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Using UniDAC 151

© 2024 Devart

relationship or for update objects in TCustomDAUpdateSQL. The performance gain achieved

this way can be anywhere from several percent to several times, depending on the situation.

To execute SQL statements a TUniSQL component is more preferable than TUniQuery. It

can give several additional percents performance gain.

If the TCustomDADataSet.Options.StrictUpdate option is set to False, the RowsAffected

property is not calculated and becomes equal zero. This can improve performance of query

executing, so if you need to execute many data updating statements at once and you don't

mind affected rows count, set this option to False.

Fetch
In some situations you can increase performance a bit by using

TCustomDADataSet.Options.CompressBlobMode.

You can also tweak your application performance by using the following properties of

TCustomDADataSet descendants:

FetchRows

Options.FlatBuffers

Options.LongStrings

UniDirectional

See the descriptions of these properties for more details and recommendations.

Navigate
The Locate function works faster when dataset is locally sorted on KeyFields fields. Local

dataset sorting can be set with the IndexFieldNames property. Performance gain can be large

if the dataset contains a large number of rows.

Lookup fields work faster when lookup dataset is locally sorted on lookup Keys.

Setting the TDADataSetOptions.CacheCalcFields property can improve performance when

locally sorting and locating on calculated and lookup fields. It can be also useful when

calculated field expressions contain complicated calculations.

Setting the TDADataSetOptions.LocalMasterDetail option can improve performance greatly

by avoiding server requests on detail refreshes. Setting the TDADataSetOptions.DetailDelay

Universal Data Access Components152

© 2024 Devart

option can be useful for avoiding detail refreshes when switching master DataSet records

frequently.

Update
If your application updates datasets in the CachedUpdates mode, then setting the

TCustomDADataSet.Options.UpdateBatchSize option to more than 1 can improve

performance several hundred times more by reducing the number of requests to the server.

You can also increase the data sending performance a bit (several percents) by using

Dataset.UpdateObject.ModifyObject, Dataset.UpdateObject, etc. Little additional performance

improvement can be reached by setting the AutoPrepare property for these objects.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

4.11 Using Connection Pooling

Connection pooling enables an application to use a connection from a pool of connections

that do not need to be reestablished for each use. Once a connection has been created and

placed in a pool, an application can reuse that connection without performing the complete

connection process.

Using a pooled connection can result in significant performance gains, because applications

can save the overhead involved in making a connection. This can be particularly significant for

middle-tier applications that connect over a network or for applications that connect and

disconnect repeatedly, such as Internet applications.

To use connection pooling set the Pooling property of the TCustomDAConnection component

to True. Also you should set the PoolingOptions of the TCustomDAConnection. These

options include MinPoolSize, MaxPoolSize, Validate, ConnectionLifeTime. Connections

belong to the same pool if they have identical values for the following parameters:

MinPoolSize, MaxPoolSize, Validate, ConnectionLifeTime, Server, Username, Password .

When a connection component disconnects from the database the connection actually

remains active and is placed into the pool. When this or another connection component

connects to the database it takes a connection from the pool. Only when there are no

connections in the pool, new connection is established.

Connections in the pool are validated to make sure that a broken connection will not be

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Using UniDAC 153

© 2024 Devart

returned for the TCustomDAConnection component when it connects to the database. The

pool validates connection when it is placed to the pool (e. g. when the TCustomDAConnection

component disconnects). If connection is broken it is not placed to the pool. Instead the pool

frees this connection. Connections that are held in the pool are validated every 30 seconds.

All broken connections are freed. If you set the PoolingOptions.Validate to True, a connection

also will be validated when the TCustomDAConnection component connects and takes a

connection from the pool. When some network problem occurs all connections to the

database can be broken. Therefore the pool validates all connections before any of them will

be used by a TCustomDAConnection component if a fatal error is detected on one

connection.

The pool frees connections that are held in the pool during a long time. If no new connections

are placed to the pool it becomes empty after approximately 4 minutes. This pool behaviour is

intended to save resources when the count of connections in the pool exceeds the count that

is needed by application. If you set the PoolingOptions.MinPoolSize property to a non-zero

value, this prevents the pool from freeing all pooled connections. When connection count in

the pool decreases to MinPoolSize value, remaining connection will not be freed except if they

are broken.

The PoolingOptions.MaxPoolSize property limits the count of connections that can be active

at the same time. If maximum count of connections is active and some

TCustomDAConnection component tries to connect, it will have to wait until any of

TCustomDAConnection components disconnect. Maximum wait time is 30 seconds. If active

connections' count does not decrease during 30 seconds, the TCustomDAConnection

component will not connect and an exception will be raised.

You can limit the time of connection's existence by setting the

PoolingOptions.ConnectionLifeTime property. When the TCustomDAConnection component

disconnects, its internal connection will be freed instead of placing to the pool if this

connection is active during the time longer than the value of the

PoolingOptions.ConnectionLifeTime property. This property is designed to make load

balancing work with the connection pool.

To force freeing of a connection when the TCustomDAConnection component disconnects,

the RemoveFromPool method of TCustomDAConnection can be used. You can also free all

connection in the pool by using the class procedures Clear or AsyncClear of

TUniConnectionPoolManager. These procedures can be useful when you know that all

Universal Data Access Components154

© 2024 Devart

connections will be broken for some reason.

It is recommended to use connection pooling with the DisconnectMode option of the

TCustomDAConnection component set to True. In this case internal connections can be

shared between TCustomDAConnection components. When some operation is performed

on the TCustomDAConnection component (for example, an execution of SQL statement) this

component will connect using pooled connection and after performing operation it will

disconnect. When an operation is performed on another TCustomDAConnection component

it can use the same connection from the pool.

See Also
TCustomDAConnection.Pooling

TCustomDAConnection.PoolingOptions

Working with Disconnected Mode

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

4.12 Macros

Macros help you to change SQL statements dynamically. They allow partial replacement of

the query statement by user-defined text. Macros are identified by their names which are then

referred from SQL statement to replace their occurrences for associated values.

First step is to assign macros with their names and values to a dataset object.

Then modify SQL statement to include macro names into desired insertion points. Prefix

each name with & ("at") sign to let UniDAC discriminate them at parse time. Resolved SQL

statement will hold macro values instead of their names but at the right places of their

occurrences. For example, having the following statement with the TableName macro name:

SELECT * FROM &TableName

You may later assign any actual table name to the macro value property leaving your SQL

statement intact.

Query1.SQL.Text := 'SELECT * FROM &TableName';
Query1.MacroByName('TableName').Value := 'Dept';
Query1.Open;

UniDAC replaces all macro names with their values and sends SQL statement to the server

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Using UniDAC 155

© 2024 Devart

when SQL execution is requested.

Note that there is a difference between using TMacro AsString and Value properties. If you set

macro with the AsString property, it will be quoted. For example, the following statements will

result in the same result Query1.SQL property value.

Query1.MacroByName('StringMacro').Value := '''A string''';
Query1.MacroByName('StringMacro').AsString := 'A string';

Macros can be especially useful in scripts that perform similar operations on different objects.

You can use macros that will be replaced with an object name. It allows you to have the same

script text and to change only macro values.

You may also consider using macros to construct adaptable conditions in WHERE clauses of

your statements.

See Also
Unified SQL

TMacro

TCustomDADataSet.MacroByName

TCustomDADataSet.Macros

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

4.13 DataSet Manager

DataSet Manager window
The DataSet Manager window displays the datasets in your project. You can use the DataSet

Manager window to create a user interface (consisting of data-bound controls) by dragging

items from the window onto forms in your project. Each item has a drop-down control list

where you can select the type of control to create prior to dragging it onto a form. You can

customize the control list with additional controls, including the controls you have created.

Using the DataSet Manager window, you can:

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components156

© 2024 Devart

Create forms that display data by dragging items from the DataSet Manager window onto

forms.

Customize the list of controls available for each data type in the DataSet Manager window.

Choose which control should be created when dragging an item onto a form in your

Windows application.

Create and delete TField objects in the DataSets of your project.

Opening the DataSet Manager window
You can display the DataSet Manager window by clicking DataSet Manager on the Tools

menu. You can also use IDE desktop saving/loading to save DataSet Manager window

position and restore it during the next IDE loads.

Observing project DataSets in the DataSet Manager
Window
By default DataSet Manager shows DataSets of currently open forms. It can also extract

DataSets from all forms in the project. To use this, click Extract DataSets from all forms in

project button. This settings is remembered. Note, that using this mode can slow down

opening of the large projects with plenty of forms and DataSets. Opening of such projects can

be very slow in Delphi 6 and Borland Developer Studio 2006 and can take up to several tens

of minutes.

DataSets can be grouped by form or connection. To change DataSet grouping click the

Grouping mode button or click a down. You can also change grouping mode by selecting

required mode from the DataSet Manager window popup menu.

Creating Data-bound Controls
You can drag an item from the DataSet Manager window onto a form to create a new data-

Using UniDAC 157

© 2024 Devart

bound control. Each node in the DataSet Manager window allows you to choose the type of

control that will be created when you drag it onto a form. You must choose between a Grid

layout, where all columns or properties are displayed in a TDataGrid component, or a Details

layout, where all columns or properties are displayed in individual controls.

To use grid layout drag the dataset node on the form. By default TDataSource and TDBGrid

components are created. You can choose the control to be created prior to dragging by

selecting an item in the DataSet Manager window and choosing the control from the item's

drop-down control list.

To use Details layout choose Details from the DataSet node drop-down control list in the

DataSet Manager window. Then select required controls in the drop-down control list for each

DataSet field. DataSet fields must be created. After setting required options you can drag the

DataSet to the form from the DataSet wizard. DataSet Manager will create TDataSource

component, and a component and a label for each field.

Adding custom controls to the DataSet Manager window
To add custom control to the list click the Options button on the DataSet Manager toolbar. A

DataSet Manager - Customize controls dialog will appear. Using this dialog you can set

controls for the DataSets and for the DataSet fields of different types. To do it, click DataSets

node or the node of field of required type in DB objects groups box and use Add and Remove

buttons to set required control list. You can also set default control by selecting it in the list of

assigned DB controls and pressing Default button.

The default configuration can easily be restored by pressing Reset button in the DataSet

Manager - Options dialog.

Working with TField objects

Universal Data Access Components158

© 2024 Devart

DataSet Manager allows you to create and remove TField objects. DataSet must be active to

work with its fields in the DataSet Manager. You can add fields, based on the database table

columns, create new fields, remove fields, use drag-n-drop to change fields order.

To create a field based on the database table column right-click the Fields node and select

Create Field from the popup menu or press <Insert>. Note that after you add at least one field

manually, DataSet fields corresponding to data fields will not be generated automatically when

you drag the DataSet on the form, and you can not drag such fields on the form. To add all

available fields right-click the Fields node and select Add all fields from the popup menu.

To create new field right-click the Fields node and select New Field from the popup menu or

press <Ctrl+Insert>. The New Field dialog box will appear. Enter required values and press

OK button.

To delete fields select these fields in the DataSet Manager window and press <Delete>.

DataSet Manager allows you to change view of the fields displayed in the main window. Open

the Customize controls dialog, and jump to the Options page.

You can chose what information will be added to names of the Field and Data Field objects in

the main window of DataSet Manager. Below you can see the example.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

4.14 Network Tunneling

Usually when a client needs to connect to server it is assumed that direct connection can be

established. Nowadays though, due to security reasons or network topology, it is often

necessary to use a proxy or bypass a firewall. This article describes different ways to connect

to MySQL server with UniDAC.

Direct connection

Connection through HTTP tunnel

Connection through proxy and HTTP tunnel

Additional information

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Using UniDAC 159

© 2024 Devart

Direct connection
Direct connection to server means that server host is accessible from client without extra

routing and forwarding. This is the simplest case. The only network setting you need is the

host name and port number. This is also the fastest and most reliable way of communicating

with server. Use it whenever possible.

The following code illustrates the simplicity:

UniConnection := TUniConnection.Create(self);
UniConnection.ProviderName := 'MySQL';
UniConnection.Server := 'localhost';
UniConnection.Port := 3306;
UniConnection.Username := 'root';
UniConnection.Password := 'root';
UniConnection.Connect;

Connection through HTTP tunnel
Sometimes client machines are shielded by a firewall that does not allow you to connect to

server directly at the specified port. If the firewall allows HTTP connections, you can use

UniDAC together with HTTP tunneling software to connect to MySQL server.

UniDAC supports HTTP tunneling based on the PHP script.

An example of the web script tunneling usage can be the following: you have a remote

website, and access to its database through the port of the database server is forbidden. Only

access through HTTP port 80 is allowed, and you need to access the database from a

remote computer, like when using usual direct connection.

You need to deploy the tunnel.php script, which is included into the provider package on the

web server. It allows access to the database server to use HTTP tunneling. The script must

be available through the HTTP protocol. You can verify if it is accessible with a web browser.

The script can be found in the HTTP subfolder of the installed provider folder, e. g. %Program

Files%\Devart\UniDac for Delphi X\HTTP\tunnel.php. The only requirement to the server is

PHP 5 support.

To connect to the database, you should set TUniConnection parameters for usual direct

connection, which will be established from the web server side, the Protocol specific MySQL

option to mpHttp, and set the following parameters, specific for the HTTP tunneling:

Specific Option M Meaning

Universal Data Access Components160

© 2024 Devart

a
n
d
at
or
y

HttpUrl
Y
e
s

Url of the tunneling PHP script. For example, if the script is in the
server root, the url can be the following: http://localhost/tunnel.php.

HttpUsername,
HttpPassword

N
o

Set this properties if the access to the website folder with the
script is available only for registered users authenticated with
user name and password.

Connection through proxy and HTTP tunnel

Consider the previous case with one more complication.

HTTP tunneling server is not directly accessible from client machine. For example, client

address is 10.0.0.2, server address is 192.168.0.10, and the MySQL server listens on port

3307. The client and server reside in different networks, so the client can reach it only through

proxy at address 10.0.0.1, which listens on port 808. In this case in addition to the Http

specific options you have to setup the Proxy specific options as follows:

UniConnection := TUniConnection.Create(self);
UniConnection.ProviderName := 'MySQL';
UniConnection.Server := '192.168.0.10';
UniConnection.Port := 3307;
UniConnection.Username := 'root';
UniConnection.Password := 'root';
UniConnection.SpecificOptions.Values['Protocol'] := 'mpHttp';
UniConnection.SpecificOptions.Values['HttpUrl'] := 'http://server/tunnel.php';
UniConnection.SpecificOptions.Values['ProxyHostname'] := '10.0.0.1';
UniConnection.SpecificOptions.Values['ProxyPort'] := '808';
UniConnection.SpecificOptions.Values['ProxyUsername'] := 'ProxyUser';
UniConnection.SpecificOptions.Values['ProxyPassword'] := 'ProxyPassword';
UniConnection.Connect;

Note that setting the Proxy specific options automatically enables proxy server usage.

Additional information
Keep in mind that traffic tunneling or encryption always increase CPU usage and network

load. It is recommended that you use direct connection whenever possible.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Using UniDAC 161

© 2024 Devart

4.15 Executing Stored Procedures

This topic describes approaches for executing stored procedures with UniDAC.

What component to choose?

TUniConnection

TUniSQL

TUniQuery

TUniStoredProc

Usage of stored procedure parameters

Parameter types

Passing default parameter values

Stored procedures in UniDAC can be executed with one of the following components:

TUniConnection, TUniSQL, TUniQuery, TUniStoredProc. Below you will find the description of

working with stored procedure using these components starting with the simplest approach.

TUniConnection

The simplest way to execute a stored procedure is the TUniConnection component, but it has

several limitations. TUniConnection does not have properties like SQL, StoredProcName, or

Params. So you will need to provide stored procedure name and parameter values each time

you need to execute it. TUniConnection does not support output parameters, however you

can get a result parameter from a function. Also TUniConnection does not support

preparation. Stored procedures are executed with the ExecProc and ExecProcEx methods.

Therefore, if you need to execute a stored procedure that returns neither record set nor output

parameters only once, the TUniConnection component is an optimal choice.

TUniSQL

TUniSQL is a separate component dedicated to execute commands that do not return record

sets. It has no data storage, therefore it consumes a bit less memory than TUniQuery or

TUniStoredProc and works a bit faster. To execute a stored procedure, an appropriate

command must be assigned to the SQL property of TUniSQL. It can be assigned manually,

or created with the CreateProcCall method.

Universal Data Access Components162

© 2024 Devart

The CreateProcCall method accepts a stored procedure name, gets the description of a

stored procedure from the server, and generates SQL command with parameters. The

generated command is automatically assigned to the SQL property. Parameters can be

accessed both at design time and run time using properties such as Params,

ParamByName, etc.

Comparing to the previous method of stored procedures execution, TUniSQL supports all

kinds of parameters (INPUT, OUTPUT, etc.).For repeatable executions of a stored procedure,

you do not need to pass a SQL command on each execution. It is stored in the SQL property.

Each command of TUniSQL can be prepared. In some cases preparation improves

performance of execution.

TUniSQL is a powerful component that is an appropriate choice for a stored procedure that

does not return result sets, needs to be executed multiple times, or returns output

parameters.

TUniQuery

One more component that lets you execute stored procedures is TUniQuery. In addition to the

abilities provided by TUniSQL, TUniQuery allows to obtain record sets from stored

procedures and modify them. If a stored procedure returns multiple record sets, all of them

can be accessed sequentially. The Open method opens the first record set. The OpenNext

method closes the current record set and opens the next one. If the server has sent enough

metainformation about the query, obtained dataset will be editable. Otherwise to get an

editable dataset you should setup properties such as SQLDelete, SQLInsert, and others

properly.

The TUniQuery is a good choice for executing stored procedures that return record sets.

TUniStoredProc

TUniStoredProc is a component designed specially for working with stored procedures. If you

want to execute a stored procedure, just assign its name to the StoredProcName property,

call PrepareSQL to describe parameters, assign parameter values, and call Execute. If the

stored procedure has no input or input/output parameters to be assigned, call to the

PrepareSQL method is not necessary. Other than that TUniStoredProc is similar to

TUniQuery. It supports result sets, output parameters, preparation, and can be initialized by

the CreateProcCall method.

Using UniDAC 163

© 2024 Devart

TUniStoredProc is the most convenient component for working with stored procedures that

covers all necessary functionality.

There are several notes concerning parameters of stored procedures.

Parameter types

UniDAC supports four parameter types: input, output, input/output, and result.

TUniConnection can pass values of the input parameters to the server, and get the result

value from a function. If a parameter value is not assigned, the default value will be provided if

possible. If an unassigned parameter has no default value, an error will be raised.

TUniSQL, TUniQuery, and TUniStoredProc components can handle all of these parameter

types. If an input parameter value is not assigned with one of these components, the NULL

value will be passed as a parameter value. Assigning of output and result parameter values

has no effect as they are not passed to the server on execution, and after execute they will be

replaced with values returned from the server.

Passing default parameter values

Some stored procedures may have default values for parameters. If you want to pass a

default parameter value to a stored procedure, you should do the following:

with TUniConnection call the ExecProcEx method omitting the names and values of the

parameters to be initialized with their default values;

with TUniConnection call the ExecProc method omitting values of the last parameters to be

initialized with their default values;

with other components set the Bound property of the parameter to be initialized with its

default value to False.

If a parameter value in TUniSQL, TUniQuery, or TUniStoredProc is not assigned or cleared,

the NULL value will be passed as a parameter value. It is not the same as assigning a default

value.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components164

© 2024 Devart

4.16 Transactions

This topic describes how transaction support is implemented in UniDAC. So, you should be

pretty familiar with transactions to understand how to control them with UniDAC.

The local transactions are managed by the TUniConnection component with

StartTransaction, Commit, Rollback, and other methods. Each time you are about to start a

transaction, you should check whether it is active. You can do this using the InTransaction

property. Call to StartTransaction when the transaction is already active will cause an

exception. Here is a short example that demonstrates the general approach for working with

local transactions:

if not UniConnection.InTransaction then
 UniConnection.StartTransaction;
 try
 // Do some actions with database. For example:
 UniSQL1.Execute;
 UniSQL2.Execute;
 // Commit the current transaction to reflect changes in database if no errors were raised
 UniConnection.Commit;
 except
 // Rollback all changes in database made after StartTransaction if an error was raised
 UniConnection.Rollback;
 end;

After you have activated a transaction, all operations, including dataset opening, will be

performed within the context of the current transaction until you commit or rollback it. If no

transactions were started, changes performed by each operation are reflected in database

right after the operation is completed (so-called AutoCommit mode). When using InterBase

provider, please pay attention to the AutoCommit property. The AutoCommit property has the

True value by default that leads to automatically execution of CommitRetaining or

RollbackRetaining when there is any data modification. By setting the property to False, you

will get rid of this behavior, however, you will have to manage the transactions by yourself.

The TUniConnection.AutoCommit property has a higher priority than the specific option

"AutoCommit" of datasets (TUniQuery, TUniTable). If the TUniConnection.AutoCommit

property is set to False, all transactions can be committed only explicitly (despite of the

specific option "AutoCommit" value of a dataset). If you want most datasets to automatically

commit transactions, and for some of them to control transactions manually, you should set

the TUniConnection.AutoCommit property to True, and only for datasets with manual

transaction control, set the specific option "AutoCommit" value to False.

The behaviour of each explicitly started transaction can be customized with parameters

Using UniDAC 165

© 2024 Devart

passed to the overloaded StartTransaction method. You can specify the isolation level for the

transaction and whether this transaction will be editable. There is a more detailed description

of these parameters in the StartTransaction topic.

UniDAC also supports working with Savepoints. The Savepoint method lets you to define a

named savepoint within a transaction. You can use the savepoint name in the

RollbackToSavepoint method to rollback changes in the database to the actual state at the

point of time the savepoint was made. Call to RollbackToSavepoint keeps the current

transaction active.

The CommitRetaining and RollbackRetaining methods are similar to Commit and Rollback,

but they keep the current transaction active. It means that you will not need to call

StartTransaction to keep working in transaction like you do with the Commit and Rollback

methods. Functionality of CommitRetaining and RollbackRetaining is supported by InterBase/

Firebird/Yaffil servers. For other servers this functionality is emulated by subsequent call to

StartTransaction after Commit or Rollback.

InterBase-like servers support several simultaneous active transactions within a single

connection and require a transaction to be active when opening a cursor. You should not take

care of this, as UniDAC encapsulates these peculiarities letting you work in a way similar to

the way of working with other database servers. If you want to involve abilities of InterBase

servers to run parallel transactions, you should place several TUniTransaction components

onto the form and setup properties of TCustomUniDataSet descendants such as Transaction

and UpdateTransaction with these components. The Transaction and UpdateTransaction

properties are used only for the InterBase provider. For other providers these properties are

ignored.

UniDAC uses MTS to manage distributed transactions with Oracle and Microsoft SQL Server

connections. Distributed transactions are controlled by the TUniTransaction component. You

can add connections to a distributed transaction context using the AddConnection method.

The MTS distributed transaction coordinator allows mixing connections both to different

servers and different server kinds.

begin
 UniConnection1.Connect;
 UniConnection2.Connect;
 UniTransaction.AddConnection(UniConnection1);
 UniTransaction.AddConnection(UniConnection2);
 UniTransaction.StartTransaction;
 UniSQL1.Connection := UniConnection1;
 UniSQL2.Connection := UniConnection2;

Universal Data Access Components166

© 2024 Devart

 try
 UniSQL1.Execute;
 UniSQL2.Execute;
 UniTransaction.Commit;
 except
 UniTransaction.Rollback;
 end;
end;

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

4.17 Unified SQL

One of the most crucial problems in programming applications for several databases is that

SQL syntax can be different in many situations. This article demonstrates how UniDAC helps

to overcome this issue.

Database applications operate data using SQL statements. Unless entered directly by the

user, the statements can be constructed in one of two ways, either hard-coded during

development, or constructed at run time. The first way is very convenient for developer, while

the second way is far more flexible. UniDAC allows to take best from both approaches: you

can hard-code SQL statements that are transformed into appropriate syntax in run time.

General Information

Macros

Conditional Execution (IF)

Literals and Identifiers

Comments

SQL Functions

Macros Reference

General Information
Universal capabilities of UniDAC are based on the following features:

Macros that have values specific for different databases (providers). In addition to

predefined macros you can define your own.

Set of automatically mapped functions.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Using UniDAC 167

© 2024 Devart

Unified standard of literals.

Knowing this, you can write truly database-independent SQL code interpreted in run time.

Macros
UniDAC offers two approaches to working with macros: Connection Macros and DataSet

Macros. They differ by the way they are defined and by the way they are indicated in the SQL

query text.

DataSet Macros are difined by "&MacroName" and affect only the specified dataset.

Connection Macros are defined by "{MacroName}" and affect all associated datasets.

Lets make more detailed analysis of TUniConnection.Macros. You can work with it in the

traditional way:

if UniConnection.ProviderName = 'Oracle' then
 UniConnection.MacroByName('tablename').Value := 'dept'
else
if UniConnection.ProviderName = 'MySql' then
 UniConnection.MacroByName('tablename').Value := 'test.dept';

Or you can use predefined approach.

Macro is a set of name, condition and value. Macro evaluates to its value if underlying

condition is enabled, or to an empty string if the condition is not enabled. Conditions are

enabled or disabled depending on a provider used by the TUniConnection component. For

example, if you use the Oracle provider, ORACLE macro will be enabled.

Consequently, all macros that base on Oracle conditions return their value when used in SQL

statements; all other macros return empty string.

For list of available conditions (in other words, predefined macros) refer to the Macros

Reference.

From API point of view, macros are represented as TUniMacro class. Collections of macros

are organized into TUniMacros, which can be accessed through the Macros property of

TUniConnection. Each connection has individual set of macros.

The following examples demonstrate usage of macros:

UniConnection.Provider = 'MySQL';
...
UniConnection.Open;
UniConnection.Macros.Add('tablename', 'test.dept', 'MySQL');

Universal Data Access Components168

© 2024 Devart

UniQuery.SQL.Text := 'SELECT Count(*) FROM {tablename}';
UniQuery.Open;

Now suppose we need to do the same on an Oracle server. Due to usage of UniSQL the only

thing to add is another macro:

UniConnection.Provider = 'Oracle';
...
UniConnection.Open;
UniConnection.Macros.Add('tablename', 'test.dept', 'MySQL');
UniConnection.Macros.Add('tablename', 'dept', 'Oracle');
UniQuery.SQL.Text := 'SELECT Count(*) FROM {tablename}';
UniQuery.Open;

As you see, it is very easy to control SQL statements transformation. Now let's take a look at

another example that demonstrates a whole pack of important features:

UniConnection.Macros.Add('tablename', 'emp', '');
//For MySQL, prepend database name
UniConnection.Macros.Add('tablename', 'test.emp', 'MySQL');
//Limit records count where it is easy (MySQL and PostgreSQL)
UniConnection.Macros.Add('limit', 'LIMIT 0,5', 'MySQL');
UniConnection.Macros.Add('limit', 'LIMIT 5 OFFSET 0', 'PostgreSQL');
//Define default FROM clause
UniConnection.Macros.Add('from', 'FROM {tablename}', '');
//If the limit macro is defined, add extra clause
UniConnection.Macros.Add('from', 'FROM {tablename} {limit}', 'limit');
//Define query that uses the macro
UniQuery.SQL.Text := 'SELECT EName, Job, Sal {from}';
UniQuery.Open;

Supposed that in this sample connection is made to MySQL server, the executed statement

would be

 SELECT EName, Job, Sal FROM emp LIMIT 0,5

Note: you can use DBMonitor application to see what your query turns into on execution.

A step-by step analysis of the sample reveals following important notes:

1. If a macro has blank condition, it is always evaluated.

2. Macro with enabled condition overrides macro with blank condition.

3. Conditions are case-insensitive.

4. You can use your own macros as conditions.

5. You can use macros as part of the value of other macros.

You can add any text after macros name inside braces. This text is added to final SQL

statement if macro's condition is enabled. For example:

UniConnection.Macros.Add('schema', 'test', 'MySQL');

Using UniDAC 169

© 2024 Devart

UniQuery.SQL.Text := 'SELECT * FROM {schema .}emp';
UniQuery.Open;

In this example a dot is added only when SCHEMA macro is enabled.

UniDAC has set of useful predefined macros that help you write universal statements. Please

refer to Macros Reference for more information.

Conditional Execution (IF)
For the purpose of extra flexibility UniSQL supports conditional inclusion of SQL code into

resulting statements. This is as simple as that:

{if my_macro} STATEMENT_1 {else} STATEMENT_2 {endif}

If macro my_macro is defined, the STATEMENT_1 is returned, otherwise STATEMENT_2 is

the result of the expression. For instance:

{if Oracle}
SELECT * FROM dept
{else}
SELECT * FROM test.dept
{endif}

The {else} clause can be omitted. Here is a bit more sophisticated example:

SELECT {if Oracle}RowId, {endif} DeptNo, DName FROM dept

Note that you can use nested {if...} constructs to continue branching. Also you can use

predefined macros.

Literals and Identifiers
UniDAC provides universal syntax for dates, timestamps and quoted identifiers. Its usage is

similar to usage of macros. Note that this functionality is not available for OLE DB, ODBC,

and DB2 data providers.

Date and time constants

In date/time constants parts of date are separated with hyphen, time parts are separated with

colon, and space is expected between the two parts. The following table illustrates date/time

format:

Literal type Format Example

date yyyy-mm-dd {date '2006-12-31'}
time hh:mm:ss {time '23:59:59'}

Universal Data Access Components170

© 2024 Devart

timestamp yyyy-mm-dd hh:mm:ss {timestamp '2006-12-31
23:59:59'}

The following SQL statement:

 SELECT * FROM emp WHERE HIREDATE>{date '1982-01-15'}

in MySQL evaluates to

 SELECT * FROM emp WHERE HIREDATE>CAST('1982-01-15' AS DATETIME)

and in Oracle it turns to

 SELECT * FROM emp WHERE HIREDATE>TO_DATE('1982-01-15', 'YYYY-MM-DD')

Universal quoting of identifiers

All database servers support quoting for identifiers that contain special symbols like spaces or

dots. UniDAC allows to wrap identifiers universally so that quotation is appropriate for every

database server. Use the following syntax:

"identifier"

For example, expression "table1"."field1" turns into "table1"."field1" in Oracle and

PostgreSQL, into [table1].[field1] in MS SQL Server, and into `table1`.`field1` in MySQL

server. Do not confuse with single quotes, which are intended to wrap string constants.

Comments
Comments are inserted in UniSQL with two hyphens (comments out the text till the end of

current line). For multiline comment, wrap it into /*...*/ sequences. Example:

--This is a single-line comment
/*This one
 spans over
 several lines*/

SQL Functions
UniDAC introduces standard for calling common SQL functions. This is set of function names

with fixed meaning. In run time the function is transformed either to corresponding native

function, or to equivalent expression (for example, several functions). The construct syntax is

{fn Function_Name(parameter1 [,parameter2 ...])}

For example, the following fragment

SELECT {fn TRIM(EName)} FROM emp

Using UniDAC 171

© 2024 Devart

evaluates to

SELECT TRIM(EName) FROM emp

in MySQL, because there is the counterpart in the DBMS. But in MS SQL Server there is no

single corresponding function, so the expression evaluates to

SELECT LTRIM(RTRIM(EName)) FROM emp

The following table lists unified functions and describes them briefly.

Function name Description

System routines

USER Returns current user name.
String routines

CHAR_LENGTH(string_exp) Returns length of string expression in
characters.

LOCATE(string_exp1, string_exp2)
Finds first occurrence of substring
string_exp1 in string expression
string_exp2.

SUBSTRING(string_exp, start, length)
Returns substring from specified string
string_exp.

CONCAT(string_exp1, string_exp2) Concatenates several string expressions.
CHAR(code) Converts integer values into characters.

TRIM(string_exp) Removes leading and trailing spaces from
a string.

UPPER(string_exp) Returns string_exp, with all letters
uppercase.

LOWER(string_exp) Returns string_exp, with all letters
lowercase.

Number routines

TRUNCATE(numeric_exp, integer_exp)
Returns numeric_exp truncated to
integer_exp places right of the decimal
point.

CEILING(numeric_exp)
Returns the smallest integer value not less
than numeric_exp.

Date and time routines

CURRENT_DATE Returns date part of current timestamp, that
is, year, month and day.

YEAR(date_exp) Extracts year part of a timestamp.
MONTH(date_exp) Extracts month part of a timestamp.
DAY(date_exp) Extracts day part of a timestamp.

DATEADD(datepart, number, date)
Returns a new datetime value based on
adding an interval to the specified date.

Universal Data Access Components172

© 2024 Devart

The interval is formed as number of
datepart units. The following example adds
two years to HireDate field:
SELECT {fn DATEADD(year,2,HireDate)}
FROM emp

DATEDIFF (datepart, startdate, enddate)
Returns the number of date and time
boundaries crossed between two specified
dates.

Conversion routines

TODATE(string_exp) Converts value to date format.
TOCHAR(any_type_exp) Converts value to string format.
TONUMBER(string_exp) Converts value to number format.

Macros Reference
The following table enumerates names of predefined macros that are enabled depending on

DBMS server connected and provider used.

Provider Macro name

Adaptive Server Enterprise ASE

Advantage Database Server Advantage

DB2 DB2

InterBase InterBase

Microsoft Access Access

MySQL MySQL

ODBC ODBC

Oracle Oracle

PostgreSQL PostgreSQL

SQLite SQLite

SQL Server SQLServer

DBF DBF

NexusDB NexusDB

There are also predefined macros that help to solve most common differences in SQL

syntax. The following table enumerates them and gives translation for some databases.

Macro name VARCHAR DOUBLE DATETIME PROVIDER

Remarks Evaluates to
database type

Evaluates to
database type

Evaluates to
database type

Evaluates to the
name of currently

Using UniDAC 173

© 2024 Devart

that represents
string values.
Used mainly in
CAST
expressions.

that represents
floating point
values. Used
mainly in CAST
expressions.

that represents
date and time
values. Used
mainly in CAST
expressions.

used provider

Adaptive
Server
Enterprise

VARCHAR FLOAT DATETIME ASE

Advantage VARCHAR DOUBLE TIMESTAMP Advantage

DB2 VARCHAR DOUBLE TIMESTAMP DB2

InterBase VARCHAR DOUBLE
PRECISION

TIMESTAMP InterBase

Microsoft
Access

VARCHAR DOUBLE DATE Access

MySQL VARCHAR DOUBLE DATETIME MySQL

ODBC VARCHAR DOUBLE TIMESTAMP ODBC

Oracle VARCHAR2 NUMBER DATE Oracle

PostgreSQL VARCHAR DOUBLE
PRECISION

TIMESTAMP PostgreSQL

SQLite VARCHAR DOUBLE
PRECISION

TIMESTAMP SQLite

SQL Server VARCHAR FLOAT(53) DATETIME SQL Server

DBF VARCHAR DOUBLE DATE DBF

NEXUS VARCHAR DOUBLE DATETIME NexusDB

Working with Macros

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

4.18 DBMonitor

To extend monitoring capabilities of UniDAC applications there is an additional tool called

DBMonitor. It is provided as an alternative to Borland SQL Monitor which is also supported by

UniDAC.

DBMonitor is an easy-to-use tool to provide visual monitoring of your database applications.

DBMonitor has the following features:

multiple client processes tracing;

SQL event filtering (by sender objects);

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components174

© 2024 Devart

SQL parameter and error tracing.

DBMonitor is intended to hamper an application being monitored as little as possible.

To trace your application with DB Monitor you should follow these steps:

drop TUniSQLMonitor component onto the form;

turn moDBMonitor option on;

set to True the Debug property for components you want to trace;

start DBMonitor before running your program.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

4.19 Writing GUI Applications with UniDAC

UniDAC GUI part is standalone. This means that to make GUI elements such as SQL

cursors, connect form, connect dialog etc. available, you should explicitly include UniDacVcl

unit in your application. This feature is needed for writing console applications.

Delphi and C++Builder
By default UniDAC does not require Forms, Controls and other GUI related units. Only

TUniConnectDialog components require the Forms unit.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

4.20 Compatibility with Previous Versions

We always try to keep UniDAC compatible with previous versions, but sometimes we have to

change the behaviour of UniDAC in order to enhance its functionality, or avoid bugs. This topic

describes such changes, and how to revert the old UniDAC behaviour. We strongly

recommend not to turn on the old behaviour of UniDAC. Use options described below only if

changes applied to UniDAC crashed your existent application.

Values of the options described below should be assigned in the initialization section of one

of the units in your project.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Using UniDAC 175

© 2024 Devart

DBAccess.BaseSQLOldBehavior:

The BaseSQL property is similar to the SQL property, but it does not store changes made by

AddWhere, DeleteWhere, and SetOrderBy methods. After assigning an SQL text and

modifying it by one of these methods, all subsequent changes of the SQL property will not be

reflected in the BaseSQL property. This behavior was changed in UniDAC . To restore old

behavior, set the BaseSQLOldBehavior variable to True.

DBAccess.SQLGeneratorCompatibility:

If the manually assigned RefreshSQL property contains only "WHERE" clause, UniDAC uses

the value of the BaseSQL property to complete the refresh SQL statement. In this situation all

modifications applied to the SELECT query by functions AddWhere, DeleteWhere are not

taken into account. This behavior was changed in UniDAC . To restore the old behavior, set

the BaseSQLOldBehavior variable to True.

MemDS.SendDataSetChangeEventAfterOpen:

Starting with UniDAC , the DataSetChange event is sent after the dataset gets open. It was

necessary to fix a problem with disappeared vertical scrollbar in some types of DB-aware

grids. This problem appears only under Windows XP when visual styles are enabled.

To disable sending this event, change the value of this variable to False.

MemDS.DoNotRaiseExcetionOnUaFail:

Starting with UniDAC , if the OnUpdateRecord event handler sets the UpdateAction parameter

to uaFail, an exception is raised. The default value of UpdateAction is uaFail. So, the

exception will be raised when the value of this parameter is left unchanged.

To restore the old behaviour, set DoNotRaiseExcetionOnUaFail to True.

Uni.OldTransactionBehaviour:

Since UniDAC version 5.0.1, the DefaultTransaction transaction property was added. All

datasets that use the TUniConnection component, use its DefaultTransaction for all

operations under data. In earlier UniDAC versions, all the datasets that used TUniConnection,

used implicitly created internal transaction. This transaction always remained open, and it

was not possible to control it. To restore the old behaviour, set OldTransactionBehaviour to

True.

Universal Data Access Components176

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

4.21 64-bit Development with Embarcadero RAD Studio XE2

RAD Studio XE2 Overview
RAD Studio XE2 is the major breakthrough in the line of all Delphi versions of this product. It

allows deploying your applications both on Windows and Mac OS platforms. Additionally, it is

now possible to create 64-bit Windows applications to fully benefit from the power of new

hardware. Moreover, you can create visually spectacular applications with the help of the

FireMonkey GPU application platform.

Its main features are the following:

Windows 64-bit platform support;

Mac OS support;

FireMonkey application development platform;

Live data bindings with visual components;

VCL styles for Windows applications.

Changes in 64-bit Application Development
64-bit platform support implies several important changes that each developer must keep in

mind prior to the development of a new application or the modernization of an old one.

General

RAD Studio XE2 IDE is a 32-bit application. It means that it cannot load 64-bit packages at

design-time. So, all design-time packages in RAD Studio XE2 IDE are 32-bit.

Therefore, if you develop your own components, you should remember that for the purpose of

developing components with the 64-bit platform support, you have to compile run-time

packages both for the 32- and 64-bit platforms, while design-time packages need to be

compiled only for the 32-bit platform. This might be a source of difficulties if your package is

simultaneously both a run-time and a design-time package, as it is more than likely that this

package won't be compiled for the 64-bit platform. In this case, you will have to separate your

package into two packages, one of which will be used as run-time only, and the other as

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Using UniDAC 177

© 2024 Devart

design-time only.

For the same reason, if your design-time packages require that certain DLLs be loaded, you

should remember that design-time packages can be only 32-bit and that is why they can load

only 32-bit versions of these DLLs, while at run-time 64-bit versions of the DLLs will be

loaded. Correspondingly, if there are only 64-bit versions of the DLL on your computer, you

won't be able to use all functions at design-time and, vice versa, if you have only 32-bit

versions of the DLLs, your application won't be able to work at run-time.

Extended type

For this type in a 64-bit applications compiler generates SSE2 instructions instead of FPU,

and that greatly improves performance in applications that use this type a lot (where data

accuracy is needed). For this purpose, the size and precision of Extended type is reduced:

TYPE 32-bit 64-bit

Extended 10 bytes 8 bytes

The following two additional types are introduced to ensure compatibility in the process of

developing 32- and 64-bit applications:

Extended80 – whose size in 32-bit application is 10 bytes; however, this type provides the

same precision as its 8-byte equivalent in 64-bit applications.

Extended80Rec – can be used to perform low-level operations on an extended precision

floating-point value. For example, the sign, the exponent, and the mantissa can be changed

separately. It enables you to perform memory-related operations with 10-bit floating-point

variables, but not extended-precision arithmetic operations.

Pointer and Integers

The major difference between 32- and 64-bit platforms is the volume of the used memory

and, correspondingly, the size of the pointer that is used to address large memory volumes.

TYPE 32-bit 64-bit

Pointer 4 bytes 8 bytes

At the same time, the size of the Integer type remains the same for both platforms:

TYPE 32-bit 64-bit

Universal Data Access Components178

© 2024 Devart

Integer 4 bytes 4 bytes

That is why, the following code will work incorrectly on the 64-bit platform:

Ptr := Pointer(Integer(Ptr) + Offset);

While this code will correctly on the 64-bit platform and incorrectly on the 32-bit platform:

Ptr := Pointer(Int64(Ptr) + Offset);

For this purpose, the following platform-dependent integer type is introduced:

TYPE 32-bit 64-bit

NativeInt 4 bytes 8 bytes

NativeUInt 4 bytes 8 bytes

This type helps ensure that pointers work correctly both for the 32- and 64-bit platforms:

Ptr := Pointer(NativeInt(Ptr) + Offset);

However, you need to be extra-careful when developing applications for several versions of

Delphi, in which case you should remember that in the previous versions of Delphi the

NativeInt type had different sizes:

TYPE
Delphi
Version

Size

NativeInt D5 N/A

NativeInt D6 N/A

NativeInt D7 8 bytes

NativeInt D2005 8 bytes

NativeInt D2006 8 bytes

NativeInt D2007 8 bytes

NativeInt D2009 4 bytes

NativeInt D2010 4 bytes

NativeInt Delphi XE 4 bytes

NativeInt Delphi XE2 4 or 8 bytes

Out parameters

Some WinAPIs have OUT parameters of the SIZE_T type, which is equivalent to NativeInt in

Delphi XE2. The problem is that if you are developing only a 32-bit application, you won't be

able to pass Integer to OUT, while in a 64-bit application, you will not be able to pass Int64; in

Using UniDAC 179

© 2024 Devart

both cases you will have to pass NativeInt.

For example:

procedure MyProc(out Value: NativeInt);
begin
 Value := 12345;
end;
var
 Value1: NativeInt;
{$IFDEF WIN32}
 Value2: Integer;
{$ENDIF}
{$IFDEF WIN64}
 Value2: Int64;
{$ENDIF}
begin
 MyProc(Value1); // will be compiled;
 MyProc(Value2); // will not be compiled !!!
end;

Win API

If you pass pointers to SendMessage/PostMessage/TControl.Perform, the wParam and

lParam parameters should be type-casted to the WPARAM/LPARAM type and not to Integer/

Longint.

Correct:

SendMessage(hWnd, WM_SETTEXT, 0, LPARAM(@MyCharArray));

Wrong:

SendMessage(hWnd, WM_SETTEXT, 0, Integer(@MyCharArray));

Replace SetWindowLong/GetWindowLog with SetWindowLongPtr/GetWindowLongPtr for

GWLP_HINSTANCE, GWLP_ID, GWLP_USERDATA, GWLP_HWNDPARENT and

GWLP_WNDPROC as they return pointers and handles. Pointers that are passed to

SetWindowLongPtr should be type-casted to LONG_PTR and not to Integer/Longint.

Correct:

SetWindowLongPtr(hWnd, GWLP_WNDPROC, LONG_PTR(@MyWindowProc));

Wrong:

SetWindowLong(hWnd, GWL_WNDPROC, Longint(@MyWindowProc));

Pointers that are assigned to the TMessage.Result field should use a type-cast to LRESULT

instead of Integer/Longint.

Universal Data Access Components180

© 2024 Devart

Correct:

Message.Result := LRESULT(Self);

Wrong:

Message.Result := Integer(Self);

All TWM...-records for the windows message handlers must use the correct Windows types

for the fields:

Msg: UINT; wParam: WPARAM; lParam: LPARAM; Result: LRESULT)

Assembler

In order to make your application (that uses assembly code) work, you will have to make

several changes to it:

rewrite your code that mixes Pascal code and assembly code. Mixing them is not supported

in 64-bit applications;

rewrite assembly code that doesn't consider architecture and processor specifics.

You can use conditional defines to make your application work with different architectures.

You can learn more about Assembly code here: http://docwiki.embarcadero.com/RADStudio/

en/Using_Inline_Assembly_Code You can also look at the following article that will help you to

make your application support the 64-bit platform: http://docwiki.embarcadero.com/

RADStudio/en/Converting_32-bit_Delphi_Applications_to_64-bit_Windows

Exception handling

The biggest difference in exception handling between Delphi 32 and 64-bit is that in Delphi

XE2 64-bit you will gain more performance because of different internal exception

mechanism. For 32-bit applications, the Delphi compiler (dcc32.exe) generates additional

code that is executed any way and that causes performance loss. The 64-bit compiler

(dcc64.exe) doesn't generate such code, it generates metadata and stores it in the PDATA

section of an executable file instead.

But in Delphi XE2 64-bit it's impossible to have more than 16 levels of nested exceptions.

Having more than 16 levels of nested exceptions will cause a Run Time error.

Debugging

Debugging of 64-bit applications in RAD Studio XE2 is remote. It is caused by the same

http://docwiki.embarcadero.com/RADStudio/en/Using_Inline_Assembly_Code
http://docwiki.embarcadero.com/RADStudio/en/Using_Inline_Assembly_Code
http://docwiki.embarcadero.com/RADStudio/en/Converting_32-bit_Delphi_Applications_to_64-bit_Windows
http://docwiki.embarcadero.com/RADStudio/en/Converting_32-bit_Delphi_Applications_to_64-bit_Windows

Using UniDAC 181

© 2024 Devart

reason: RAD Studio XE2 IDE is a 32 application, but your application is 64-bit. If you are trying

to debug your application and you cannot do it, you should check that the Include remote

debug symbols project option is enabled.

To enable it, perform the following steps:

1. Open Project Options (in the main menu Project->Options).

2. In the Target combobox, select Debug configuration - 64-bit Windows platform. If there

is no such option in the combobox, right click "Target Platforms" in Project Manager and

select Add platform. After adding the 64-bit Windows platform, the Debug configuration -

64-bit Windows platform option will be available in the Target combobox.

3. Select Linking in the left part of the Project Options form.

4. enable the Include remote debug symbols option.

After that, you can run and debug your 64-bit application.

To enable remote debugging, perform the following steps:

1. Install Platform Assistant Server (PAServer) on a remote computer. You can find PAServer

in the %RAD_Studio_XE2_Install_Directory%\PAServer directory. The setup_paserver.exe

file is an installation file for Windows, and the setup_paserver.zip file is an istallation file for

MacOS.

2. Run the PAServer.exe file on a remote computer and set the password that will be used to

connect to this computer.

3. On a local computer with RAD Studio XE2 installed, right-click the target platform that you

want to debug in Project Manager and select Assign Remote Profile. Click the Add button

in the displayed window, input your profile name, click the Next button, input the name of a

remote computer and the password to it (that you assigned when you started PAServer on

a remote computer).

After that, you can test the connection by clicking the Test Connection button. If your

connection failed, check that your firewalls on both remote and local computers do not block

your connection, and try to establish a connection once more. If your connection succeeded,

click the Next button and then the Finish button. Select your newly created profile and click

OK.

Universal Data Access Components182

© 2024 Devart

After performing these steps you will be able to debug your application on a remote computer.

You application will be executed on a remote computer, but you will be able to debug it on

your local computer with RAD Studio XE2.

For more information about working with Platform Assistant Server, please refer to http://

docwiki.embarcadero.com/RADStudio/Tokyo/en/

Running_the_Platform_Assistant_on_Windows

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

4.22 C++ Builder Development for Android and iOS

This chapter discusses the basics of developing database applications for iOS and Android in

C++ Builder using UniDAC. C++ Builder supports iOS and Android application development

since version XE6. You can access a database from iOS or Android in almost the same way

you access it from Windows, but you should be aware of some aspects of connecting and

deploying files to a mobile device when working with a local database. This article contains

connection instructions and sample code for each database supported by UniDAC.

Connecting to a Database in Design-Time
To create an Android application that connects to MySQL, select File > New > Multi-Device

Application – C++ Builder. Select Blank Application, then place the TUniConnection and

TMySQLUniProvider components onto the form. Set the ProviderName property of

TUniConnection to MySQL and assign values to the Username, Password, Server, and Port

properties in the Object Inspector. You can test the database connectivity by setting the

Connected property to True. If the values specified are correct, you will be able to view the list

of available databases in the Database dropdown.

Compiling the Project
Select Project > Add to Project… and add the database provider library for Android 64-bit,

which is located in "C:\Program Files (x86)\Devart\UniDAC for RAD Studio 10.3\Lib

\Android64". For C++ Builder 10.3 Rio, the filename of the MySQL provider is

libmyprovider260.a. Compile the project.

The table below contains database servers and their corresponding provider libraries for

mobile application development in C++ Builder 10.3 Rio using UniDAC.

http://docwiki.embarcadero.com/RADStudio/Tokyo/en/Running_the_Platform_Assistant_on_Windows
http://docwiki.embarcadero.com/RADStudio/Tokyo/en/Running_the_Platform_Assistant_on_Windows
http://docwiki.embarcadero.com/RADStudio/Tokyo/en/Running_the_Platform_Assistant_on_Windows
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Using UniDAC 183

© 2024 Devart

Database
System

Standard
Edition

Professio
nal
Edition

ASE libaseprovi
der260.a

libtdsprovi
der260.a

SQL
Server

libmsprovi
der260.a

libtdsprovi
der260.a

SQLite
libliteprovi
der260.a
sqlite3.o

MySQL libmyprovi
der260.a

Oracle liboraprovi
der260.a

PostgreS
QL

libpgprovid
er260.a

InterBase
ToGo

libibprovid
er260.a

Amazon
Redshift

librsprovid
er260.a
libpgprovid
er260.a

xBase

libdbfprovi
der260.a
libvquery2
60.a
sqlite3.o

Connecting in Run-Time
Put the needed providers onto the form and add their library files (similar to what you did in

design-time). Note that despite having the same name, the provider libraries for Android and

iOS are different and located in their respective folders:

"C:\Program Files (x86)\Devart\UniDAC for RAD Studio 10.3\Lib\Android64"

"C:\Program Files (x86)\Devart\UniDAC for RAD Studio 10.3\Lib\iOSDevice64"

Place the TUniConnection component onto the form or add the following lines to the header

file:

#include "DBAccess.hpp"
#include "Uni.hpp"

and the following lines to the .cpp file:

Universal Data Access Components184

© 2024 Devart

#pragma link "DBAccess"
#pragma link "Uni"

If you are planning to use a local database on a mobile device, add this line to the header file

to get access to the IOUtils namespace.

#include <System.IOUtils.hpp>

ASE

ASE has no client for Android or iOS, therefore a connection to an ASE server can only be

established directly via TCP/IP by setting the Direct property to True.

TUniConnection * Connection;
Connection = new TUniConnection(Form1);
try {
 Connection->ProviderName = "ASE";
 Connection->Server = "server";
 Connection->Username = "user_name";
 Connection->Password = "password";
 Connection->Database = "database_name";
 Connection->SpecificOptions->Values["Direct"] = "True";
 Connection->Connect();
 ShowMessage("Connected successfully");
}
__finally {
 Connection->Free;
}

SQL Server

SQL Server has no MS SQL Native Client for Android or iOS, therefore a connection to SQL

Server can only be established directly via TCP/IP by setting the Provider property to

prDirect.

TUniConnection * Connection;
Connection = new TUniConnection(Form1);
try {
 Connection->ProviderName = "SQL Server";
 Connection->Server = "server";
 Connection->Username = "user_name";
 Connection->Password = "password";
 Connection->Database = "database_name";
 Connection->SpecificOptions->Values["Provider"] = "prDirect";
 Connection->Connect();
 ShowMessage("Connected successfully");
}
__finally {
 Connection->Free;
}

SQLite

Using UniDAC 185

© 2024 Devart

If you don’t deploy a database with your application, set the ForceCreateDatabase property to

True to create a database file automatically when the user first launches your application.

TUniConnection * Connection;
Connection = new TUniConnection(Form1);
try {
 Connection->ProviderName = "SQLite";
 Connection->SpecificOptions->Values["ForceCreateDatabase"] = "True";
 Connection->Database = System::Sysutils::IncludeTrailingPathDelimiter(
 System::Ioutils::TPath::GetDocumentsPath()) + "db.sqlite3";
 Connection->Connect();
 ShowMessage("Connected successfully");
}
__finally {
 Connection->Free;
}

Oracle

Oracle has no client for Android or iOS, therefore a connection to an Oracle server can only

be established directly via TCP/IP by setting the Direct property to True. To establish a

connection to Oracle from Android or iOS, assign your host, port, and service name or

system identifier to the Server property.

To connect using the service name, the format is as follows:

Server = "Host:Port:sn/ServiceName";
Server = "Host:Port:sn=ServiceName"; (deprecated format)

To connect using the SID, the format is as follows:

Server = "Host:Port:SID";
Server = "Host:Port:sid=SID"; (deprecated format)

If the port number is followed by a colon, and the service name prefix (sn=) or the SID prefix

(sid=) is not defined, then by default, the connection will be established using SID. In majority

of Oracle servers, the service name is the same as the SID. Consult the Oracle

documentation for more information.

TUniConnection * Connection;
Connection = new TUniConnection(Form1);
try {
 Connection->ProviderName = "Oracle";
 Connection->SpecificOptions->Values["Direct"] = "True";
 Connection->Server = "server:1521:orcl";
 Connection->Username = "user_name";
 Connection->Password = "password";
 Connection->Connect();
 ShowMessage("Connected successfully");
}
__finally {

Universal Data Access Components186

© 2024 Devart

 Connection->Free;
}

MySQL

MySQL has no client for Android or iOS, therefore a connection to a MySQL server can only

be established directly via TCP/IP by setting the Direct property to True.

TUniConnection * Connection;
Connection = new TUniConnection(Form1);
try {
 Connection->ProviderName = "MySQL";
 Connection->SpecificOptions->Values["Direct"] = "True";
 Connection->Server = "server";
 Connection->Port = 3306;
 Connection->Username = "user_name";
 Connection->Password = "password";
 Connection->Connect();
 ShowMessage("Connected successfully");
}
__finally {
 Connection->Free;
}

PostgreSQL

UniDAC supports only a direct connection to PostgreSQL, therefore there’s no property that

instructs the client on how to connect to the server.

TUniConnection * Connection;
Connection = new TUniConnection(Form1);
try {
 Connection->ProviderName = "PostgreSQL";
 Connection->Server = "server";
 Connection->Port = 5432;
 Connection->Database = "database_name";
 Connection->SpecificOptions->Values["Schema"] = "schema_name";
 Connection->Username = "user_name";
 Connection->Password = "password";
 Connection->Connect();
 ShowMessage("Connected successfully");
}
__finally {
 Connection->Free;
}

InterBase ToGo

You can connect to a local or remote InterBase ToGo database from iOS and Android

devices. To connect to a local database, set the path to the database on the device. If you

need to establish a connection to a remote server, specify the server address and database

Using UniDAC 187

© 2024 Devart

name.

Local

TUniConnection * Connection;
Connection = new TUniConnection(Form1);
try {
 Connection->ProviderName = "InterBase";
 Connection->Database = System::Sysutils::IncludeTrailingPathDelimiter(
 System::Ioutils::TPath::GetDocumentsPath()) + "db.gdb";
 Connection->Username = "user_name";
 Connection->Password = "password";
 Connection->Connect();
 ShowMessage("Connected successfully");
}
__finally {
 Connection->Free;
}

Remote

TUniConnection * Connection;
Connection = new TUniConnection(Form1);
try {
 Connection->ProviderName = "InterBase";
 Connection->Server = "server";
 Connection->Database = "C:\db.gdb";
 Connection->Username = "user_name";
 Connection->Password = "password";
 Connection->Connect();
 ShowMessage("Connected successfully");
}
__finally {
 Connection->Free;
}

Amazon Redshift

UniDAC supports only a direct connection to Redshift, therefore there’s no property that

instructs the client on how to connect to the server.

TUniConnection * Connection;
Connection = new TUniConnection(Form1);
try {
 Connection->ProviderName = "Redshift";
 Connection->Server = "server";
 Connection->Username = "user_name";
 Connection->Password = "password";
 Connection->Database = "database_name";
 Connection->Port= 5439;
 Connection->Connect();
 ShowMessage("Connected successfully");
}
__finally {

Universal Data Access Components188

© 2024 Devart

 Connection->Free;
}

xBase

xBase databases don’t use the client-server model, therefore a connection to an xBase

database can only be established directly via TCP/IP by setting the Direct property to True. To

connect to an xBase database, set the path to the database and its format.

TUniConnection * Connection;
Connection = new TUniConnection(Form1);
try {
 Connection->ProviderName = "DBF";
 Connection->Database = "folder_name";
 Connection->SpecificOptions->Values["DBFFormat"] = "dfVisualFoxPro";
 Connection->SpecificOptions->Values["Direct"] = "True";
 Connection->Connect();
 ShowMessage("Connected successfully");
}
__finally {
 Connection->Free;
}

Deployment
The deployment path is different on Android and iOS. If you want to deploy your application to

both platforms, make sure that the deployment paths are specified correctly for both Android

and iOS. Despite having the same name, the providers for Android and iOS are different and

located in their respective folders. Remember to replace the default value (".") of Remote Path

with one of the values below.

C++ Builder
Function

Deployment
Path

Destination
on Device

TPath::GetDo
cumentsPath

.\assets
\internal

/data/data/
com.embarca
dero.MyProje
cts/files

TPath::GetSh
aredDocume
ntsPath

.\assets

/mnt/sdcard/
Android/data/
com.embarca
dero.MyProje
cts/files

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Provider-Specific Notes 189

© 2024 Devart

5 Provider-Specific Notes

This section covers provider-specific options and requirements, compatibility, and

deployment aspects of data access providers in UniDAC.

Database Providers
UniDAC and Adaptive Server Enterprise

UniDAC and Advantage Database Server

UniDAC and Amazon Redshift

UniDAC and DB2

UniDAC and DBF

UniDAC and InterBase

UniDAC and Microsoft Access

UniDAC and MongoDB

UniDAC and MySQL

UniDAC and NexusDB

UniDAC and PostgreSQL

UniDAC and ODBC

UniDAC and Oracle

UniDAC and SQLite

UniDAC and SQL Server

Cloud Providers
UniDAC and BigCommerce

UniDAC and Google BigQuery

UniDAC and Dynamics CRM

UniDAC and FreshBooks

UniDAC and HubSpot

UniDAC and Magento

Universal Data Access Components190

© 2024 Devart

UniDAC and Mailchimp

UniDAC and NetSuite

UniDAC and QuickBooks

UniDAC and Salesforce

UniDAC and Salesforce MC

UniDAC and SugarCRM

UniDAC and Zoho CRM

Database Specific Aspects of 64-bit Development

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

5.1 Database Providers

5.1.1 UniDAC and Adaptive Server Enterprise

This article provides a brief overview of the SAP Sybase ASE data access provider for

UniDAC used to establish a connection to ASE databases from Delphi and Lazarus. You will

find the description of some useful features and how to get started quickly.

Overview

Compatibility

Requirements

Deployment

ASE-specific options

TUniConnection

TUniSQL

TUniQuery, TUniTable, TUniStoredProc

TUniScript

TUniLoader

TUniDump

Data Type Mapping

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Provider-Specific Notes 191

© 2024 Devart

Overview
ASE provider is based on the ODBC provider. It uses SAP Sybase ASE ODBC driver to work

with database. Main features of SAP Sybase ASE data access provider are:

High performance

Easy deployment

The full list of SAP Sybase ASE provider features can be found on the UniDAC features page.

Both Professional and Standard Editions of UniDAC include the SAP Sybase ASE provider.

Express Edition of UniDAC does not include the SAP Sybase ASE provider.

Compatibility
To learn about ASE database server compatibility, refer to the Compatibility section.

Requirements
Applications that use the SAP Sybase ASE provider require the following components to be

installed on the client computer:

ODBC (in the current versions of Microsoft Windows, since Windows 2000, ODBC is

already included as a standard package);

Adaptive Server Enterprise client software including ODBC driver.

Deployment
When an application was built without runtime packages (Link with runtime packages set to

False in Project Options), you do not need to deploy any BPL files with it. For more

information, see Deployment.

Note that UniDAC Trial requires deployment of additional BPL files regardless of Link with

runtime packages.

ASE-specific options

TUniConnection

Option name Description

https://www.devart.com/unidac/features.html

Universal Data Access Components192

© 2024 Devart

AnsiNull

This option serves primarily for Transact-SQL (Adaptive Server
Enterprise) compatibility. AnsiNull affects the results of
comparison predicates with NULL constants, and also affects
warnings issued for grouped queries over NULL values.

ApplicationName The name of a client application. The default value is the name of
the executable file of your application.

Charset The character set that will be used to transfer character data
between the client and the server.

ClientHostName The hostname of the client machine.

ColumnWiseBinding

Enables Column-Wise Binding. The default value is False.

Note: Row-Wise Binding is enabled by default. However, some

ODBC drivers don't support this mode. In this case, set the

ColumnWiseBinding option to True.

ConnectionTimeout The time to wait for a connection to open before raising an
exception. The default value is 15.

DetectFieldsOnPrep
are

Detects fields when Prepare is executed. The default value is
True.
Note: This functionality is not supported in some ODBC drivers.

Direct
If set to True, connection is performed directly over TCP/IP, and
does not require SAP Sybase ASE software on the client side.
Otherwise, provider connects through ODBC.

EncryptPassword

Specifies whether the password will be transmitted in encrypted
format.
epDisable

The default value. Use plain text password.
epRequire

Use encrypted password. If it is not supported, return an error
message.
epPrefer

Use encrypted password. If it is not supported, use plain text
password.
Note: If the server is configured to require clients to use an

encrypted password, entering a plain text password will cause

login to fail.

IPVersion

Use the IPVersion property to specify Internet Protocol Version.

Supported values:

ivIPBoth
Specifies that either Internet Protocol Version 6 (IPv6) or Version

https://msdn.microsoft.com/en-us/library/ms713541(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms711730%28v=vs.85%29.aspx

Provider-Specific Notes 193

© 2024 Devart

4 (IPv4) will be used.

ivIPv4 (default)
Specifies that Internet Protocol Version 4 (IPv4) will be used.

ivIPv6
Specifies that Internet Protocol Version 6 (IPv6) will be used.

Note: When the IPVersion property is set to ivIPBoth, a
connection attempt will be made via IPv6 if it is enabled on the
operating system. If the connection attempt fails, a new
connection attempt will be made via IPv4.

MultipleConnections Enables or disables the creation of additional connections to
support concurrent sessions, commands and rowset objects.

PrepareMethod

Use the option to specify whether stored procedures are created
on the server for calls to SQLPrepare.

Supported values:

pmNone
Stored procedures are created for every call to SQLPrepare,
which may decrease performance when processing statements
that do not contain parameters.

pmPartial (default)
Stored procedures are created only if the statement contains
parameters. Otherwise, the statement is cached and executed
directly at SQLExecute time.

pmFull
Stored procedures are never created. Any syntax or similar errors
are reported at the time of SQLExecute.

pmFullatPrepare
Stored procedures are never created. Any syntax or similar errors
are returned at the time of SQLPrepare instead of SQLExecute.

SelectMethod

Specifies whether cursors are to be used by the driver. smDirect
indicates do not use cursors and smCursor indicates use
cursors.
The default value is smDirect

QuotedIdentifier

To avoid conflicts in procedures and queries that contain
reserved words, you should use the QuotedIdentifier option. The
QuotedIdentifier option tells Adaptive Server to consider any
character string enclosed in double quotes as an identifier. If this
option is disabled (by default), ASE considers everything inside
the double quotes as a simple string.

Universal Data Access Components194

© 2024 Devart

TextSize

The maximum size of binary or text data in bytes that will be sent
to or received from Adaptive Server, for example,
TextSize=64000 sets this limit to 64K bytes. The default value is
0.
Note: This option has no effect in the Direct mode because
values are never truncated.

UseUnicode

Enables or disables Unicode support. Affects character data
fetched from the server. When set to True, all character data is
stored as WideStrings, and TStringField is replaced by
TWideStringFiled.

TUniSQL

Option name Description

CommandTimeout The time to wait for a statement to be executed.

TUniQuery, TUniTable, TUniStoredProc

Option name Description

CommandTimeout The time to wait for a statement to be executed.

ExtendedFieldsInfo
If True, an additional query is performed to get information about
returned fields and tables they belong to. The default value is
True.

FetchAll

If True, all records of a query are requested from database server
when the dataset is being opened. If False, records are retrieved
when a data-aware component or a program requests it. The
default value is False.

TUniScript

The TUniDump component has no ASE-specific options.

TUniLoader

The TUniLoader component has no ASE-specific options.

TUniDump

The TUniDump component has no ASE-specific options.

Data Type Mapping
The following table lists the constants for mapping SAP ASE data types to Delphi data types.

Provider-Specific Notes 195

© 2024 Devart

See Data Type Mapping for more information.

Constant Description

aseChar Maps char to Delphi data types.

aseNChar Maps nchar to Delphi data types.

aseUniChar Maps unichar to Delphi data types.

aseNVarChar Maps nvarchar to Delphi data types.

aseVarchar Maps varchar to Delphi data types.

aseUniVarChar Maps univarchar to Delphi data types.

aseTinyInt Maps tinyint to Delphi data types.

aseSmallint Maps smallint to Delphi data types.

aseUSmallint Maps usmallint to Delphi data types.

aseInteger Maps integer to Delphi data types.

aseUInteger Maps uninteger to Delphi data types.

aseBigint Maps bigint to Delphi data types.

aseUBigint Maps ubigint to Delphi data types.

aseDecimal Maps decimal to Delphi data types.

aseFloat Maps float to Delphi data types.

aseDouble Maps double to Delphi data types.

aseReal Maps real to Delphi data types.

aseNumeric Maps numeric to Delphi data types.

aseDate Maps date to Delphi data types.

aseTime Maps time to Delphi data types.

aseDateTime Maps datetime to Delphi data types.

aseBit Maps bit to Delphi data types.

aseBinary Maps binary to Delphi data types.

aseVarBinary Maps varbinary to Delphi data types.

aseImage Maps image to Delphi data types.

aseText Maps text to Delphi data types.

aseUniText Maps unitext to Delphi data types.

aseXml Maps xml to Delphi data types.

aseSmallmoney Maps smallmoney to Delphi data types.

aseMoney Maps money to Delphi data types.

aseSmalldatetime Maps smalldatetime to Delphi data types.

aseTimestamp Maps timestamp to Delphi data types.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components196

© 2024 Devart

5.1.2 UniDAC and Advantage Database Server

This article provides a brief overview of the Advantage data access provider for UniDAC used

to establish a connection to Advantage from Delphi and Lazarus. You will find the description

of some useful features and how to get started quickly.

Overview

Compatibility

Requirements

Deployment

Advantage-specific options

TUniConnection

TUniSQL

TUniQuery, TUniTable, TUniStoredProc

TUniScript

TUniLoader

TUniDump

Data Type Mapping

Overview
Advantage provider is based on the ODBC provider. It uses Advantage ODBC driver to work

with database. Main features of Advantage data access provider are:

High performance

Easy deployment

The full list of Advantage provider features can be found on the UniDAC features page.

Both Professional and Standard Editions of UniDAC include the Advantage provider. Express

Edition of UniDAC does not include the Advantage provider.

Compatibility
To learn the supported versions of Advantage Database Server, refer to the Compatibility

section.

https://www.devart.com/unidac/features.html

Provider-Specific Notes 197

© 2024 Devart

Requirements
Applications that use the Advantage provider require the following components to be installed

on the client computer:

ODBC (in the current versions of Microsoft Windows, since Windows 2000, ODBC is

already included as a standard package);

Advantage ODBC driver.

Deployment
When an application was built without runtime packages (Link with runtime packages set to

False in Project Options), you do not need to deploy any BPL files with it. For more

information, see Deployment.

Note that UniDAC Trial requires deployment of additional BPL files regardless of Link with

runtime packages.

Advantage-specific options

TUniConnection

Option name Description

DefaultType

Specifies the type of database files to be used.

Supported values:

dtAdvantage (default)
Specifies that proprietary ADT tables with ADI index and ADM
memo file formats will be used.

dtFoxPro
Specifies that FoxPro-compatible DBF tables with CDX index
and FPT memo file formats will be used.

dtVisualFoxPro
Specifies that Visual FoxPro-compatible DBF tables with CDX
index and FPT memo file formats will be used.

dtClipper
Specifies that CA-Clipper-compatible DBF tables with NTX index
and DBT memo fields will be used.

Universal Data Access Components198

© 2024 Devart

ColumnWiseBinding

If set to True, the option enables Column-Wise Binding mode.

The fefault value is False.

Note: Row-Wise Binding mode is enabled by default. However,

some ODBC drivers don't support this mode. In such case, set

the ColumnWiseBinding option to True.

ConnectionTimeout The time to wait for a connection to open before raising an
exception.

ServerTypes

Specifies the Advantage server types, to which connections
should be attempted. Valid values include ADS, ALS, and AIS.
ADL - Remote , ALS - local, and AIS - Internet Servers.
These values can be logically OR'ed together with the "," in order
to choose multiple server types. If multiple types are specified
and multiple server types are available, the order of precedence
is ADS first, AIS second, and ALS last.

UseUnicode

Enables or disables Unicode support. Affects character data
fetched from the server. When set to True, all character data is
stored as WideStrings, and TStringField is replaced by
TWideStringFiled.

TUniSQL

Option name Description

CommandTimeout The time to wait for a statement to be executed.

TUniQuery, TUniTable, TUniStoredProc

Option name Description

CommandTimeout The time to wait for a statement to be executed.

ExtendedFieldsInfo
If True, an additional query is performed to get information about
returned fields and tables they belong to. The default value is
True.

FetchAll

If True, all records of a query are requested from database server
when the dataset is being opened.
If False, records are retrieved when a data-aware component or
a program requests it. The default value is False.

TUniScript

The TUniDump component has no Advantage-specific options.

https://msdn.microsoft.com/en-us/library/ms713541(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms711730%28v=vs.85%29.aspx

Provider-Specific Notes 199

© 2024 Devart

TUniLoader

The TUniLoader component has no Advantage-specific options.

TUniDump

The TUniDump component has no Advantage-specific options.

Data Type Mapping
The following table lists the constants for mapping Advantage Database Server data types to

Delphi data types. See Data Type Mapping for more information.

Constant Description

adsCharacter Maps to Delphi data types.
adsNChar Maps NChar to Delphi data types.

adsVarChar Maps Varchar to Delphi data types.

adsNVarChar Maps NVarChar to Delphi data types.

adsShortInteger Maps Short to Delphi data types.

adsInteger Maps Integer to Delphi data types.

adsNumeric Maps Numeric to Delphi data types.

adsDouble Maps Double to Delphi data types.

adsMoney Maps Money to Delphi data types.

adsDate Maps Date to Delphi data types.

adsTime Maps Time to Delphi data types.

adsTimeStamp Maps TimeStamp to Delphi data types.

adsLogical Maps Logical to Delphi data types.

adsBinary Maps Binary to Delphi data types.

adsVarBinary Maps VarBinary to Delphi data types.

adsImage Maps Image to Delphi data types.

adsMemo Maps Memo to Delphi data types.

adsNMemo Maps NMemo to Delphi data types.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

5.1.3 UniDAC and Amazon Redshift

This article provides a brief overview of the Amazon Redshift data access provider for

UniDAC used to establish a connection to Amazon Redshift from Delphi and Lazarus. You

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components200

© 2024 Devart

will find the description of some useful features and how to get started quickly.

Overview

Compatibility

Requirements

Deployment

Amazon Redshift-specific options

TUniConnection

TUniSQL

TUniQuery, TUniTable, TUniStoredProc

TUniScript

TUniLoader

TUniDump

Data Type Mapping

Overview

Main features of Amazon Redshift data access provider are:

Direct access to Amazon Redshift without additional client libraries or tools.

High performance

Easy deployment

The full list of provider features can be found on the UniDAC features page.

Both Professional and Standard Editions of UniDAC include the Amazon Redshift provider.

Requirements
The Amazon Redshift provider and the PostgreSQL provider are included in one package

(pgproviderXX.bpl), therefore, they are installed together.

Deployment
When an application was built without runtime packages (Link with runtime packages set to

https://www.devart.com/unidac/features.html

Provider-Specific Notes 201

© 2024 Devart

False in Project Options), you do not need to deploy any BPL files with it. For more

information, see Deployment.

Note that UniDAC Trial requires deployment of additional BPL files regardless of Link with

runtime packages.

For more information about deployment of UniDAC-based applications, please, refer to the

common Deployment topic.

Amazon Redshift-specific options
Though UniDAC is components that provide unified interface to work with different database

servers, it also lets you tune behaviour for each server individually. For thin setup of a certain

database server, UniDAC provides server-specific options. These options can be applied to

such components as TUniConnection, TUniQuery, TUniTable, TUniStoredProc, TUniSQL,

TUniScript via their SpecificOptions property. SpecificOptions is a string list. Therefore you

can use the following syntax to assign an option value:

UniConnection.SpecificOptions.Values['ConnectionTimeout'] := '15';

Below you will find the description of allowed options grouped by components.

TUniConnection

Option name Description

ApplicationName The name of a client application. The default value is the name of
the executable file of your application.

Charset Specifies the character set that will be used to transfer character
data between the client and the server.

ConnectionTimeout The time to wait for a connection to open before raising an
exception.

HttpPassword Use the HttpPassword option to specify the password for HTTP
authorization.

HttpTrustServerCertif
icate

This option specifies whether or not the driver should trust the
server certificate when connecting to the server. The default value
is False – the driver won't trust the server certificate and will verify
validity of the server certificate instead. If set to True, the driver
will trust the server certificate.

HttpUrl Use the HttpUrl option to specify the URL of the PHP tunneling
script.

HttpUsername Use the HttpUsername option to specify the username for HTTP
authorization.

IPVersion Use the IPVersion property to specify Internet Protocol Version.

Universal Data Access Components202

© 2024 Devart

Supported values:

ivIPBoth
Specifies that either Internet Protocol Version 6 (IPv6) or Version
4 (IPv4) will be used.

ivIPv4 (default)
Specifies that Internet Protocol Version 4 (IPv4) will be used.

ivIPv6
Specifies that Internet Protocol Version 6 (IPv6) will be used.

Note: When the TIPVersion property is set to ivIPBoth, a
connection attempt will be made via IPv6 if it is enabled on the
operating system. If the connection attempt fails, a new
connection attempt will be made via IPv4.

MessagesCharset Specifies the character set that will be used to transfer error
messages from the server to the client.

MultipleConnections
Enables or disables the creation of an additional internal
connection for TUniQuery, when necessary. The default value is
True.

ProtocolVersion

Specifies protocol version to be used when several versions are
available.

Supported values:

pv20
Set ProtocolVersion to pv20 to enforce protocol version 2.0.

pv30 (default)
Set ProtocolVersion to pv30 to enforce protocol version 3.0.

pvAuto
Set ProtocolVersion to pvAuto to automatically select between
protocol versions depending on the specific query for the best
possible performance.

ProxyHostname Use the ProxyHostName option to specify the host name or IP
address to connect to the proxy server.

ProxyPassword Use the ProxyPassword option to specify the password for the
proxy server.

ProxyPort Use the ProxyPort option to specify the port for a TCP/IP
connection with the proxy server.

ProxyUsername Use the ProxyUsername option to specify the username for the
proxy server.

Schema Use the Schema property to set the search path for the

Provider-Specific Notes 203

© 2024 Devart

connection to the specified schema. The setting offers a
convenient way to perform operations on objects in a schema
other than that of the current user without having to qualify the
objects with the schema name.

SSLCACert The pathname to the certificate authority file.
SSLCert The pathname to the certificate file.
SSLChipherList The list of allowable ciphers to use for SSL encryption.
SSLKey The pathname to the key file.

SSLMode This option determines whether or with what priority an SSL
connection will be negotiated with the server.

UseHttp The UseHttp option enables the use of HTTP tunneling to connect
to the server. The default value is False.

UseUnicode

Enables or disables Unicode support. Affects character data
fetched from the server. When set to True, all character data is
stored as WideStrings, and TStringField is replaced by
TWideStringFiled.

TUniSQL

Option name Description

CommandTimeout The time to wait for a statement to be executed.

UnpreparedExecute
If True, the simple execute is used for SQL statement. Statement
is not prepared before execute. It allows to add multiple
statements separated by semicolon to the SQL property.

UseParamTypes

Set this option to True to disable automatic detection of
parameter types. When this option is True, data types of
parameters are set basing on the DataType property. When this
option is False, data types of the parameters are detected by
server automatically.

UuidWithBraces
Use the UuidWithBraces option to specify whether the values of
UUID fields are returned with braces. The default value is True.

TUniQuery, TUniTable, TUniStoredProc

Option name Description

AutoDeleteBlob
If True (the default value), the BLOBs are deleted from database
automatically when a record that holds these BLOBs' OIDs is
deleted from dataset.

CacheBlobs If True (the default value), then local memory buffer is allocated to
hold a copy of the BLOB content.

CommandTimeout The time to wait for a statement to execute.

CursorWithHold When this option is False (default), an active transaction is

Universal Data Access Components204

© 2024 Devart

required to open a query in FetchAll=False mode. If there is no
active transaction, UniDAC opens additional internal connection
and starts transaction on this connection.
When this option is True, UniDAC uses DECLARE CURSOR ...
WITH HOLD statement to open the query. In this case no active
transaction is required but this may take additional server
resources.

DeferredBlobRead

If True, all BLOB values are fetched only when they are explicitly
requested. Otherwise entire record set with any BLOB values is
returned when dataset is opened. Whether BLOB values are
cached locally to be reused later is controlled by the CacheLobs
option.

ExtendedFieldsInfo
If True, an additional query is performed to get information about
returned fields and tables they belong to. The default value is
False.

FetchAll

If True, all records of a query are requested from database server
when the dataset is being opened.
If False, records are retrieved when a data-aware component or
a program requests it. The default value is True.

KeySequence
Use the KeySequence property to specify the name of a
sequence that will be used to fill in a key field after a new record
is inserted or posted to the database.

OIDAsInt
If True, OID fields are mapped on TIntegerField. If False, values of
OID fields are treated as large objects' OID, and these fields are
mapped on TBlobField.

SequenceMode

Set the SequenceMode property to specify which method is used
internally to generate sequenced field. The following values are
allowed for this property:

smInsert
New record is inserted into the dataset with the first key field
populated with a sequenced value. Application may modify this
field before posting the record to the database.
smPost
Database server populates key field with a sequenced value
when application posts the record to the database. Any value put
into the key field before post will be overwritten.

UnknownAsString

If True, all Amazon Redshift data types that are fetched as text,
and don't have limited field size, are mapped on TStringField with
default size 8192. If False, such types are mapped on
TMemoField. The TEXT data type is always mapped on
TMemoField regardless of this option.

UnpreparedExecute
If True, the simple execute is used for SQL statement. Statement
is not prepared before execute. It allows to add multiple
statements separated by semicolon to the SQL property.

Provider-Specific Notes 205

© 2024 Devart

UseParamTypes

Set this option to True to disable automatic detection of
parameter types. When this option is True, data types of
parameters are set basing on the DataType property. When this
option is False, data types of the parameters are detected by
server automatically.

TUniScript, TUniDump, TUniLoader

The TUniScript, TUniDump, TUniLoader components have no Amazon Redshift-specific

options.

Data Type Mapping
The following table lists the constants for mapping Amazon Redshift data types to Delphi data

types. See the Data Type Mapping tutorial for more information.

Constant Description
pgBigInt Maps bigint to Delphi data types.
pgBigSerial Maps bigserial to Delphi data types.
pgBit Maps bit to Delphi data types.
pgBitVarying Maps bit varying to Delphi data types.
pgBoolean Maps boolean to Delphi data types.
pgBytea Maps bytea to Delphi data types.
pgCharacter Maps character to Delphi data types.
pgCharacterVarying Maps character varying to Delphi data types.
pgDate Maps date to Delphi data types.
pgDoublePrecision Maps double precision to Delphi data types.
pgInteger Maps integer to Delphi data types.
pgMoney Maps money to Delphi data types.
pgNumeric Maps numeric to Delphi data types.
pgReal Maps real to Delphi data types.
pgSerial Maps serial to Delphi data types.
pgSmallint Maps smallint to Delphi data types.
pgText Maps text to Delphi data types.
pgTime Maps time to Delphi data types.
pgTimeStamp Maps timestamp to Delphi data types.
pgTimeStampWithTim
eZone

Maps timestamp with time zone to Delphi data types.

pgTimeWithTimeZone Maps time with time zone to Delphi data types.
pgUUID Maps uuid to Delphi data types.

Universal Data Access Components206

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

5.1.4 UniDAC and DB2

This article provides a brief overview of the DB2 data access provider for UniDAC used to

establish a connection to DB2 databases from Delphi and Lazarus. You will find the

description of some useful features and how to get started quickly.

Overview

Compatibility

Requirements

Deployment

DB2-specific options

TUniConnection

TUniSQL

TUniQuery, TUniTable, TUniStoredProc

TUniScript

TUniLoader

TUniDump

Data Type Mapping

Overview
DB2 provider is based on the ODBC provider. It uses DB2 ODBC driver to work with a

database. Main features of the DB2 data access provider are:

High performance

Easy deployment

The full list of the DB2 provider features can be found on the UniDAC features page.

Both Professional and Standard Editions of UniDAC include the DB2 provider. Express

Edition of UniDAC does not include the DB2 provider.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/unidac/features.html

Provider-Specific Notes 207

© 2024 Devart

Compatibility
To learn about DB2 database server compatibility, refer to the Compatibility section.

Requirements
Applications that use the DB2 provider require the following components to be installed on the

client computer:

ODBC (in the current versions of Microsoft Windows, since Windows 2000, ODBC is

already included as a standard package);

DB2 client software including the ODBC driver.

Deployment
When an application was built without runtime packages (Link with runtime packages set to

False in Project Options), you do not need to deploy any BPL files with it. For more

information, see Deployment.

Note that UniDAC Trial requires deployment of additional BPL files regardless of Link with

runtime packages.

DB2-specific options

TUniConnection

Option name Description

ColumnWiseBinding

If set to True, the option enables Column-Wise Binding mode.

The fefault value is False.

Note: Row-Wise Binding mode is enabled by default. However,

some ODBC drivers don't support this mode. In such case, set

the ColumnWiseBinding option to True.

ConnectionTimeout The time to wait for a connection to open before raising an
exception.

FunctionPath

Use the FunctionPath property to change the current function path
of the connection to the specified value. You can specify several
names separated by comma. This option can be used to call
stored procedures from a schema other than that of the current
user without having to qualify the objects with the schema name.

https://msdn.microsoft.com/en-us/library/ms713541(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms711730%28v=vs.85%29.aspx

Universal Data Access Components208

© 2024 Devart

Schema

Use the Schema property to change the current schema of the
connection to the specified schema. This setting offers a
convenient way to perform operations on objects in a schema
other than that of the current user without having to qualify the
objects with the schema name.

UseUnicode

Enables or disables Unicode support. Affects character data
fetched from the server. When set to True, all character data is
stored as WideStrings, and TStringField is replaced by
TWideStringFiled.

TUniSQL

Option name Description

CommandTimeout The time to wait for a statement to be executed.

TUniQuery, TUniTable, TUniStoredProc

Option name Description

CommandTimeout The time to wait for a statement to be executed.

ExtendedFieldsInfo
If True, an additional query is performed to get information about
returned fields and tables they belong to. The default value is
True.

KeySequence
Use the KeySequence property to specify the name of the
sequence that will be used to fill in a key field after a new record
is inserted or posted to the database.

FetchAll

If True, all records of a query are requested from database server
when the dataset is being opened.
If False, records are retrieved when a data-aware component or
a program requests it. The default value is False.

SequenceMode

Set the SequenceMode property to specify which method is used
internally to generate sequenced field.
The following values are allowed for this property:

smInsert
New record is inserted into the dataset with the first key field
populated with a sequenced value. Application may modify this
field before posting the record to the database.
smPost
Database server populates the key field with a sequenced value
when application posts the record to the database. Any value put
into the key field before post will be overwritten.

TUniScript

Provider-Specific Notes 209

© 2024 Devart

The TUniDump component has no DB2-specific options.

TUniLoader

The TUniLoader component has no DB2-specific options.

TUniDump

The TUniDump component has no DB2-specific options.

Data Type Mapping
The following table lists the constants for mapping DB2 data types to Delphi data types. See

Data Type Mapping for more information.

Constant Description

db2Char Maps CHARACTER to Delphi data types.

db2VarChar Maps VARCHAR to Delphi data types.

db2SmallInt Maps SMALLINT to Delphi data types.

db2Integer Maps INTEGER to Delphi data types.

db2BigInt Maps BIGINT to Delphi data types.

db2Decimal Maps DECIMAL to Delphi data types.

db2Float Maps FLOAT to Delphi data types.

db2Double Maps DOUBLE to Delphi data types.

db2Real Maps REAL to Delphi data types.

db2Numeric Maps NUMERIC to Delphi data types.

db2Date Maps DATE to Delphi data types.

db2Time Maps TIME to Delphi data types.

db2TimeStamp Maps TIMESTAMP to Delphi data types.

db2Binary Maps BINARY to Delphi data types.

db2VarBinary Maps VARBINARY to Delphi data types.

db2Blob Maps BLOB to Delphi data types.

db2Clob Maps CLOB to Delphi data types.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

5.1.5 UniDAC and DBF

This article provides a brief overview of the DBF data access provider for UniDAC used to

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components210

© 2024 Devart

establish a connection to DBF databases from Delphi and Lazarus. You will find the

description of some useful features and how to get started quickly.

Overview

Requirements

Deployment

DBF-specific options

TUniConnection

TUniSQL

TUniQuery, TUniTable, TUniStoredProc

TUniScript

TUniLoader

TUniDump

Data Type Mapping

Overview
Main features of the DBF data access provider are:

Direct access to the database without using Microsoft dBase ODBC driver

High performance

Easy deployment

The full list of the DBF provider features can be found on the UniDAC features page.

Both Professional and Standard Editions of UniDAC include the DBF provider. Express

Edition of UniDAC does not include the DBF provider.

Compatibility
To learn the DBF formats supported by the provider, refer to the Compatibility section.

Requirements
If your application is working in the Direct mode, it is not required to install any additional

software on the client. For application that has Direct mode disabled, it is required to install

https://www.devart.com/unidac/features.html

Provider-Specific Notes 211

© 2024 Devart

the following components on the client computer:

ODBC (in the current versions of Microsoft Windows, since Windows 2000, ODBC is

already included as a standard package);

Microsoft dBase ODBC driver

Deployment
When an application was built without runtime packages (Link with runtime packages set to

False in Project Options), you do not need to deploy any BPL files with it. For more

information, see Deployment.

Note that UniDAC Trial requires deployment of additional BPL files regardless of Link with

runtime packages.

DBF-specific options

TUniConnection

Option name Description

AllFieldsAsNullable
Used to open DBF tables with incorrect data (tables that have
records with null values in non-nullable columns). The default value
is False.

CodePage

Specifies a code page when working with a database. Available
values: dpDefault, dpUnitedStatesOEM, dpGreekDOS,
dpWesternEuropeanDOS, dpTurkishDOS,
dpCentralEuropeanDOS, dpPortugueseDOS, dpIcelandicDOS,
dpFrenchCanadianDOS, dpNordicDOS, dpCyrillicDOS, dpThai,
dpJapanese, dpChineseSimplified, dpChineseTraditional,
dpKorean, dpCentralEuropeanANSI, dpCyrillicANSI,
dpWesternEuropeanANSI, dpGreekANSI, dpTurkishANSI,
dpHebrewANSI, dpArabicANSI, dpBalticANSI. Default value is
dpDefault.

CollatingSequence Specifies the collation sequence. Available values: ASCII and
International. The default value is ASCII.

ColumnWiseBinding

If set to True, the option enables Column-Wise Binding mode.

The fefault value is False.

Note: Row-Wise Binding mode is enabled by default. However,

some ODBC drivers don't support this mode. In such case, set

the ColumnWiseBinding option to True.

https://msdn.microsoft.com/en-us/library/ms713541(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms711730%28v=vs.85%29.aspx

Universal Data Access Components212

© 2024 Devart

Connect Mode

Used to specify how connections access DBF table files.

Exclusive
Only one connection can access the table file at a time. The
active connection holds read/write lock on the file to prevent other
connections from reading or writing to it.

Shared
The default value. Multiple concurrent connections can read/write
to the same table. The active connection holds read/write lock on
the table file, but releases the lock once it has finished reading or
writing the data.

Unsafe
Multiple concurrent connections can read and write to the table
file. This mode should be used with caution because it allows
multiple connections to modify the file simultaneously. Since DBF
databases do not support transactions, an attempt to change the
same file simultaneously by multiple connections can cause data
corruption in the table file.

ConnectionTimeout The time to wait for a connection to open before raising an
exception.

DBFFormat

The default database format that will be used when creating new
tables and working with indexes. Available values: dfAuto,
dfdBaseIII, dfdBaseIV, dfdBaseV, dfdBaseVII, dfFoxPro2,
dfVisualFoxPro, dfHiPerSix, dfCodebase and dfClipper. Default
value is dfAuto. When using dfAuto, the format is detected by
.DBF file header. For any other values, .DBF file header will be
ignored. The format from the DBFFormat value will be forced
used for all .DBF files in the folder.

Direct

If set to True, connection to the database is performed directly,
and does not require any additional software on the client side.
Otherwise, the provider connects using Microsoft dBase ODBC
driver. Default value is False.

IdentifierCase

The IdentifierCase property allows you to set the case for field
names.

Supported values:

icOriginal
Field names are returned without changing the case.

icLower
Field names are returned in the lowercase.

icUpper

Provider-Specific Notes 213

© 2024 Devart

Field names are returned in the uppercase.

IgnoreBrokenTables If set to True, corrupted tables in the directory will be ignored, and
an exception won't be raised. The default value is False.

IgnoreDataErrors
If set to True, corrupted data errors will be ignored when opening
a DBF table and an exception will not be raised. The default value
is False.

IgnoreIndexErrors
If set to True, errors in database indexes will be ignored when
opening a DBF table, and an exception won't be raised. The
default value is False.

IgnoreMetadataError
s

If set to True, metadata errors will be ignored when opening a
DBF table and an exception will not be raised. The default value
is False.

IndexOnReading

Specifies a mechanism of indexes when fetching tables data.
Available values: ikNative and ikLocal. When set to ikNative,
UniDAC will use standard DBF indexes. We recommend using it
when executing SELECT SQL queries for one table with the
WHERE clause. When set to ikLocal, UniDAC will use its internal
data indexing mechanism. We recommend using it when the
SELECT SQL query is executed for several tables (for example,
JOIN) with the WHERE clause.

UseFileCodepage

Enables or disables the use of the file encoding when reading or
writing textual data. When UseFileCodepage is False, the
CodePage option has no effect, and the local encoding is used.
The default value is True.

UseUnicode

Enables or disables Unicode support. Affects character data
fetched from the database. When set to True, all character data is
stored as WideStrings, and TStringField is replaced by
TWideStringFiled. The default value is False.

TUniSQL

Option name Description

CommandTimeout The time to wait for a statement to be executed.

TUniQuery, TUniTable, TUniStoredProc

Option name Description

CommandTimeout The time to wait for a statement to be executed.

ExtendedFieldsInfo
If True, an additional query is performed to get information about
returned fields and tables they belong to. The default value is
True.

FetchAll
If True, all records of a query are requested from database server
when the dataset is being opened.

Universal Data Access Components214

© 2024 Devart

If False, records are retrieved when a data-aware component or
a program requests it. The default value is False.

TUniScript

The TUniDump component has no DBF-specific options.

TUniLoader

The TUniLoader component has no DBF-specific options.

TUniDump

The TUniDump component has no DBF-specific options.

Data Type Mapping
The following table lists the constants for mapping DBF data types to Delphi data types. See

Data Type Mapping for more information.

Constant Description

dbfChar Maps CHAR to Delphi data types.

dbfVarChar Maps VARCHAR to Delphi data types.

dbfMemo Maps MEMO to Delphi data types.

dbfAutoincrement Maps AUTOINCREMENT to Delphi data types.

dbfLogical Maps LOGICAL to Delphi data types.

dbfInteger Maps INTEGER to Delphi data types.

dbfFloat Maps FLOAT to Delphi data types.

dbfDouble Maps DOUBLE to Delphi data types.

dbfCurrency Maps CURRENCY to Delphi data types.

dbfNumeric Maps NUMERIC to Delphi data types.

dbfDate Maps DATE to Delphi data types.

dbfTime Maps TIME to Delphi data types.

dbfVarBinary Maps VARBINARY to Delphi data types.

dbfBlob Maps BLOB to Delphi data types.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Provider-Specific Notes 215

© 2024 Devart

5.1.6 UniDAC and InterBase/Firebird

5.1.6.1 InterBase/Firebird Provider

This article provides a brief overview of the InterBase data access provider for UniDAC used

to establish a connection to InterBase/Firebird from Delphi and Lazarus. You will find the

description of some useful features and how to get started quickly.

Overview

Compatibility

Requirements

Deployment

InterBase-specific options

TUniConnection

TUniSQL

TUniQuery, TUniTable, TUniStoredProc

TUniScript

TUniLoader

TUniDump

InterBase-specific notes

Parallel transactions management

Data Type Mapping

Overview
InterBase data access provider is based on the InterBase Data Access Components (IBDAC)

library, which is one of the best known Delphi data access solutions for InterBase and

Firebird. The main features of InterBase data access provider are:

High performance

Easy deployment

Comprehensive support for the latest versions of InterBase/Firebird server

The full list of InterBase provider features can be found on the UniDAC features page.

http://www.devart.com/ibdac/
https://www.devart.com/unidac/features.html

Universal Data Access Components216

© 2024 Devart

Both Professional and Standard Editions of UniDAC include the InterBase provider. For

Express Edition of UniDAC, the InterBase provider can be installed with IBDAC.

Compatibility
To learn the supported versions of InterBase and Firebird, refer to the Compatibility section.

Requirements
Applications that use the InterBase provider require InterBase/Firebird client software only.

The InterBase provider dynamically loads InterBase client DLL (GDS32.DLL or FBClient.dll for

Firebird) available on user systems. To locate DLL you can set the ClientLibrary specific

option of TUniConnection with the path to the client library. By default the InterBase provider

searches a client library in directories specified in the PATH environment variable.

Deployment
When an application was built without runtime packages (Link with runtime packages set to

False in Project Options), you do not need to deploy any BPL files with it. For more

information, see Deployment.

Note that UniDAC Trial requires deployment of additional BPL files regardless of Link with

runtime packages.

InterBase-specific options
Though UniDAC is components that provide unified interface to work with different database

servers, it also lets you tune behaviour for each server individually. For thin setup of a certain

database server, UniDAC provides server-specific options. These options can be applied to

such components as TUniConnection, TUniQuery, TUniTable, TUniStoredProc, TUniSQL,

TUniScript via their SpecificOptions property. SpecificOptions is a string list. Therefore you

can use the following syntax to assign an option value:

 TUniConnection.SpecificOptions.Values['CharLength'] := '1';

Below you will find the description of allowed options grouped by components.

TUniConnection

Option name Description

CharLength Specifies the size in bytes of a single character. Set this option

Provider-Specific Notes 217

© 2024 Devart

with the number in range [0..6] to reflect InterBase support for the
national languages. Setting CharLength to zero will instruct
TUniConnection to interrogate InterBase server for the actual
character length.
The default value is 1.

Charset Sets character set that IBDAC uses to read and write character
data.

ClientLibrary Use the ClientLibrary option to set or get the client library
location.

EnableMemos If set to True, TMemoField and TWideMemoField will be created
for BLOB subtype 1 fields. The default value is False.

ForceUnloadClientLi
brary

Use the option to force unloading of the client library after the
connection is closed. The default value is False.

IPVersion

Use the IPVersion property to specify Internet Protocol Version.

Supported values:

ivIPBoth (default)
Specifies that either Internet Protocol Version 6 (IPv6) or Version
4 (IPv4) will be used.

ivIPv4
Specifies that Internet Protocol Version 4 (IPv4) will be used.

ivIPv6
Specifies that Internet Protocol Version 6 (IPv6) will be used.

Note: Internet Protocol Version support has been added in
Firebird 3. To use the IPVersion option, your client library version
must be version 3 or higher.
When the TIPVersion property is set to ivIPBoth, a connection
attempt will be made via IPv6 if it is enabled on the operating
system. If the connection attempt fails, a new connection attempt
will be made via IPv4.

NoDBTriggers Use the option to enable or disable all database triggers. By
default, all triggers are enabled.

Params

The option allows specifying custom parameters of the
transaction. Refer to the InterBase API guide for more information
on the parameters. Custom parameters will be used only when
the TUniTransaction.IsolationLevel property is set to ilCustom.
Multiple parameters can be separated either with the CRLF or
with the ";" character.

Protocol Network protocol of connection with InterBase server. The default
value is TCP.

Role InterBase connection role.

Universal Data Access Components218

© 2024 Devart

SQLDialect

Use SQLDialect to set or return SQL Dialect used by InterBase
client. The SQLDialect property cannot be set to a value greater
than the database SQL dialect when the connection is active. If
the connection is inactive, the SQLDialect option will be
downgraded to match the database SQL dialect.

SSLClientCertFile
The name and location of the client certificate file. The file must
be in the PEM format and contain both the client certificate and
the private key.

SSLClientPassPhras
e

The private key passphrase. You can use either this option or the
SSLClientPassPhraseFile option.

SSLClientPassPhras
eFile

The name and location of the text file containing the client private
key passphrase. You can use either this option or the
SSLClientPassPhrase option.

SSLServerPublicFile The name and location of the CA certificate file in the PEM
format.

SSLServerPublicPat
h

The location of the directory with the CA certificate files in the
PEM format. Each file in the directory must contain only a single
CA certificate and the files must be named by the hash of the
subject name and extension of ".0". It is recommended that you
use SSLServerPublicFile instead. If you specify both,
SSLServerPublicFile will be used.

TrustedAuthenticatio
n

Windows "Trusted User" security can be applied for
authenticating Firebird users on a Windows host.
When the option is set to True, the Firebird security database is
ignored during establishing a connection, and only Windows
authentication is used.
The default value is False
More detailed information about this authentication mode is
available at http://firebirdsql.org/rlsnotesh/
rlsnotes210.html#rnfb210-wintrusted.

UseSSL Enables or diables SSL connections. The default value is False.

UseUnicode

Enables or disables Unicode support. Affects on the character
data fetched from the server. When set to True all character data
is stored as WideStrings, and TStringField is replaced with
TWideStringFiled.

SimpleNumericMap
Used to create ftBCD fields. When it is set to "False" and
EnableBCD to "True", fields like DECIMAL(14, 4) are mapped
as ftBCD. The option default value is "True".

WireCompression

Enables or disables compression of data over the wire at global
or individual database level. Use Params to pass this connection
parameter, for example WireCompression=True. Disabled by
default.
Note: You should place zlib1.dll in the same location as
fbclient.dll.

http://firebirdsql.org/rlsnotesh/rlsnotes210.html#rnfb210-wintrusted
http://firebirdsql.org/rlsnotesh/rlsnotes210.html#rnfb210-wintrusted

Provider-Specific Notes 219

© 2024 Devart

TUniSQL

Option name Description

AutoCommit

Used to automatically commit each update, insert or delete
statement by database server. When using the option it should be
kept in mind that the AutoCommit property of TUniConnection
has higher precedence over the same properties in components.
When the AutoCommit property of a dataset is True and
TUniConnection.AutoCommit is True, each update, insert or
delete statement is automatically committed by database server.
When TUniConnection.AutoCommit is False, automatic commit
does not occur, regardless of the value of the AutoCommit option
of the dataset.

DescribeParams
Specifies whether to query the Name, ParamType, DataType,
Size, and TableTypeName properties from the server when
preparing a query. The default value is False.

TUniQuery, TUniTable, TUniStoredProc

Option name Description

AutoCommit

Used to automatically commit each update, insert or delete
statement by database server. When using the option it should be
kept in mind that the AutoCommit property of TUniConnection
has higher precedence over the same properties in components.
When the AutoCommit property of a dataset is True and
TUniConnection.AutoCommit is True, each update, insert or
delete statement is automatically committed by database server.
When TUniConnection.AutoCommit is False, automatic commit
does not occur, regardless of the value of the AutoCommit option
of the dataset.

AutoClose The cursor will be closed after fetching all rows. Allows to reduce
the number of opened cursors on the server.

BooleanDomainField
s

If the BooleanDomainFields property is set to True,
TBooleanField objects are created for fields that have domain of
the integer data type, and the domain name contains
'BOOLEAN'. The defaut value is True.
Note: This option has no effect when SetDomainNames is set to
False.

CacheArrays

If True, local memory buffer is allocated for acopy of the array.
The default value is True.
This option has no effect when DeferredArrayRead is set to False
because all BLOBs are fetched to the dataset in that case.

CacheBlobs
If True (the default value), local memory buffer is allocated to hold
a copy of the BLOB content.

Universal Data Access Components220

© 2024 Devart

Note: The CacheBlobs option controls the way streamed BLOB
objects are handled. If False, application can access streamed
BLOB values on the server without caching BLOBs on the client -
only the requested portions of data are fetched. Setting
CacheBlobs to False may reduce network traffic since only the
required data is fetched, and reduce memory consumption on the
client because the returned record sets do not hold contents of
BLOB fields.
This feature is only available for streamed BLOBs when
StreamedBlobs is set to True.
This option has no effect if DeferredBlobRead is set to False
because all BLOB values are fetched to the dataset in that case.

ComplexArrayFields

If the ComplexArrayFields property is set to False, any array field
is stored as a single TIBCArrayField object. If the option and
ObjectView are set to True, array items are stored hierarchically.
If the option is set to True, but ObjectView is False, all aray items
are stored as sibling fields.

DeferredArrayRead

If True, all InterBase array values are fetched only when they are
explicitly requested. Otherwise the entire record set with any array
values is returned when dataset is opened. Whether array values
are cached locally to be reused later or not is controlled by the
CacheArrays option.

DeferredBlobRead

If True, all InterBase BLOB values are fetched only when they are
explicitly requested. Otherwise the entire record set with any
BLOB values is returned when dataset is opened. Whether BLOB
values are cached locally to be reused later or not is controlled by
the CacheBlobs option.

DescribeParams
Specifies whether to query the Name, ParamType, DataType,
Size, and TableTypeName properties from the server when
preparing a query. The default value is False.

ExtendedFieldsInfo

If True, an additional query is performed to get information about
the returned fields and the tables they belong to. This information
includes the NOT NULL attribute of the field, the SEQUENCE
linked to the field, and the table name corresponding to the field.
The table name is needed to detect fields that belong to the
updated table and set the read-only attribute for all other fields
returned by the query. The default value is True.

FetchAll

If True, all records of the query are requested from database
server when the dataset is being opened. If False, records are
retrieved when a data-aware component or a program requests
it. The default value is False.

FieldsAsString If True, then all non-BLOB fields are treated as being of string
data type.

GeneratorMode
Set the GeneratorMode property to specify which method is used
internally to generate sequenced field.

Provider-Specific Notes 221

© 2024 Devart

The following values are allowed for this property:

gmInsert
New record is inserted into the dataset with the first key field
populated with a sequenced value. Application may modify this
field before posting the record to the database.
gmPost
Database server populates key field with a sequenced value
when application posts the record to the database. Any value put
into key field before post will be overwritten.

GeneratorStep
Use the GeneratorStep option to set the increment for increasing
or decreasing current generator value when using automatic key
field value generation feature. The default value is 1.

KeyGenerator

Use the KeyGenerator option to specify the name of a generator
that will be used to fill in a key field after a new record is inserted
or posted to the database.
KeyGenerator is used only if the KeyFields property is assigned.

QueryRowsAffected Use the option to increase the performance of update operations.
The default value is True.

SetDomainNames Use the option to retrieve the DOMAIN name for a field. The
default value is False.

StreamedBlobs

If True, all BLOBs are handled and saved as streamed BLOBs.
Otherwise, BLOBs are handled and saved as segmented
BLOBs. Setting this option to True allows you to benefit from the
CacheBlobs option.

TUniScript

Option name Description

AutoDDL
Use the AutoDDL property to determine whether DDL statements
must be executed in a separate transaction.

TUniTransaction

Option name Description

IsolationLevel

ilCustom
The parameters of the transaction are set manually in the Params
property.

ilSnapshot
ilRepeatableRead
The default isolation level. Provides a stable, committed view of
the database at the time the transaction starts. Other

Universal Data Access Components222

© 2024 Devart

simultaneous transactions can UPDATE and INSERT rows, but
this transaction cannot see these changes. For updated rows,
this transaction sees versions of these rows as they existed at the
start of the transaction. If this transaction attempts to update or
delete rows changed by another transaction, an update conflict is
reported.

ilIsolated
Provides a transaction read-only access to the tables it uses.
Other simultaneous transactions may be able to select rows from
these tables, but they can not insert, update, and delete rows from
these tables.

ilReadCommitted
Enables the transaction to see all committed data in the
database and to update rows updated and committed by other
simultaneous transactions without causing lost update problems.

ilReadUnCommitted
Not supported.

Params

The option allows to specify custom parameters of the
transaction. Refer to InterBase API Guide for more information on
this parameters. Custom parameters will be used only when the
TUniTransaction.IsolationLevel property is set to ilCustom.
Multiple parameters can be separated either with the CRLF or
with the ";" character.

TUniLoader

Option name Description

AutoCommit

Used to automatically commit each update, insert or delete
statement by database server. When using the option it should be
kept in mind that the AutoCommit property of TUniConnection
has higher precedence over the same properties in components.
When the AutoCommit property of a dataset is True and
TUniConnection.AutoCommit is True, each update, insert or
delete statement is automatically committed by database server.
When TUniConnection.AutoCommit is False, automatic commit
does not occur, regardless of the value of the AutoCommit option
of the dataset.

InsertMode

Use the InsertMode option to specify the type of statement used
for loading data to InterBase database. If the value is imInsert
(default value), the INSERT INTO statement will be used. If set to
imUpdateOrInsert, the UPDATE OR INSERT INTO statement will
be used.

Provider-Specific Notes 223

© 2024 Devart

QuoteNames
Use the QuoteNames option to quote all database object names
in automatically generated SQL statements, such as UPDATE
statements. The default value is False.

RowsPerBatch
Use the RowsPerBatch option to specify the number of records
that are sent to the server in a single operation. The default value
is 50.

TUniDump

The TUniDump component has no InterBase-specific options.

InterBase-specific notes
This chapter describes several special cases of using InterBase data provider.

Parallel transactions management

InterBase and Firebird database servers support multiple parallel transactions within one

connection. You can use this feature with UniDAC and InterBase provider. You should link the

TUniTransaction component to a component you want to interact with the sever within a

separate transaction. To link a TUniTransaction object to a component, for example to

TUniQuery, assign the TUniTranaction object to the TUniQuery.Transaction property:

 UniQuery1.Transaction := UniTransaction1;

The Transaction property persists in the following components: TUniQuery , TUniTable ,

TUniStoredProc , TUniSQL , TUniScript , TUniMetaData .

Data Type Mapping
The following table lists the constants for mapping InterBase/Firebird data types to Delphi

data types. See Data Type Mapping for more information.

Constant Description
ibcArray Maps ARRAY to Delphi data types.
ibcBigint Maps BIGINT to Delphi data types.
ibcBlob Maps BLOB to Delphi data types.
ibcBoolean Maps BOOLEAN to Delphi data types.
ibcChar Maps CHAR to Delphi data types.
ibcCharBin Maps BINARY to Delphi data types.
ibcDate Maps DATE to Delphi data types.
ibcDecimal Maps DECIMAL to Delphi data types.

Universal Data Access Components224

© 2024 Devart

ibcDouble Maps DOUBLE PRECISION to Delphi data types.
ibcFloat Maps FLOAT to Delphi data types.
ibcInteger Maps INTEGER to Delphi data types.
ibcNumeric Maps NUMERIC to Delphi data types.
ibcSmallint Maps SMALLINT to Delphi data types.
ibcText Maps TEXT to Delphi data types.
ibcTime Maps TIME to Delphi data types.
ibcTimestamp Maps TIMESTAMP to Delphi data types.
ibcVarchar Maps VARCHAR to Delphi data types.
ibcVarcharBin Maps VARCHAR BINARY to Delphi data types.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

5.1.6.2 OTW Network Encryption

Encrypting Network Using Over-the-Wire (OTW)
The InterBase provider supports the Over-the-Wire (OTW) encryption feature of InterBase to

encrypt data during the transmission process. InterBase OTW encryption uses SSL v3 and

TLS v1 security protocols and supports AES and DES encryptions. Before setting up OTW

encryption on the server and client side, you must obtain the necessary security certificates

from a certificate authority (CA). Both the client and server must have the X.509 files in the

PEM format installed to use OTW encryption. After configuring the OTW parameters on the

server, set up the client side in your UniDAC-based application. The OTW encryption

parameters can be set up at runtime as follows:

Delphi

var
 UniConnection1: TUniConnection;
begin
 UniConnection1 := TUniConnection.Create(nil);
 try
 UniConnection.ProviderName := 'InterBase';
 UniConnection1.Server := '127.0.0.1';
 UniConnection1.Database := 'database';
 UniConnection1.Username := 'username';
 UniConnection1.Password := 'password';
 UniConnection1.Port := 3050;
 UniConnection1.SpecificOptions.Values['ClientLibrary'] := 'gds32.dll';
 UniConnection1.LoginPrompt := False;
 // OTW encryption properties
 UniConnection1.SpecificOptions.Values['ClientCertFile'] := 'clientcert.pem';

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Provider-Specific Notes 225

© 2024 Devart

 UniConnection1.SpecificOptions.Values['ClientPassPhrase'] := 'passphrase';
 UniConnection1.SpecificOptions.Values['ServerPublicFile'] := 'cacert.pem';
 UniConnection1.SpecificOptions.Values['UseSSL'] := 'True';
 UniConnection1.Open;
 finally
 UniConnection1.Free;
 end;
end;

C++ Builder

TUniConnection* UniConnnection = new TUniConnection(NULL);
try {
 UniConnection->ProviderName = "InterBase";
 UniConnection1->Server = "127.0.0.1";
 UniConnection1->Database = "database";
 UniConnection1->Username = "username";
 UniConnection1->Password = "password";
 UniConnection1->Port = 3050;
 UniConnection1->SpecificOptions->Values["ClientLibrary"] = "gds32.dll";
 UniConnection1->LoginPrompt = False;
 // OTW encryption properties
 UniConnection1->SpecificOptions->Values["ClientCertFile"] = "clientcert.pem";
 UniConnection1->SpecificOptions->Values["ClientPassPhrase"] = "passphrase";
 UniConnection1->SpecificOptions->Values["ServerPublicFile"] = "cacert.pem";
 UniConnection1->SpecificOptions->Values["UseSSL"] = "True";
 UniConnection1->Open;
}
__finally {
 UniConnection1->Free();
}

See Also
Encrypting Network Communication

InterBase Provider Options

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

5.1.7 UniDAC and Microsoft Access

This article provides a brief overview of the Microsoft Access data access provider for

UniDAC used to establish a connection to Access databases from Delphi and Lazarus. You

will find the description of some useful features and how to get started quickly.

Overview

Compatibility

Requirements

http://docwiki.embarcadero.com/InterBase/2020/en/Encrypting_Network_Communication
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components226

© 2024 Devart

Deployment

Access-specific options

TUniConnection

TUniSQL

TUniQuery, TUniTable, TUniStoredProc

TUniScript

TUniLoader

TUniDump

Overview
Access provider is based on the ODBC provider. It uses Microsoft Access ODBC driver to

work with a database. Main features of the Access data access provider are:

High performance

Easy deployment

The full list of the Access provider features can be found on the UniDAC features page.

Both Professional and Standard Editions of UniDAC include the Access provider. Express

Edition of UniDAC does not include the Access provider.

Compatibility
To learn the supported versions of Microsoft Access, refer to the Compatibility section.

Requirements
Applications that use the Access provider require Microsoft Data Access Components

(MDAC) to be installed on the client computer. In the current versions of Microsoft Windows,

since Windows 2000, MDAC is already included as a standard package.

Deployment
When an application was built without runtime packages (Link with runtime packages set to

False in Project Options), you do not need to deploy any BPL files with it. For more

information, see Deployment.

https://www.devart.com/unidac/features.html

Provider-Specific Notes 227

© 2024 Devart

Note that UniDAC Trial requires deployment of additional BPL files regardless of Link with

runtime packages.

Access-specific options

TUniConnection

Option name Description

ColumnWiseBinding

If set to True, the option enables Column-Wise Binding mode.

The fefault value is False.

Note: Row-Wise Binding mode is enabled by default. However,

some ODBC drivers don't support this mode. In such case, set

the ColumnWiseBinding option to True.

ConnectionTimeout The time to wait for a connection to open before raising an
exception.

DriverVersion

Use the DriverVersion property to specify the version of Microsoft
Access Driver (*.mdb, *.accdb).

Supported values:

dvAuto (default)
The code first tests for the presence of *.accdb driver - if it is not
found, *.mdb will be used.

dvAccdb
Specifies that *.accdb driver will be used.

dvMdb
Specifies that *.mdb driver will be used.

ExclusiveLock
If True, a database will be opened in the Exclusive mode and can
be accessed by only one user at a time. Performance is
enhanced when running in the Exclusive mode.

ExtendedAnsiSQL

If True, an extended SQL support is enabled.

Two new data types are available in Jet 4.0 databases when the

ExtendedAnsiSQL flag is turned on: SQL_DECIMAL and

SQL_NUMERIC. The default precision and scale are 18 and 0,

respectively. Data accessed via ODBC that is typed as

SQL_DECIMAL or SQL_NUMERIC will be mapped to Microsoft

https://msdn.microsoft.com/en-us/library/ms713541(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms711730%28v=vs.85%29.aspx

Universal Data Access Components228

© 2024 Devart

Jet Decimal instead of Currency.

When the ExtendedAnsiSQL flag is turned off, you cannot create

tables with decimal or numeric types, and these types will not

appear in SQLGetTypeInfo(). However, if the table contains the

new data types, they can be used with the correct data types.

ForceCreateDataba
se

Used to force TLiteConnection to create a new database before

opening a connection, if the database does not exist.

SystemDatabase The full path to the Microsoft Access system database to be used
with the Microsoft Access database you want to access.

UseUnicode

Enables or disables Unicode support. Affects character data
fetched from the server. When set to True, all character data is
stored as WideStrings, and TStringField is replaced by
TWideStringFiled.

TUniSQL

Option name Description

CommandTimeout The time to wait for a statement to be executed.

TUniQuery, TUniTable, TUniStoredProc

Option name Description

CommandTimeout The time to wait for a statement to be executed.

ExtendedFieldsInfo
If True, an additional query is performed to get information about
returned fields and tables they belong to. The default value is
True.

FetchAll

If True, all records of a query are requested from database server
when the dataset is being opened.
If False, records are retrieved when a data-aware component or
a program requests it. The default value is False.

TUniScript

The TUniDump component has no Access-specific options.

TUniLoader

The TUniLoader component has no Access-specific options.

Provider-Specific Notes 229

© 2024 Devart

TUniDump

The TUniDump component has no Access-specific options.

Data Type Mapping
The following table lists the constants for mapping Access data types to Delphi data types.

See Data Type Mapping for more information.

Constant Description

accText Maps Short Text to Delphi data types.

accLongText Maps Long Text to Delphi data types.

accByte Maps Byte to Delphi data types.

accInteger Maps Integer to Delphi data types.

accLong Maps Long to Delphi data types.

accSingle Maps Single to Delphi data types.

accDouble Maps Double to Delphi data types.

accNumeric Maps Numeric to Delphi data types.

accDateTime Maps Date/Time to Delphi data types.

accBit Maps Bit to Delphi data types.

accBinary Maps Binary to Delphi data types.

accVarBinary Maps VarBinary to Delphi data types.

accLongBinaryLong
Binary

Maps to Delphi data types.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

5.1.8 UniDAC and MongoDB

This article provides a brief overview of the MongoDB data access provider for UniDAC used

to establish a connection to MongoDB from Delphi and Lazarus. You will find the description

of some useful features and how to get started quickly.

Overview

Compatibility

Requirements

Deployment

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components230

© 2024 Devart

MongoDB-specific options

TUniConnection

TUniQuery, TUniTable, TUniSQL

TUniStoredProc, TUniScript, TUniDump, TUniLoader, TUniTransaction

MongoDB-specific notes

Data types

Query and update operations

Accessing a document using the TMongoDocument class

Data Type Mapping

Overview
The main features of MongoDB data access provider are:

High performance

Easy deployment

Full support for the latest versions of the MongoDB server

The full list of MongoDB provider features can be found in Features page.

Both Professional and Standard editions of UniDAC include the MongoDB provider. Express

Edition of UniDAC does not include the MongoDB provider.

Compatibility
To learn the supported MongoDB versions and clients, refer to the Compatibility section.

Requirements
Applications that use the MongoDB provider require libmongoc and libbson client libraries.

The MongoDB provider dynamically loads client libraries (for example, libmongoc-1.0.dll and

libbson-1.0.dll on Windows) available on user system. To locate DLLs you can set

ClientLibrary and BSONLibrary specific options of TUniConnection respectively with paths to

client libraries. By default, the MongoDB provider searches for client libraries in the directories

specified in the PATH environment variable.

https://www.devart.com/unidac/features.html

Provider-Specific Notes 231

© 2024 Devart

In addition to the standard client libraries, you can use the ones distributed with UniDAC. 32-

bit libraries are located in the 'Bin\Win32\' subfolder relative to the folder where UniDAC was

installed. 64-bit ones in the 'Bin\Win64\' subfolder. For example:

 UniConnection1.SpecificOptions.Values['MongoDB.BSONLibrary'] := 'C:\Program Files (x86)\Devart\UniDAC for RAD Studio 10.3\Bin\Win32\libbson-1.0.dll';
 UniConnection1.SpecificOptions.Values['MongoDB.ClientLibrary'] := 'C:\Program Files (x86)\Devart\UniDAC for RAD Studio 10.3\Bin\Win32\libmongoc-1.0.dll';
 UniConnection1.Connect;

Deployment
When an application was built without runtime packages (Link with runtime packages set to

False in Project Options), you do not need to deploy any BPL files with it. For more

information, see Deployment.

Note that UniDAC Trial requires deployment of additional BPL files regardless of Link with

runtime packages.

MongoDB-specific options
Though UniDAC is a library of components that provide unified interface to work with different

database servers, it also lets you tune behaviour for each server individually. For thin setup of

a certain database server, UniDAC provides server-specific options. These options can be

applied to such components as TUniConnection, TUniQuery and TUniTable via their

SpecificOptions property. SpecificOptions is a string list. Therefore you can use the following

syntax to assign an option value:

 TUniConnection.SpecificOptions.Values['UseUnicode'] := 'True';

Below you will find the description of allowed options grouped by components.

TUniConnection

Option name Description

AdditionalServers
Specifies additional servers to connect to, separated by
commas. Each server has to be specified in the host[:port] format
as it is described in the official MongoDB documentation.

BSONLibrary Use the BSONLibrary option to set or get the libbson client library
location.

ClientLibrary Use the ClientLibrary option to set or get the libmongoc client
library location.

ConnectionOptions Connection specific options. See official MongoDB
documentation for a full description of these options.

LowerCaseObjectID Use the option to return ObjectId values in lower case. The default

https://docs.mongodb.com/manual/reference/connection-string/#connections-standard-connection-string-format
https://docs.mongodb.com/manual/reference/connection-string/#connections-connection-options

Universal Data Access Components232

© 2024 Devart

value is False.

SQLEngine
If set to True, the driver will use the SQL language to access data
in a MongoDB database, otherwise it will use the standard
Mongo query language. The default value is False.

UseUnicode

Enables or disables Unicode support. Affects on the character
data fetched from the server. When set to True all character data
is stored as WideStrings, and TStringField is replaced with
TWideStringFiled.

TUniQuery, TUniTable

Option name Description

AllowAddField

If True, then when editing an existing document, it allows to add
new fields to the document. If False, an attempt to add a new field
to the document will raise an exceptin. For newly created
documents adding new fields is always allowed. The default value
is True.

AllowChangeType

If True, when editing an existing document, it allows to assign a
value of another type to the existing document field. If False, an
attempt to assign a value of another type will raise an exceptin.
For newly created documents changing field type is always
allowed. The default value is True.

ComplexAsString

If True, then complex fields of a document (which are of object,
array, timestamp, binary, regular expression or JavaScript type)
are mapped as TStringField and their content is displayed in the
Extended JSON format. If False, such fields are mapped as
TADTField with its child fields. The default value is False.

DescribeMethod

Defines a way of creating dataset fields.
The following values are allowed for this property:

dmGrid
The field list is generated based on a sample of DescribeAmont
documents. The list includes all unique fields from all documents
in the sample.
dmObject
The dataset has a single field of the ftADT type, which provides
access to the entire document.

The default value is dmGrid.

DescribeAmount
Specifies the number of sample documents used to create a list
of fields in the dataset when DescribeMethod is set to dmGrid.
The default value is 25.

FetchAll If True, all records of the query are requested from database

https://docs.mongodb.com/manual/reference/mongodb-extended-json/

Provider-Specific Notes 233

© 2024 Devart

server when the dataset is being opened. If False, records are
retrieved when a data-aware component or a program requests
it. The default value is False.

Note: Since parametrized commands are not supported in MongoDB, the MongoDB provider

does not support parameters. Also, update SQL-s are not supported too.

TUniSQL

The TUniSQL component has no MongoDB-specific options.

TUniStoredProc, TUniScript, TUniDump, TUniLoader, TUniTransaction

TUniStoredProc, TUniScript, TUniDump, TUniLoader and TUniTransaction components are

not supported for the MongoDB provider.

MongoDB-specific notes
This chapter describes several special cases of using the MongoDB provider.

Data types

The MongoDB provider supports the following MongoDB data types:

String

32-bit integer

64-bit integer

Double

Boolean

Date

ObjectId

Object

Array

Timestamp

Binary

Regular Expression

Universal Data Access Components234

© 2024 Devart

JavaScript

JavaScript (with scope)

Null

Min key

Max key

By default, document fields of these types are mapped in a dataset as follows:

String, integer, double, boolean and date data types are simple types and in a dataset they

are mapped to ftString, ftInteger, ftLargeint, ftBoolean and ftDate fields respectively

Object, array, timestamp, binary, regular expression and JavaScript types are complex

types and they are mapped either to ftString or ftADT fields, depending on the

ComplexAsString option value

ObjectId type is mapped as ftString and is displayed as 24-character hexadecimal string

Null type is mapped as ftString and is displayed as 'null'

Min key and max key data types are mapped to ftString and are displayed in the Extended

JSON format

Query and update operations

Since MongoDB is a No-SQL database, the MongoDB provider does not support regular SQL

to manage documents. Instead, it supports native MongoDB command syntax to perform

CRUD operations:

Use the find command to query documents from a collection, for example:

UniQuery1.SQL.Text := '{"find":"restaurants", "filter":{"cuisine":"italian"}, "sort":{"name:1}}';

UniQuery1.Open;

Use the insert command to insert documents into a collection, for example:

UniQuery1.SQL.Text := '{"insert":"restaurants", "documents":[{"_id":1, "name":"Volare", "cuisine":"italian"}]}';

UniQuery1.Execute;

Use the update command to update documents, for example:

UniQuery1.SQL.Text := '{"update":"restaurants", "updates":[{"q":{"name":"Volare"}, "u":{"$set":{"cuisine":"spanish"}}}]}';

UniQuery1.Execute;

https://docs.mongodb.com/manual/reference/mongodb-extended-json/
https://docs.mongodb.com/manual/reference/mongodb-extended-json/
https://docs.mongodb.com/manual/reference/command/nav-crud/
https://docs.mongodb.com/manual/reference/command/find/
https://docs.mongodb.com/manual/reference/command/insert/
https://docs.mongodb.com/manual/reference/command/update/

Provider-Specific Notes 235

© 2024 Devart

Use the delete command to delete documents from a collection, for example:

UniQuery1.SQL.Text := '{"delete":"restaurants", "deletes":[{"q":{"name":"Volare"}}]}';

UniQuery1.Execute;

Accessing a document using the TMongoDocument class

To access and modify a document in the code, you can use a special TMongoDocument

class that has a set of properties and methods for working with the document structure. The

data set always contains at least one field of the ftADT type, which has the same name as the

collection and provides access to the entire document using the TMongoDocument class.

Obtaining a document

To obtain an existing document instance, use the TUniQuery.GetObject method:

uses
...
 MongoObjectsUni;
...
var
 Document: TMongoDocument;
begin
 UniQuery1.Edit;
 Document := UniQuery1.GetObject('restaurants') as TMongoDocument;
...

Or, for a newly created document:

uses
...
 MongoObjectsUni;
...
var
 Document: TMongoDocument;
begin
 UniQuery1.Append;
 Document := UniQuery1.GetObject('restaurants') as TMongoDocument;
...

Accessing a document as JSON

To access / change the entire document in the JSON format, use the following properties and
methods:

The Text property allows to get or set the contents of a document as a JSON string, for

example:

ShowMessage(Document.Text);

https://docs.mongodb.com/manual/reference/command/delete/

Universal Data Access Components236

© 2024 Devart

Document.Text := '{"_id":1, "name":"Volare", "cuisine":"italian"}';

The LoadFromFile and SaveToFile methods allow to load or save the contents of a

document in a text file

The LoadFromStream and SaveToStream methods allow to load or save the contents of a

document in a stream

Accessing the document fields

To iterate through the document fields use FieldCount and Fields property. To access the
field value use its Name property. To access the field value use its Value property. For fields
of complex data types the return value contains the JSON representation of the field.
Example:

for i := 0 to Document.FieldCount - 1 do
 ShowMessage(Document.Fields[i].Name + ': ' + Document.Fields[i].Value);

Also, you can access the particular field of the document via its name using the FieldByName
property, for example:

ShowMessage(Document.FieldByName['name'].Value);

or

ShowMessage(Document['name'].Value);

Modifying a document using the "fluent" interface

The TMongoDocument class provides a set of SetXX methods which allow to easily change
its structure. Methods can be combined one by one into a chain, thus making it easier to write
code.

SetString(const Name: string; const Value: string)

SetInteger(const Name: string; const Value: integer)

SetInt64(const Name: string; const Value: Int64)

SetDouble(const Name: string; const Value: double)

SetBoolean(const Name: string; const Value: boolean)

SetDateTime(const Name: string; const Value: TDateTime)

SetOid(const Name: string; const Value: TJSONOid)

These methods add a simple field named Name with the specified Value to the document, or

change its value if the field exists. When the existing field has the different type, then if the

AllowChangeType property of the dataset is set to True, the field type will also be changed.

Provider-Specific Notes 237

© 2024 Devart

Example:

Document

 .SetString('name', 'Trattoria');

SetTimestamp(const Name: string; const Timestamp: integer; Increment: Cardinal)

SetBinary(const Name: string; const Binary: TBytes; const SubType: integer)

SetJavaCode(const Name: string; const Code: string)

SetJavaScopeCode(const Name: string; const Code: string; const Scope: array of Variant)

SetRegex(const Name: string; const Pattern, Options: string)

These methods add corresponding complex fields to the document.

Note: For the SetJavaScopeCode method, the Scope argument is an array of pairs of

identifiers and values, representing the scope.

SetNull(const Name: string)

SetMinKey(const Name: string)

SetMaxKey(const Name: string)

Since Null, MinKey and MaxKey are constant types, the methods do not contain the Value

argument.

SetObject(const Name: string)

SetArray(const Name: string)

SetEnd

These methods are intended to add fields of Object and Array types to the document. After

Universal Data Access Components238

© 2024 Devart

using SetObject or SetArray methods, all the following SetXX methods add fields to the

object or array, not to the document. So, you should use the SetEnd method to return to the

document level. Example:

Document

 .SetObject('address')

 .SetString('city', 'Chicago')

 .SetString('street', 'Dearborn')

 .SetInteger('building', 10)

 .SetEnd

 .SetString('cuisine', 'italian');

Unset(const Name: string)

Removes a field with the specified name from the document.

Data Type Mapping
The following table lists the constants for mapping MongoDB data types to Delphi data types.

See Data Type Mapping for more information.

Constant Description
mongoString Maps String to Delphi data types.
mongoNumber Maps Number to Delphi data types.
mongoBoolean Maps Boolean to Delphi data types.
mongoObject Maps Object to Delphi data types.
mongoArray Maps Array to Delphi data types.
mongoNull Maps Null to Delphi data types.
mongoObjectId Maps ObjectId to Delphi data types.
mongoInt32 Maps 32-bit integer to Delphi data types.
mongoInt64 Maps 64-bit integer to Delphi data types.
mongoDouble Maps Double to Delphi data types.
mongoDateTime Maps DateTime to Delphi data types.
mongoTimestamp Maps Timestamp to Delphi data types.
mongoUndefined Maps Undefined to Delphi data types.
mongoBinary Maps Binary data to Delphi data types.

Provider-Specific Notes 239

© 2024 Devart

mongoRegex Maps Regular Expression to Delphi data types.
mongoJavaspan Maps Javascript span to Delphi data types.
mongoJavaScopespan Maps JavaScript span with scope to Delphi data types.
mongoMinKey Maps Min key to Delphi data types.
mongoMaxKey Maps Max key to Delphi data types.
mongoDBPointer Maps DBPointer to Delphi data types.
mongoDecimal128 Maps Decimal128 to Delphi data types.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

5.1.9 UniDAC and MySQL

This article provides a brief overview of the MySQL data access provider for UniDAC used to

establish a connection to MySQL databases from Delphi and Lazarus. You will find the

description of some useful features and how to get started quickly.

Overview

Compatibility

Requirements

Deployment

MySQL-specific options

TUniConnection

TUniSQL

TUniQuery, TUniTable, TUniStoredProc

TUniScript

TUniLoader

TUniDump

Data Type Mapping

Overview

MySQL data access provider is based on the MySQL Data Access Components (MyDAC)

library, which provides direct access to MySQL database servers from Delphi, C++Builder

and Lazarus (FPC). The main features of MySQL data access provider are:

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/mydac/

Universal Data Access Components240

© 2024 Devart

Direct access to server data without using client library. Does not require installation of the

client library or other data provider layers (such as BDE and ODBC)

High performance

Easy deployment

Full support for the latest versions of the MySQL server

The full list of MySQL provider features can be found in Features.

Both Professional and Standard Editions of UniDAC include the MySQL provider. For Express

Edition of UniDAC, the MySQL provider can be installed with MyDAC.

Compatibility
To learn about MySQL database server compatibility, refer to the Compatibility section.

Requirements
If you use MySQL provider to connect to MySQL in Direct mode, you do not need to have

MySQL client library on your machine or deploy it with your MySQL provider-based

application.

If you use MySQL provider to connect to MySQL in Client mode, you need to have access to

the MySQL client library. In particular, you will need to make sure that the MySQL client library

is installed on the machines your MySQL provider-based application is deployed to. MySQL

client library is libmysql.dll file for Windows. Please refer to the description of LoadLibrary()

function for detailed information about MySQL client library file location. You may need to

deploy the MySQL client library with your application or require that users have it installed.

If you are working with Embedded server, you should have access to Embedded MySQL

server library (libmysqld.dll).

Deployment

When an application was built without runtime packages (Link with runtime packages set to

False in Project Options), you do not need to deploy any BPL files with it. For more

information, see Deployment.

Note that UniDAC Trial requires deployment of additional BPL files regardless of Link with

runtime packages.

https://www.devart.com/unidac/features.html

Provider-Specific Notes 241

© 2024 Devart

MySQL-specific options

Though UniDAC is components that provide unified interface to work with different database

servers, it also lets you tune behaviour for each server individually. For thin setup of a certain

database server, UniDAC provides server-specific options. These options can be applied to

such components as TUniConnection, TUniQuery, TUniTable, TUniStoredProc,TUniSQL,

TUniScript via their SpecificOptions property. SpecificOptions is a sting list. Therefore you

can use the following syntax to assign an option value:

UniQuery.SpecificOptions.Values['FieldsAsString'] := 'True';

Below you will find the description of allowed options grouped by components.

TUniConnection

Option name Description

Charset Setups the character set used by the client.

Compress

Use compression on transferring data. Setting this property to
True is quite effective on transferring big volume data through
slow connection. This property is ignored under CLR. The default
value is False.

ConnectionTimeout
Specifies the amount of time in seconds that can be expired
before an attempt to make a connection is considered
unsuccessful.

Embedded If True, connects to Embedded MySQL server. If False, connects
to MySQL server. The default value is False.

EmbeddedParams

Allows to set such parameters of embedded connection as --
basedir, --datadir, etc. Parameters should be separated with
newline characters (#13#10), for example:

UniConnection.SpecificOptions.Values['MySQL.EmbeddedPrams'] := '--basedir=.'#13#10'--datadir=data';

The default value is ''

HttpTrustServerCertif
icate

This option specifies whether or not the driver should trust the
server certificate when connecting to the server. The default value
is False – the driver won't trust the server certificate and will verify
validity of the server certificate instead. If set to True, the driver
will trust the server certificate.

Interactive

Determines the inactivity timeout before the server breaks the
connection. If true, the server breaks the connection after number
of seconds specified in interactive_timeout sever variable,
otherwise wait_timeout is used. The default value is false. The
interactive_timeout and wait_timeout variables can be set in
my.ini file.

IPVersion Use the IPVersion property to specify Internet Protocol Version.

Universal Data Access Components242

© 2024 Devart

Supported values:

ivIPBoth
Specifies that either Internet Protocol Version 6 (IPv6) or Version
4 (IPv4) will be used.

ivIPv4 (default)
Specifies that Internet Protocol Version 4 (IPv4) will be used.

ivIPv6
Specifies that Internet Protocol Version 6 (IPv6) will be used.

Note: When the TIPVersion property is set to ivIPBoth, a
connection attempt will be made via IPv6 if it is enabled on the
operating system. If the connection attempt fails, a new
connection attempt will be made via IPv4.

NullForZeroDelphiDa
te

Use the NullForZeroDelphiDate property to hide the '30-12-1899'
dates. If NullForZeroDelphiDate is set to True, the values of all
datetime fields will be changed to Null. If the property is set to
False, the '30-12-1899' value will be used as an ordinary date.
The default value is false.

OptimizedBigint

Setting this option converts all fields with field length less than 11
of TLargeIntField type into TIntegerField. This allows to process
fields that are results of numeric function or cast values as usual
Integer fields. The default value is False.

Protocol

Specifies which protocol to use when connecting to the server:

mpDefault
Similar to mpTCP, except the cases when you connect to a local
server and the OS supports sockets (Unix) or named pipes
(Windows), they are used instead of TCP/IP to connect to the
server.
mpTCP
Use TCP/IP to connect to the server.
mpSocket
Uses sockets to connect to the server. Can be used with Direct
set to False and libmysql.dll 4.1.
mpPipe
Use NamedPipes to connect to the server.
mpMemory
To connect to the server using SharedMem. Can be used with
Direct set to False and libmysql.dll 4.1.
mpSSL
Use protected SSL connection with the server.
mpHttp

Provider-Specific Notes 243

© 2024 Devart

Uses HTTP Network Tunneling to connect to the server.
HttpUrl Holds the url of the tunneling PHP script.
HttpUsername Holds the user name for HTTP authorization.
HttpPassword Holds the password for HTTP authorization.
ProxyHostname Holds the host name or IP address to connect to proxy server.

ProxyPort Used to specify the port number for TCP/IP connection with proxy
server.

ProxyUsername Holds the proxy server account name.
ProxyPassword Holds the password for the proxy server account.
SSLCACert CACert is the pathname to the certificate authority file.
SSLCert Cert is the pathname to the certificate file.

SSLChipherList ChipherList is a list of allowable ciphers to use for SSL
encryption.

SSLKey Key is the pathname to the key file.

UseUnicode

Informs server that all data between client and server sides will be
passed in UTF-8 coding. Setting this option converts all fields of
TStringField type into TWideStringField that allows to work
correctly with symbols of almost all languages simultaneously. On
the other hand, it causes a delay in working. The default value is
False.

TUniSQL

Option name Description

CommandTimeout

Specifies the amount of time that is expired before an attempt to
execute a command is considered unsuccessful. Measured in
seconds.
If a command is successfully executed prior to the expiration of
the seconds specified, CommandTimeout has no effect. The
default value is 0 (infinite).

TUniQuery, TUniTable, TUniStoredProc

Option name Description

BinaryAsString

Specifies the method of representation of BINARY and
VARBINARY types. If set to True, binary field data will be
retrieved as a string and handled by the TStringField class. The
default value is True.

CheckRowVersion

Determines whether the dataset checks for rows modifications
made by another user on automatic generation of SQL statement
for update or delete data. If CheckRowVersion is True and
DataSet has timestamp field when only this field is added into
WHERE clause of the generated SQL statement. If

Universal Data Access Components244

© 2024 Devart

CheckRowVersion is True, but there is no TIMESTAMP field,
then to WHERE clause all non-BLOB fields will be added. The
default value is False.

CommandTimeout

Specifies the amount of time that is expired before an attempt to
execute a command is considered unsuccessful. Measured in
seconds.
If a command is successfully executed prior to the expiration of
the seconds specified, CommandTimeout has no effect. The
default value is 0 (infinite).

CreateConnection

Specifies whether an additional connection to a server should be
established to execute an additional query in the FetchAll=False
mode. If a DataSet is opened in FetchAll=False, the current
connection is locked until all records have been fetched. If this
option is set to True, an additional connection is created to
prevent locking of the current connection when fetching data. In
case you have the FetchAll or UniDirectional option enabled, and
you don't want an additional connection to be created for each
Open/ExecSQL (for example, when dealing with TEMPORARY
TABLES or SESSION VARIABLES), set CreateConnection to
False.

EnableBoolean
Specifies the method of representation of TINYINT(1) fields. If set
to True, these fields will be represented as TBooleanFiled;
otherwise, as TSmallintField. The default value is True.

FetchAll

When set to True, all records of the query are requested from the
database server when dataset is being opened. When set to
False, records are retrieved when a data-aware component or a
program requests it. If a query can return a lot of records, set this
property to False if initial response time is important.
When the FetchAll property is False, the first call to Locate and
LocateEx methods may take a lot of time to retrieve additional
records to the client side.

FieldsAsString All non-BLOB fields are stored as string (native MySQL format).
The default value is False.

NullForZeroDate

For datetime fields with invalid values, for example '2002-12-32',
MySQL returns on fetch '0000-00-00' value. According to
NullForZeroDate option this value will be represented as Null or
'0001-01-01' ('0100-01-01' for CLR). The default value is True.

TUniScript

The TUniScript component has no MySQL-specific options.

TUniLoader

Provider-Specific Notes 245

© 2024 Devart

Option name Description

LockTable Locks tables while inserting data.
Delayed Uses INSERT DELAYED syntax.

RowsPerQuery

Use the RowsPerQuery property to get or set the number of rows
that will be send to the server for one time. The default value is 0.
In this case rows will be grouped by 16Kb (the default value of
net_buffer_length).

DuplicateKeys Use the DuplicateKeys property to specify in what way conflicts
with duplicated key values will be resolved.

QuoteNames
Use the QuoteNames option to quote all database object names
in automatically generated SQL statements, such as UPDATE
statements. The default value is False.

TUniDump

Option name Description

AddLock
Use the AddLock property to execute LOCK TABLE before data
insertion. Used only with doData in
P:Devart.MyDac.TMyDump.Objects.

BackupData Use the option to backup the data in a table. The default value is
True.

BackupStoredProcs Use the enable backup of stored procedures. The default value is
False.

BackupTables Use the option to enable backup of the table structure. The default
value is False.

BackupTriggers Use the option to enable backup of triggers. The default value is
False.

BackupViews Use the option to enable backup of views. The default value is
False.

CommitBatchSize

Use the CommitBatchSize option to add COMMIT statement to
script after the specified number of strings when dumping table
data. The option is useful for recovering large amounts of data.
The default value is 0.

DisableKeys
Add /*!40000 ALTER TABLE ... DISABLE KEYS */ before
inserting data. Used only with doData in
P:Devart.MyDac.TMyDump.Objects.

InsertType

Specifies how rows will be inserted into a table.

Supported values:

itInsert (default)
New rows will be inserted into an existing table. If a duplicate
entry is encountered, an exception will be raised.

Universal Data Access Components246

© 2024 Devart

itInsertIgnore
The insert operation will fail silently for rows containing an
unmatched value, but inserts rows that are matched, without
raising an exception.

itReplaceInto
If an old row in a table has the same value as a new row, the old
row will be deleted before the new row is inserted.

HexBlob If the HexBlob property is True, the BLOB values are presented in
hexdecimal notation.

UseExtSyntax
Set the UseExtSyntax propery to use extended syntax of INSERT
on data insertion. Used only with doData in
P:Devart.MyDac.TMyDump.Objects.

UseDelayedIns Set the UseDelayedIns property to use INSERT DELAYED. Used
only with doData in P:Devart.MyDac.TMyDump.Objects.

Data Type Mapping
The following table lists the constants for mapping MySQL data types to Delphi data types.

See Data Type Mapping for more information.

Constant Description
myBigint Maps BIGINT to Delphi data types.
myBigintUnsigned Maps BIGINT UNSIGNED to Delphi data types.
myBinary Maps BINARY to Delphi data types.
myBit Maps BIT to Delphi data types.
myBlob Maps BLOB to Delphi data types.
myChar Maps CHAR to Delphi data types.
myDate Maps DATE to Delphi data types.
myDatetime Maps DATETIME to Delphi data types.
myDecimal Maps DECIMAL to Delphi data types.
myDouble Maps DOUBLE to Delphi data types.
myEnum Maps ENUM to Delphi data types.
myFloat Maps FLOAT to Delphi data types.
myInt Maps INTEGER to Delphi data types.
myIntUnsigned Maps INTEGER UNSIGNED to Delphi data types.
myJSON Maps JSON to Delphi data types.
myLongBlob Maps LONGBLOB to Delphi data types.
myLongText Maps LONGTEXT to Delphi data types.
myMedium Maps MEDIUMINT to Delphi data types.
myMediumBlob Maps MEDIUMBLOB to Delphi data types.

Provider-Specific Notes 247

© 2024 Devart

myMediumText Maps MEDIUMTEXT to Delphi data types.
myMediumUnsigned Maps MEDIUMINT UNSIGNED to Delphi data types.
myNull Maps NULL to Delphi data types.
mySet Maps SET to Delphi data types.
mySmall Maps SMALLINT to Delphi data types.
mySmallUnsigned Maps SMALLINT UNSIGNED to Delphi data types.
myText Maps TEXT to Delphi data types.
myTime Maps TIME to Delphi data types.
myTimestamp Maps TIMESTAMP to Delphi data types.
myTiny Maps TINY to Delphi data types.
myTinyBlob Maps TINYBLOB to Delphi data types.
myTinyText Maps TINYTEXT to Delphi data types.
myTinyUnsigned Maps TINYINT UNSIGNED to Delphi data types.
myUnsignedTypes Maps UNSIGNED TYPES to Delphi data types.
myVarbinary Maps VARBINARY to Delphi data types.
myVarchar Maps VARCHAR to Delphi data types.
myYear Maps YEAR to Delphi data types.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

5.1.10 UniDAC and NexusDB

This article provides a brief overview of the NexusDB data access provider for UniDAC used

to establish a connection to NexusDB databases from Delphi and Lazarus. You will find the

description of some useful features and how to get started quickly.

Overview

Compatibility

Requirements

Deployment

NexusDB-specific options

TUniConnection

TUniSQL

TUniQuery, TUniTable, TUniStoredProc

TUniScript

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components248

© 2024 Devart

TUniLoader

TUniDump

Data Type Mapping

Overview

The main features of the NexusDB data access provider are:

High performance

Easy deployment

Comprehensive support for the latest versions of NexusDB server

Both Professional and Standard Editions of UniDAC include the NexusDB provider. Express

Edition of UniDAC does not include the NexusDB provider.

NexusDB provider is supplied with source code.

Compatibility
To learn about NexusDB compatibility, refer to the Compatibility section.

Requirements
You should have installed NexusDB components for corresponding IDE. NexusDB provider

uses the following NexusDB libraries: NexusDBXXXdbXX, NexusDBXXXsdXX,

NexusDBXXXllXX, NexusDBXXXsrXX, NexusDBXXXptXX, NexusDBXXXtwXX,

NexusDBXXXsqXX, NexusDBXXXseXX, NexusDBXXXstXX, NexusDBXXXreXX.

Before using the NexusDB provider, you have to rebuild and reinstall its provider package.

You can find the detailed steps describing the installation of the package in the

UniDAC_Install_Dir\Source\NexusDBProvider\Readme.html file, where UniDAC_Install_Dir is

a directory where you installed UniDAC.

Deployment
When an application was built without runtime packages (Link with runtime packages set to

False in Project Options), you do not need to deploy any BPL files with it. If the option is set to

True, you must deploy the package libraries listed in Deployment and additionally the following

NexusDB libraries: NexusDBXXXdbXX, NexusDBXXXsdXX, NexusDBXXXllXX,

NexusDBXXXsrXX, NexusDBXXXptXX, NexusDBXXXtwXX, NexusDBXXXsqXX,

Provider-Specific Notes 249

© 2024 Devart

NexusDBXXXseXX, NexusDBXXXstXX, NexusDBXXXreXX.

Note that UniDAC Trial requires deployment of additional BPL files regardless of Link with

runtime packages.

NexusDB-specific options
Though UniDAC is components that provide unified interface to work with different database

servers, it also lets you tune behaviour for each server individually. For thin setup of a certain

database server, UniDAC provides server-specific options. These options can be applied to

such components as TUniConnection, TUniQuery, TUniTable, TUniStoredProc, TUniSQL,

TUniScript via their SpecificOptions property. SpecificOptions is a sting list. Therefore you

can use the following syntax to assign an option value:

UniConnection.SpecificOptions.Values['FetchAll'] := 'True';

Below you will find the description of allowed options grouped by components.

UniQuery.SpecificOptions.Values['FieldsAsString'] := 'True';

Below you will find the description of allowed options grouped by components.

TUniConnection

Option name Description

CommandTimeout
Specifies the elapsed time in seconds before an attempt to
execute a command is considered unsuccessful. The default
value is 15.

ConnectionTimeout
Specifies the amount of time in seconds that can be expired
before an attempt to make a connection is considered
unsuccessful.

DatabaseReadOnly
If True, no writing is required, allows for sharing databases
between servers.

HeartbeatInterval
Use the HeartbeatInterval option to specify how often the client
will send a hearbeat message to the server. The default value is
10.

LostConnectionTime
out

Specifies the amount of time in seconds that must expire before
a connection is considered lost. The default value is 10.

WatchdogInterval
Use the WatchdogInterval option to specify how often the client
will check all connections. The default value is 10.

TUniSQL

Option name Description

Universal Data Access Components250

© 2024 Devart

CommandTimeout The time to wait for a statement to be executed.

ReadOnly Use the ReadOnly option to prevent users from modifying data in
the database. The default value is False.

TUniQuery, TUniTable, TUniStoredProc

Option name Description

CommandTimeout The time to wait for a statement to be executed.

CursorUpdate

Specifies what way data updates reflect on database when
modifying dataset by using server NexusDB cursors (the
ServerCursor option is set to True). If True, all dataset
modifications pass to database by server cursors. It increases
performance but doesn't allow to use procedures or enhanced
queries for additional data changes. If False, all dataset updates
pass to server by SQL statements generated automatically or
specified in SQLUpdate, SQLInsert or SQLDelete. The default
value is True.

FetchAll

When set to True, all records of the query are requested from the
database server when dataset is being opened. When set to
False, records are retrieved when a data-aware component or a
program requests it. If a query can return a lot of records, set this
property to False if initial response time is important.
When the FetchAll property is False, the first call to Locate and
LocateEx methods may take a lot of time to retrieve additional
records to the client side.

ReadOnly

Use the ReadOnly option to prevent users from updating,
inserting, or deleting data in the dataset. By default, ReadOnly is
False, meaning that users can potentially alter data stored in the
dataset. To guarantee that users cannot modify or add data to a
dataset, set ReadOnly to True.

ServerCursor

By default, ServerCursor is False, meaning that NexusDB
provider reads data to the own memory when dataset is opened.
NexusDB provider performs all database operations using SQL
statements generated automatically or specified in SQLUpdate,
SQLInsert or SQLDelete. If True, then NexusDB provider calls
server NexusDB cursor for resultset record access and then
reads data from it. So, stored data aren't duplicated that allows
you to decrease memory charges. Data to the server can be
written using server cursor or SQL queries in dependence of
CursorUpdate option. So the TCustomDADataSet.FetchRows,
FetchAll, CachedUpdates properties don't have any influence on
such cursors and only the CursorUpdate option does.

TUniScript

Provider-Specific Notes 251

© 2024 Devart

The TUniScript component has no NexusDB-specific options.

TUniLoader

Option name Description

DirectLoad
If True, all inserted data pass to database by server NexusDB
cursors. If False, all inserted data pass to server by SQL
statements. The default value is True.

TUniDump

The TUniDump component has no NexusDB-specific options.

Data Type Mapping
The following table lists the constants for mapping NexusDB data types to Delphi data types.

See Data Type Mapping for more information.

Constant Description
nxBoolean Maps Boolean to Delphi data types.
nxChar Maps Char to Delphi data types.
nxWideChar Maps WideChar to Delphi data types.
nxByte Maps Byte to Delphi data types.
nxWord16 Maps Word16 to Delphi data types.
nxWord32 Maps Word32 to Delphi data types.
nxInt8 Maps Int8 to Delphi data types.
nxInt16 Maps Int16 to Delphi data types.
nxInt32 Maps Int32 to Delphi data types.
nxInt64 Maps Int64 to Delphi data types.
nxAutoInc Maps AutoInc to Delphi data types.
nxSingle Maps Single to Delphi data types.
nxDouble Maps Double to Delphi data types.
nxExtended Maps Extended to Delphi data types.
nxCurrency Maps Currency to Delphi data types.
nxDate Maps Date to Delphi data types.
nxTime Maps Time to Delphi data types.
nxDateTime Maps DateTime to Delphi data types.
nxInterval Maps Interval to Delphi data types.
nxBlob Maps BLOB to Delphi data types.
nxBlobMemo Maps BLOB Memo to Delphi data types.

Universal Data Access Components252

© 2024 Devart

nxBlobGraphic Maps BLOB Graphic to Delphi data types.
nxByteArray Maps Byte Array to Delphi data types.
nxShortString Maps ShortString to Delphi data types.
nxNullString Maps NullString to Delphi data types.
nxWideString Maps WideString to Delphi data types.
nxRecRev Maps Recrev to Delphi data types.
nxGuid Maps GUID to Delphi data types.
nxBCD Maps BCD to Delphi data types.
nxBlobWideMemo Maps BLOB Wide Memo to Delphi data types.
nxFmtBCD Maps FmtBCD to Delphi data types.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

5.1.11 UniDAC and PostgreSQL

This article provides a brief overview of the PostgreSQL data access provider for UniDAC

used to establish a connection to PostgreSQL databases from Delphi and Lazarus. You will

find the description of some useful features and how to get started quickly.

Overview

Compatibility

Requirements

Deployment

PostgreSQL-specific options

TUniConnection

TUniSQL

TUniQuery, TUniTable, TUniStoredProc

TUniScript

TUniLoader

TUniDump

Data Type Mapping

Overview

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Provider-Specific Notes 253

© 2024 Devart

Main features of PostgreSQL data access provider are:

Direct access to server without PostgreSQL client library

High performance

Easy deployment

Comprehensive support for the latest versions of PostgreSQL server

The full list of PostgreSQL provider features can be found on the UniDACFeatures page.

Both Professional and Standard Editions of UniDAC include the PostgreSQL provider. For

Express Edition of UniDAC, the PostgreSQL provider can be installed with PostgreSQL Data

Access Componets (PgDAC).

Compatibility
To learn about PostgreSQL database server compatibility, refer to the Compatibility section.

Requirements
The provider does not require installation of any additional software on the client.

Deployment
When an application was built without runtime packages (Link with runtime packages set to

False in Project Options), you do not need to deploy any BPL files with it. For more

information, see Deployment.

Note that UniDAC Trial requires deployment of additional BPL files regardless of Link with

runtime packages.

PostgreSQL-specific options
Though UniDAC is components that provide unified interface to work with different database

servers, it also lets you tune behaviour for each server individually. For thin setup of a certain

database server, UniDAC provides server-specific options. These options can be applied to

such components as TUniConnection, TUniQuery, TUniTable, TUniStoredProc, TUniSQL,

TUniScript via their SpecificOptions property. SpecificOptions is a sting list. Therefore you

can use the following syntax to assign an option value:

UniConnection.SpecificOptions.Values['CharLength'] := '1';

https://www.devart.com/unidac/features.html

Universal Data Access Components254

© 2024 Devart

Below you will find the description of allowed options grouped by components.

TUniConnection

Option name Description

ApplicationName The name of a client application. The default value is the name of
the executable file of your application.

Charset Setups the character set which will be used to transfer character
data between client and server.

ConnectionTimeout The time to wait for a connection to open before raising an
exception.

HttpPassword Use the HttpPassword option to specify the password for HTTP
authorization.

HttpTrustServerCertif
icate

This option specifies whether or not the driver should trust the
server certificate when connecting to the server. The default value
is False – the driver won't trust the server certificate and will verify
validity of the server certificate instead. If set to True, the driver
will trust the server certificate.

HttpUrl Use the HttpUrl option to specify the URL of the PHP tunneling
script.

HttpUsername Use the HttpUsername option to specify the username for HTTP
authorization.

IPVersion

Use the IPVersion property to specify Internet Protocol Version.

Supported values:

ivIPBoth
Specifies that either Internet Protocol Version 6 (IPv6) or Version
4 (IPv4) will be used.

ivIPv4 (default)
Specifies that Internet Protocol Version 4 (IPv4) will be used.

ivIPv6
Specifies that Internet Protocol Version 6 (IPv6) will be used.

Note: When the TIPVersion property is set to ivIPBoth, a
connection attempt will be made via IPv6 if it is enabled on the
operating system. If the connection attempt fails, a new
connection attempt will be made via IPv4.

MessagesCharset Specifies the character set that will be used to transfer error
messages from the server to the client.

MultipleConnections
Enables or disables the creation of an additional internal
connection for TUniQuery, when necessary. The default value is
True.

Provider-Specific Notes 255

© 2024 Devart

ProtocolVersion

Specifies protocol version to be used when several versions are
available.

Supported values:

pv20
Set ProtocolVersion to pv20 to work with PostgreSQL server
version 7.3 or older that don't support protocol version 3.0.

pv30
Set ProtocolVersion to pv30 to enforce protocol version 3.0.

pvAuto (default)
Set ProtocolVersion to pvAuto to automatically select between
protocol versions depending on the specific query for the best
possible performance.

ProxyHostname Use the ProxyHostName option to specify the host name or IP
address to connect to the proxy server.

ProxyPassword Use the ProxyPassword option to specify the password for the
proxy server.

ProxyPort Use the ProxyPort option to specify the port for a TCP/IP
connection with the proxy server.

ProxyUsername Use the ProxyUsername option to specify the username for the
proxy server.

Schema

Use the Schema property to set the search path for the
connection to the specified schema. This setting offers a
convenient way to perform operations on objects in a schema
other than that of the current user without having to qualify the
objects with the schema name.

SSLCACert The pathname to the certificate authority file.
SSLCert The pathname to the certificate file.
SSLCipherList The list of allowable ciphers to use for SSL encryption.
SSLKey The pathname to the key file.

SSLMode

This option determines whether or with what priority an SSL
connection will be negotiated with the server.

Supported values:

smAllow
Negotiates trying first a non-SSL connection, then if that fails,
tries an SSL connection.

smDisable (default)
Only an unencrypted SSL connection will be attempted.

smPrefer

Universal Data Access Components256

© 2024 Devart

Negotiates trying first an SSL connection, then if that fails, tries a
regular non-SSL connection.

smRequire
Tries only an SSL connection.

smVerifyCA
Verifies server identity by validating the server certificate chain up
to the root certificate installed on the client machine.

smVerifyFull
Verifies server identity by validating the server certificate chain up
to the root certificate installed on the client machine and validates
that the server hostname matches the server certificate.

Note: If PostgreSQL is compiled without SSL support, using
option smRequire will cause an error, while options smAllow and
smPrefer will be accepted, but PgDAC will not in fact attempt an
SSL connection.

UseHttp The UseHttp option enables the use of HTTP tunneling to connect
to the server. The default value is False.

UseUnicode

Enables or disables Unicode support. Affects character data
fetched from the server. When set to True, all character data is
stored as WideStrings, and TStringField is replaced by
TWideStringFiled.

UuidWithBraces Use the UuidWithBraces option to specify whether the values of
UUID fields are returned with braces. The default value is True.

TUniSQL

Option name Description

CommandTimeout The time to wait for a statement to be executed.

UnpreparedExecute
If True, the simple execute is used for SQL statement. Statement
is not prepared before execute. It allows to add multiple
statements separated by semicolon to the SQL property.

UseParamTypes

Set this option to True to disable automatic detection of
parameter types. When this option is True, data types of
parameters are set basing on the DataType property. When this
option is False, data types of the parameters are detected by
server automatically.

TUniQuery, TUniTable, TUniStoredProc

Option name Description

Provider-Specific Notes 257

© 2024 Devart

AutoDeleteBlob
If True (the default value), the BLOBs are deleted from database
automatically when a record that holds these BLOBs' OIDs is
deleted from dataset.

CacheBlobs If True (the default value), then local memory buffer is allocated to
hold a copy of the BLOB content.

CommandTimeout The time to wait for a statement to execute.

CursorWithHold

When this option is False (default), an active transaction is
required to open a query in FetchAll=False mode. If there is no
active transaction, PgDAC opens additional internal connection
and starts transaction on this connection.
When this option is True, PgDAC uses DECLARE CURSOR ...
WITH HOLD statement to open the query. In this case no active
transaction is required but this may take additional server
resources.

DeferredBlobRead

If True, all BLOB values are fetched only when they are explicitly
requested. Otherwise entire record set with any BLOB values is
returned when dataset is opened. Whether BLOB values are
cached locally to be reused later is controlled by the CacheLobs
option.

ExtendedFieldsInfo

If True, an additional query is performed to get information about
the returned fields and the tables they belong to. This information
includes the NOT NULL attribute of the field, the SEQUENCE
linked to the field, and the table name corresponding to the field.
The table name is needed to detect fields that belong to the
updated table and set the read-only attribute for all other fields
returned by the query. The default value is True.

FetchAll

If True, all records of a query are requested from database server
when the dataset is being opened.
If False, records are retrieved when a data-aware component or
a program requests it. The default value is True.

KeySequence
Use the KeySequence property to specify the name of a
sequence that will be used to fill in a key field after a new record
is inserted or posted to the database.

OIDAsInt
If True, OID fields are mapped on TIntegerField. If False, values of
OID fields are treated as large objects' OID, and these fields are
mapped on TBlobField.

PrefetchRows

The number of rows to be prefetched during the execution of a
query. Setting the property to a value greater than 0 reduces the
server round-trip count and increases the performance of the
application. The default value is 0 — the number of prefetched
rows is determined automatically. To disable row prefetching, set
the property to -1.

SequenceMode
Set the SequenceMode property to specify which method is used
internally to generate sequenced field. The following values are
allowed for this property:

Universal Data Access Components258

© 2024 Devart

smInsert
New record is inserted into the dataset with the first key field
populated with a sequenced value. Application may modify this
field before posting the record to the database.
smPost
Database server populates key field with a sequenced value
when application posts the record to the database. Any value put
into the key field before post will be overwritten.

UnknownAsString

If True, all PostgreSQL data types that are fetched as text, and
don't have limited field size, are mapped on TStringField with
default size 8192. If False, such types are mapped on
TMemoField. The TEXT data type is always mapped on
TMemoField regardless of this option.

UnpreparedExecute
If True, the simple execute is used for SQL statement. Statement
is not prepared before execute. It allows to add multiple
statements separated by semicolon to the SQL property.

UseParamTypes

Set this option to True to disable automatic detection of
parameter types. When this option is True, data types of
parameters are set basing on the DataType property. When this
option is False, data types of the parameters are detected by
server automatically.

TUniScript

The TUniScript component has no PostgreSQL-specific options.

TUniLoader

Option name Description

BufferSize
This property contains the size of the memory buffer used by
TPgLoader. When buffer is filled, the loader sends block of data
to the server.

TextMode

Use the TextMode property to load data in the text mode.
TPgLoader supports two load modes: text and binary. By default
the binary mode is used for a connection with 3.0 protocol. Set
TextMode property to True to force text mode. In binary mode
TPgLoader may work slightly faster but some data type are not
supported in this mode. In text mode you can load data to
columns with any PostgreSQL data type.

QuoteNames
Use the QuoteNames option to quote all database object names
in automatically generated SQL statements, such as UPDATE
statements. The default value is False.

Provider-Specific Notes 259

© 2024 Devart

TUniDump

The TUniDump component has no PostgreSQL-specific options.

Data Type Mapping
The following table lists the constants for mapping PostgreSQL data types to Delphi data

types. See the Data Type Mapping tutorial for more information.

Constant Description

pgBigInt Maps bigint to Delphi data types.

pgBigSerial Maps bigserial to Delphi data types.

pgBit Maps bit to Delphi data types.

pgBitVarying Maps bit varying to Delphi data types.

pgBoolean Maps boolean to Delphi data types.

pgBytea Maps bytea to Delphi data types.

pgCharacter Maps character to Delphi data types.

pgCharacterVarying Maps character varying to Delphi data types.

pgDate Maps date to Delphi data types.

pgDoublePrecision Maps double precision to Delphi data types.

pgInteger Maps integer to Delphi data types.

pgMoney Maps money to Delphi data types.

pgNumeric Maps numeric to Delphi data types.

pgReal Maps real to Delphi data types.

pgSerial Maps serial to Delphi data types.

pgSmallint Maps smallint to Delphi data types.

pgText Maps text to Delphi data types.

pgTime Maps time to Delphi data types.

pgTimeStamp Maps timestamp to Delphi data types.

pgTimeStampWithTim
eZone

Maps timestamp with time zone to Delphi data types.

pgTimeWithTimeZone Maps time with time zone to Delphi data types.

pgUUID Maps uuid to Delphi data types.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components260

© 2024 Devart

5.1.12 UniDAC and ODBC

This article provides a brief overview of the ODBC data access provider for UniDAC that

allows ODBC connection to DBMSs from Delphi and Lazarus if a corresponding driver exists.

You will find the description of some useful features and how to get started quickly.

Overview

Compatibility

Requirements

Deployment

ODBC-specific options

TUniConnection

TUniSQL

TUniQuery, TUniTable, TUniStoredProc

TUniScript

TUniLoader

TUniDump

Data Type Mapping

Overview
Main features of the ODBC data access provider are:

High performance

Easy deployment

Support for any DBMS that comes with ODBC driver

The full list of the ODBC provider features can be found on the UniDAC features page.

Both Professional and Standard Editions of UniDAC include the ODBC provider. Express

Edition of UniDAC does not include the ODBC provider.

Compatibility
ODBC provider supports ODBC 3.x.

https://www.devart.com/unidac/features.html

Provider-Specific Notes 261

© 2024 Devart

Requirements
Applications that use the ODBC provider require ODBC to be installed on the client computer.

In the current versions of Microsoft Windows, since Windows 2000, ODBC is already

included as a standard package.

To use the ODBC provider with specific DBMS, ODBC driver for the required DBMS must be

installed.

Deployment
When an application was built without runtime packages (Link with runtime packages set to

False in Project Options), you do not need to deploy any BPL files with it. For more

information, see Deployment.

Note that UniDAC Trial requires deployment of additional BPL files regardless of Link with

runtime packages.

ODBC-specific options

TUniConnection

Option name Description

ColumnWiseBinding

If True - enables Column-Wise Binding mode. Default value is

False.

Note:Row-Wise Binding mode is enabled by default. However,

some ODBC drivers don't support this mode. In such case, set

the ColumnWiseBinding option to True.

ConnectionTimeout The time to wait for a connection to open before raising an
exception.

DetectFieldsOnPrep
are

Detects fields on the Prepare command execution.
The default value is True
Note: this functionality is not supported in some ODBC drivers.

DriverManager Specifies the dynamic-link library (DLL) that loads ODBC
database drivers on behalf of an application.

DSNType

The type of the data source name (DSN) assigned to the Server
property.
ntAuto

The default value. Automatically identify the type of DSN.

https://msdn.microsoft.com/en-us/library/ms713541(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms711730%28v=vs.85%29.aspx

Universal Data Access Components262

© 2024 Devart

ntName

User DSN or System DSN (registered with ODBC
Administrator).
ntFile

File DSN (a .DSN file containing the data source information).
ntConnectionString

ODBC connection string.

LongVarBinaryAsBlo
b

Specifies that all binary byte strings represented by the
LONGVARBINARY type will be retrieved as BLOB fields and
handled by the TBlobField class. The default value is True.

UseUnicode

Enables or disables Unicode support. Affects character data
fetched from the server. When set to True, all character data is
stored as WideStrings, and TStringField is replaced by
TWideStringFiled.

VarBinaryAsBlob
If set to True, all binary byte strings represented by the
VARBINARY type will be retrieved as BLOB fields and handled
by the TBlobField class. The default value is False.

TUniSQL

Option name Description

CommandTimeout The time to wait for a statement to be executed.

TUniQuery, TUniTable, TUniStoredProc

Option name Description

CommandTimeout The time to wait for a statement to be executed.

ExtendedFieldsInfo
If True, an additional query is performed to get information about
the returned fields and tables they belong to. The default value is
False.

FetchAll

If True, all records of a query are requested from database server
when the dataset is being opened.
If False, records are retrieved when a data-aware component or
a program requests it. The default value is False.

FieldsAsString Used to store all non-BLOB fields as string. The default value is
False.

UnknownAsString

Used to map fields of unknown data types to TStringField
(TWideStringField). The default value is False.
If False, fields of unknown data types (for example the ifnull
function result) are mapped to TMemoField or TWideMemoField
depending on the value of the UseUnicode option. Memo is used
because maximum length of values from such fields is unknown.
If True, fields of unknown data types are mapped to TStringField

Provider-Specific Notes 263

© 2024 Devart

or TWideStringField depending on the value of the UseUnicode
option. Size of fields is set to 8192. Values larger than this size
are truncated.

TUniScript

The TUniDump component has no ODBC-specific options.

TUniLoader

The TUniLoader component has no ODBC-specific options.

TUniDump

The TUniDump component has no ODBC-specific options.

TUniDump

The TUniDump component has no NexusDB-specific options.

Data Type Mapping
The following table lists the constants for mapping ODBC data types to Delphi data types.

See Data Type Mapping for more information.

Constant Description
odbcChar Maps SQL_CHAR to Delphi data types.
odbcWideChar Maps SQL_WCHAR to Delphi data types.
odbcVarChar Maps SQL_VARCHAR to Delphi data types.
odbcWideVarChar Maps SQL_WVARCHAR to Delphi data types.
odbcLongVarChar Maps SQL_LONGVARCHAR to Delphi data types.
odbcWideLongVarCha
r

Maps SQL_WLONGVARCHAR to Delphi data types.

odbcBit Maps SQL_BIT to Delphi data types.
odbcTinyInt Maps SQL_TINYINT to Delphi data types.
odbcUTinyInt Maps SQL_TINYINT UNSIGNED to Delphi data types.
odbcSmallInt Maps SQL_SMALLINT to Delphi data types.
odbcUSmallInt Maps SQL_SMALLINT UNSIGNED to Delphi data types.
odbcInteger Maps SQL_INTEGER to Delphi data types.
odbcUInteger Maps SQL_INTEGER UNSIGNED to Delphi data types.
odbcBigInt Maps SQL_BIGINT to Delphi data types.
odbcUBigInt Maps SQL_BIGINT UNSIGNED to Delphi data types.

Universal Data Access Components264

© 2024 Devart

odbcReal Maps SQL_REAL to Delphi data types.
odbcFloat Maps SQL_FLOAT to Delphi data types.
odbcDouble Maps SQL_DOUBLE to Delphi data types.
odbcDecimal Maps SQL_DECIMAL to Delphi data types.
odbcNumeric Maps SQL_NUMERIC to Delphi data types.
odbcDate Maps SQL_TYPE_DATE to Delphi data types.
odbcTime Maps SQL_TYPE_TIME to Delphi data types.
odbcTimeStamp Maps SQL_TYPE_TIMESTAMP to Delphi data types.
odbcBinary Maps SQL_BINARY to Delphi data types.
odbcVarBinary Maps SQL_VARBINARY to Delphi data types.
odbcLongVarBinary Maps SQL_LONGVARBINARY to Delphi data types.
odbcBlob Maps SQL_BLOB to Delphi data types.
odbcClob Maps SQL_CLOB to Delphi data types.
odbcXml Maps SQL_XML to Delphi data types.
odbcVariant Maps SQL_VARIANT to Delphi data types.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

5.1.13 UniDAC and Oracle

This article provides a brief overview of the Oracle data access provider for UniDAC used to

establish a connection to Oracle databases from Delphi and Lazarus. You will find the

description of some useful features and how to get started quickly.

Overview

Compatibility

Requirements

Deployment

Oracle-specific options

TUniConnection

TUniSQL

TUniQuery, TUniTable, TUniStoredProc

TUniScript

TUniLoader

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Provider-Specific Notes 265

© 2024 Devart

TUniDump

Oracle-specific notes

Connecting in Direct mode

Data Type Mapping

Overview
Oracle data access provider is based on the Oracle Data Access Components (ODAC)

library, which is one of the best known Delphi data access solutions for Oracle. The main

features of Oracle data access provider are:

Direct access to the server without Oracle client (OCI)

High performance

Easy deployment

Full support for the latest versions of Oracle server

The full list of Oracle provider features can be found on the UniDAC Features page.

Both Professional and Standard Editions of UniDAC include the Oracle provider. For Express

Edition of UniDAC, the Oracle provider can be installed with ODAC.

Compatibility
To learn about Oracle database server compatibility, see the Compatibility section.

Requirements
If your application is using the Direct mode, you don't need to install any additional software on

the client machine. In the Client mode, you need to install the Oracle client.

Deployment
When an application was built without runtime packages (Link with runtime packages set to

False in Project Options), you do not need to deploy any BPL files with it. For more

information, see Deployment.

Note that UniDAC Trial requires deployment of additional BPL files regardless of Link with

runtime packages.

https://www.devart.com/odac/
https://www.devart.com/unidac/features.html

Universal Data Access Components266

© 2024 Devart

Oracle-specific options
In addition to providing a unified interface to work with different database server, it also allows

you to tune application behavior for each server individually. UniDAC provides server-specific

options for fine-tuning specific database servers. These options can be applied to such

components as TUniConnection, TUniQuery, TUniTable, TUniStoredProc, TUniSQL, and

TUniScript using the SpecificOptions property, which is a string list. You can use the

following syntax to assign a value to SpecificOptions:

 UniConnection.SpecificOptions.Values['CharLength'] := '1';

Below you will find the description of allowed options grouped by components.

TUniConnection

Option Description

CharLength
The size of characters in bytes for national language support. The
range of allowed values is between 0 and 6. The default value is 0
— the actual character length is determined by an Oracle server.

Charset The character set for the character data transferred between the
client and server. Supported with Oracle 8 client only.

ClientIdentifier

The client identifier in the session. The client identifier can be set
in the session handle at any time in the session. Then, on the next
request to the server, the information is propagated and stored in
the server session. The first character of the ClientIdentifier must
not be ':'. If it is, an exception will be raised. This property has no
effect if you use the version of the server earlier than Oracle 9.

ConnectionTimeout
The time to wait for a connection to open before raising an
exception. Works only when Direct is set to True. The default
value is 0.

ConnectMode

The system privilege for the user who connects to the server.
cmNormal

The default value. Connect as a normal user.
cmSysOper

Connect with the SYSOPER privilege.
cmSysDBA

Connect with the SYSDBA privilege.
cmSysASM

Connect with the SYSASM privilege.
cmSysBackup

Connect with the SysBackup privilege.
cmSysDG

Connect with the SysDG privilege.

Provider-Specific Notes 267

© 2024 Devart

cmSysKM

Connect with the SYSKM privilege.
The privilege must be granted to the user before connecting to
the server. ConnectMode is not supported for OCI 7.

DateFormat
The default date format used when Oracle makes conversions
from internal date format into string values and vice versa. An
example of a valid expression is MM/DD/YYYY.

DateLanguage
The default language used when Oracle parses internal date
format into strings and vice versa. Examples of valid expressions
include French, German, etc.

Direct

Enables the Direct mode. When True, connection is performed
directly over TCP/IP, without involving Oracle client software.
When False, the Oracle provider connects in the Client mode.
The default value is False.

EnableIntegers

Represents Oracle NUMBER fields with precision less than 10.
When True, fields are represented as TIntegerField. When
False, fields are represented as TFloatField. The default value
is True.

EnableLargeint

Represents Oracle NUMBER fields with precision more than 9 and
less than 18. When True, fields are represented as
TIntegerField. When False, fields are represented as
TFloatField. The default value is False.

HomeName

Specifies which Oracle client to use when two ore more Oracle
clients are present on the machine. The Oracle provider searches
for available homes in the HKEY_LOCAL_MACHINE\SOFTWARE
\ORACLE registry folder. When the option is set to an empty string,
the provider uses the first directory from the list of homes found in
the PATH environment variable as the default Oracle home.

HttpPassword The password for the password-protected directory that contains
the HTTP tunneling script.

HttpTrustServerCer
tificate

Specifies whether to verify the server certificate during an SSL
handshake. When True, ODAC bypasses walking the certificate
chain to verify the certificate. The default value is False.

HttpUrl The URL of the PHP script for HTTP tunneling.

HttpUsername The username for the password-protected directory that contains
the HTTP tunneling script.

IPVersion

The Internet Protocol Version.
ivIPBoth

Either Internet Protocol Version 6 (IPv6) or Version 4 (IPv4) is
used.
ivIPv4

The default value. Internet Protocol Version 4 (IPv4) is used.
ivIPv6

Universal Data Access Components268

© 2024 Devart

Internet Protocol Version 6 (IPv6) is used.
Note: When the property is set to ivIPBoth, a connection attempt
is made via IPv6 if it is enabled in the operating system. If the
connection attempt fails, a new connection attempt is made via
IPv4.

OptimizerMode

The default optimizer mode for the connection.
omDefault

The session optimizer mode remains unchanged.
omFirstRowsN

The optimizer chooses the execution plan that returns the first N
rows as quickly as possible. If you use Oracle 9.0 or earlier, these
options have the same effect as omFirstRows.
omFirstRows

This mode is retained for backward compatibility and plan
stability. It optimizes for the best execution plan to return the first
row as soon as possible.
omAllRows

The optimizer explicitly chooses the cost-based approach to
optimize a statement block with a goal of best throughput (that is,
minimum total resource consumption).
omChoose

The optimizer chooses between the rule-based and cost-based
approaches for an SQL statement. The choice of the optimizer
depends on the presence of statistics for the tables accessed by
the statement: if the data dictionary has statistics for at least one
of the tables, the optimizer uses the cost-based approach and
optimizes with the goal of the best throughput. Otherwise, it uses
the rule-based approach.
omRule

The optimizer chooses rule-based optimization (RBO). Any other
value causes the optimizer to choose cost-based optimization
(CBO). The rule-based optimizer is the archaic optimizer mode
from the earliest releases of Oracle Database.

PoolingType

The connection pooling implementation.
optLocal

The default value. Our own connection pooling implementation.
optOCI

OCI connection pooling.
optMTS

Shared server (MTS) connection pooling.

PrecisionBCD

Represents Oracle NUMBER fields as TBCDField when their
precision and scale are less than or equal to the precision and
scale in PrecisionBCD, specified as two comma-separated
values (BCD precision and scale). PrecisionBCD cannot be
greater than 14,4. The default value is 14,4.

Provider-Specific Notes 269

© 2024 Devart

PrecisionFloat
Represents Oracle NUMBER fields as TFloatField when their
precision is less than or equal to the precision in
PrecisionFloat. The default value is 0.

PrecisionFMTBCD

Represents Oracle NUMBER fields as TFMTBCDField when their
precision and scale are less than or equal to the precision and
scale in PrecisionFMTBCD, specified as two comma-separated
values (FMTBCD precision and scale). The default value is
39,39.

PrecisionInteger
Represents Oracle NUMBER fields as TIntegerField when their
precision is less than or equal to the precision in
PrecisionInteger. The default value is 9.

PrecisionLargeint
Represents Oracle NUMBER fields as TLargeintField when their
precision is less than or equal to the precision in
PrecisionLargeint. The default value is 18.

PrecisionSmallint
Represents Oracle NUMBER fields as TSmallintField when their
precision is less than or equal to the precision in
PrecisionSmallint. The default value is 4.

ProxyHostname The proxy hostname or IP address.
ProxyPassword The proxy password.
ProxyPort The proxy port.
ProxyUsername The proxy username.

Schema

Changes the current schema of the session to the specified
schema. This option offers a convenient way to perform
operations on objects in a schema other than that of the current
user, without having to qualify the objects with the schema name.
It changes the current schema, but it does not change the session
user or the current user, nor does it give you any additional
system or object privileges for the session.
If TUniConnection.Connected is True, read this property to get
the name of the current schema.

SSL Key The private client key.
SSLCACert The server CA certificate.
SSLCert The client certificate.
SSLCipherList The list of allowed SSL ciphers.

SSLServerCertDN

The server's distinguished name (DN) to enable server DN
matching. It checks whether the server is genuine by matching the
server's global database name against the DN from the server
certificate.

StatementCache Enables statement caching. The default value is False.
StatementCacheSize The size of statement cache. The default value is 20.

ThreadSafety
Enables the use of OCI in a multithreaded environment. This
option must be set to True before any non-blocking fetch of rows
or SQL statement execution takes place. The default value is

Universal Data Access Components270

© 2024 Devart

True.

UnicodeEnvironment

Enables the use of OCI Unicode Environment. When True,
Unicode characters can be used in SQL statements. Set the
option to False if you encounter some issues with Unicode
Environment. The default value is False.

UseOCI7
Forces TUniConnection to use the OCI 7 call style only. The
default value is False.

UseUnicode

Enables Unicode support. The option affects character data
fetched from the server. When True, all character data is stored
as WideString, and TStringField is replaced with
TWideStringField. Supported starting with Oracle 8. The default
value is False.

TUniSQL

Option Description

CommandTimeout

The wait time before a request is sent to the server to terminate
the attempt to execute or fetch the current SQL statement. The
wait time is specified in seconds. The default value is 0. The
value of 0 indicates there are no time limits (an attempt to execute
a statement will wait indefinitely).

NonBlocking
Executes a SQL statement in a separate thread. The default
value is False.

StatementCache Enables statement caching. The default value is False.

TemporaryLobUpdate
Enables the use of a temporary LOB to write input and input/
output LOB parameter into database when executing dataset's
SQL statements. The default value is True.

TUniQuery, TUniTable, TUniStoredProc

Option Description

AutoClose
Closes the OCI cursor after fetching all rows. The option allows to
reduce the number of opened cursors on the server. The default
value is False.

CacheLobs

Allocates a local memory buffer to hold a copy of the LOB
content. When False, it is highly recommended to set the
DeferredLobRead option to True. Otherwise, LOB values are
fetched to the dataset, which may result in performance loss. The
default value is True.

CommandTimeout
The wait time before a request is sent to the server to terminate
the attempt to execute or fetch the current SQL statement. The
wait time is specified in seconds. The default value is 0. The

Provider-Specific Notes 271

© 2024 Devart

default value 0 indicates there are no time limits (an attempt to
execute a command will wait indefinitely).

DeferredLobRead

When True, all Oracle 8 LOB values are only fetched when they
are explicitly requested. When False, an entire record set,
including LOB values, is returned when a dataset is opened. The
CacheLobs option specifies whether LOB values are cached
locally to be reused later. The default value is False.

ExtendedFieldsInfo

Performs an additional query to get information about the
returned fields and tables they belong to. This helps to generate
correct updating SQL statements but may result in performance
decrease. The default value is False.

FetchAll

When True, a query requests all records from a database server
when opening a dataset. When False, records are retrieved when
a data-aware component or an application requests them. The
default value is False.

FieldsAsString Treats all non-BLOB fields as strings. The default value is False.

HideRowId
Hides the RowId service field (the Visible property is set to
False). The default value is True.

KeySequence The name of a sequence that will be used to fill in a key field after
a new record is inserted or posted to the database.

NonBlocking
Executes a SQL statement in a separate thread. The default
value is False.

PrefetchLobSize

Retrieves the LOB length and the chunk size, as well as the
beginning of the LOB data and the locator during a regular fetch.
The option specifies the size of LOB data to be prefetched. If the
total LOB size is less than or equal to the value of
PrefetchLobSize, then all LOB data is fetched without additional
round trips during a regular fetch, which may significantly improve
performance. The default value is 0
Note: LOB data prefetching is available in Oracle 11 and higher.

PrefetchRows

The number of rows to be prefetched during the execution of a
query. Setting the property to a value greater than 0 reduces the
server round-trip count and increases the performance of the
application. The default value is 0 — the number of prefetched
rows is determined automatically. To disable row prefetching, set
the property to -1.
Note: Some queries can return invalid rows count when
prefetching is enabled — for example, SELECT * FROM DUAL
CONNECT BY LEVEL <= 5 returns 1 row when prefetching is
enabled, and 5 rows when it is disabled.

ProcNamedParams

Specifies a notation method of passing parameter values to the
stored PL/SQL object. By default, positional notation is used. To
enable named notation, set the option to True. Named notation
allows passing parameter values in any order regardless of the

Universal Data Access Components272

© 2024 Devart

position.

RawAsString
Treats all RAW fields as hexadecimal strings. The default value
is False.

ScrollableCursor

When True, TUniDataSet does not cache data on the client side,
but uses a scrollable server cursor (available since Oracle 9 only).
This option can be used to reduce memory usage, since dataset
stores only the current fetched block. Unlike the UniDirectional
option, ScrollableCursor allows bidirectional dataset navigation.
Note: Scrollable cursor is read-only by nature.

SequenceMode

Specifies the method to be used internally to generate a
sequenced field.
smInsert

New record is inserted into the dataset with the first key field
populated with a sequenced value. Application may modify this
field before posting the record to the database.
smPost

The default value. Database server populates key field with a
sequenced value when application posts the record to the
database. Any value put into key field before post, is overwritten.

StatementCache Enables statement caching. The default value is False.

TemporaryLobUpdate
Enables the use of a temporary LOB to write input and input/
output LOB parameter into database when executing dataset's
SQL statements. The default value is True

TUniScript

The TUniScript component has no Oracle-specific options.

TUniLoader

Option Description

DirectPath
When True, data is loaded using the Oracle Direct Path Load
interface. When False, data is loaded by executing an INSERT
statement. The default value is True.

QuoteNames
Quotes all database object names in automatically generated
SQL statements, such as UPDATE statements. The default value
is False.

TUniLoader has the following limitations when Oracle Direct Path Load is used:

triggers are not supported

check constraints are not supported

Provider-Specific Notes 273

© 2024 Devart

referential integrity constraints are not supported

clustered tables are not supported

loading of remote objects is not supported

user-defined types are not supported

LOBs must be specified after all scalar columns

LONGs must be specified last

You cannot use TUniLoader in a threaded OCI environment with Oracle client 8.17 or lower.

TUniDump

The TUniDump component has no Oracle-specific options.

Oracle-specific notes
This section describes how to connect to Oracle in the Direct mode.

Connecting in Direct mode
By default the Oracle provider uses the Oracle Call Interface (OCI) to connect to the Oracle

database server. This is referred to as connecting in the Client mode, and is the usual way to

develop Oracle applications with a third-generation language. All OCI routines are stored in

external libraries, so the executables for applications that work through OCI are small.

However, working through OCI requires the Oracle client software to be installed on client

machines. It is rather inconvenient and causes additional installation and administration

expenses. Furthermore, there are some situations where the installation of the Oracle client

is not advisable or may be even impossible—for example, if you deploy an application to

remote machines that are not overseen by a proficient system administrator.

To overcome these challenges, the Oracle provider includes an option to connect to Oracle

directly over the network using the TCP/IP protocol. This is referred to as connecting in the

Direct mode. Connecting in the Direct mode does not require Oracle client software to be

installed on client machines. The only requirement for running an application that uses ODAC

in the Direct mode, is that the operating system must support the TCP/IP protocol.

To connect to Oracle server in the Direct mode, set the Direct property of your

TUniConnection instance to True, and the Server property to a string that contains the host

address of the database server, port number, and Oracle Service Name (SN) or Oracle

Universal Data Access Components274

© 2024 Devart

System Identifier (SID) in the following format:

if you connect to Oracle using Service Name:

Host:Port/ServiceName

or

Host:Port:sn=ServiceName

if you connect to Oracle using SID that is the same as Service Name:

Host:Port:SID

if you connect to Oracle using SID that is different from Service Name:

Host:Port:sid=SID

Host is the server's IP address or DNS name.

Port is the port number that the server listens to.

SID is a system identifier that specifies the name of an Oracle database instance.

ServiceName is a system alias to an Oracle database instance (or multiple instances).

Note that the syntax used to set up the Server property in the Direct mode is different from the

Client mode. In the Client mode, this property must be set to the TNS name of the Oracle

server.

Note that if sid= or sn= is not defined, the connection will be established using SID. If SID and

Service Name are the same, then either of them can be used to set the

TUniConnection.Server property.

An example below illustrates the connection to Oracle in the Direct mode. The IP address of

the Oracle server is 205.227.44.44, the port number is 1521 (the most commonly used port for

Oracle), and the SID is orcl (standard Oracle SID):

var
 UniConnection: TUniConnection;
. . .
UniConnection.Username := 'Scott';
UniConnection.Password := 'tiger';
UniConnection.Server := '205.227.44.44:1521:orcl';
UniConnection.SpecificOptions.Values['Direct'] := 'True';
UniConnection.Connect;

connecting to Oracle with Service Name:

...
UniConnection.Server := '205.227.44.44:1521/orcl';
...

Provider-Specific Notes 275

© 2024 Devart

or
...
UniConnection.Server := '205.227.44.44:1521:sn=orcl';
...

connecting to Oracle with SID:

...
UniConnection.Server := '205.227.44.44:1521:orcl';
...
or
...
UniConnection.Server := '205.227.44.44:1521:sid=orcl';
...

This is all you need to do to enable the Direct mode in your application. You do not have to

rewrite other parts of your code.

To return to the OCI mode, set UniConnection.SpecificOptions.Values['Direct'] to 'False'

and UniConnection.Server to the TNS name of your server.

You can connect to Multi-Threaded Server using the Direct mode. The server must be

configured to use a specific port and the TTC protocol. This can help you avoid firewall

conflicts.

Note: The Direct mode is available in UniDAC Professional Edition and UniDAC Trial. An

attempt to set the UniConnection.SpecificOptions.Values['Direct'] property to 'True' in

UniDAC Standard Edition will generate a "Feature is not supported" error.

Client Mode vs. Direct Mode
Applications that use the Client mode and those that use the Direct mode have similar

performance and file size. In terms of security, using the Direct mode is the same as using

Oracle Client without Oracle Advanced Security. In the Direct mode, ODAC uses DES

authentication and does not support Oracle Advanced Security.

Advantages of the Direct mode:

No need to install and administer Oracle client.

Reduced system requirements.

Limitations of the Direct mode:

only TCP/IP connections are supported;

some issues may occur when using firewalls;

Universal Data Access Components276

© 2024 Devart

NLS conversion on the client side is not supported;

Transparent Application Failover is not supported;

statement caching is not supported;

OS Authentication and password changing are not supported;

Oracle Advanced Security is not supported;

stable operation of multithreaded applications is not guaranteed; it is highly recommended

that you use a separate TUniConnection component for each thread when multiple threads

use UniDAC.

A connection in the Direct mode is managed transparently by an instance of TUniConnection,

and you can easily switch back to OCI in the Client mode at any time if the above limitations

become critical to you.

We tested the Direct mode with all versions of Oracle server for Windows in a local network,

but we do not guarantee compatibility with all Oracle servers on other platforms in different

networks.

Data Type Mapping
The following table lists the constants for mapping Oracle data types to Delphi data types.

See Data Type Mapping for more information.

Constant Description
oraAnyData Maps ANYDATA to Delphi data types.
oraBFile Maps BFILE to Delphi data types.
oraBinaryDouble Maps BINARY_DOUBLE to Delphi data types.
oraBinaryFloat Maps BINARY_FLOAT to Delphi data types.
oraBlob Maps BLOB to Delphi data types.
oraCFile Maps CFILE to Delphi data types.
oraChar Maps CHAR to Delphi data types.
oraClob Maps CLOB to Delphi data types.
oraCursor Maps CURSOR to Delphi data types.
oraDate Maps DATE to Delphi data types.
oraDoublePrecision Maps DOUBLE PRECISION to Delphi data types.
oraFloat Maps FLOAT to Delphi data types.
oraInteger Maps INTEGER to Delphi data types.
oraIntervalDS Maps INTERVAL DAY TO SECOND to Delphi data types.

Provider-Specific Notes 277

© 2024 Devart

oraIntervalYM Maps INTERVAL YEAR TO MONTH to Delphi data types.
oraLabel Maps MLSLABEL to Delphi data types.
oraLong Maps LONG to Delphi data types.
oraLongRaw Maps LONG RAW to Delphi data types.
oraNChar Maps NCHAR to Delphi data types.
oraNClob Maps NCLOB to Delphi data types.
oraNumber Maps NUMBER to Delphi data types.
oraNVarchar2 Maps NVARCHAR2 to Delphi data types.
oraObject Maps OBJECT to Delphi data types.
oraRaw Maps RAW to Delphi data types.
oraReference Maps REF to Delphi data types.
oraRowID Maps ROWID to Delphi data types.
oraTimeStamp Maps TIMESTAMP to Delphi data types.
oraTimeStampWithLo
calTimeZone

Maps TIMESTAMP WITH LOCAL TIME ZONE to Delphi data types.

oraTimeStampWithTi
meZone

Maps TIMESTAMP WITH TIME ZONE to Delphi data types.

oraUndefined Maps UNDEFINED to Delphi data types.
oraURowID Maps UROWID to Delphi data types.
oraVarchar2 Maps VARCHAR2 to Delphi data types.
oraXML Maps XML to Delphi data types.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

5.1.14 UniDAC and SQLite

5.1.14.1 SQLite Provider

This article provides a brief overview of the SQLite data access provider for UniDAC used to

establish a connection to SQLite databases from Delphi and Lazarus. You will find the

description of some useful features and how to get started quickly.

Overview

Compatibility

Requirements

Deployment

SQLite-specific options

TUniConnection

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components278

© 2024 Devart

TUniSQL

TUniQuery, TUniTable, TUniStoredProc

TUniScript

TUniLoader

TUniDump

Encryption

Data Type Mapping

Overview
The main features of the SQLite data access provider are:

High performance

Easy deployment

Comprehensive support for the latest versions of SQLite

The full list of SQLite provider features can be found on the UniDAC features page.

Both Professional and Standard Editions of UniDAC include the SQLite provider. Express

Edition of UniDAC does not include the SQLite provider.

Compatibility
To learn about SQLite compatibility, refer to the Compatibility section.

Requirements
Applications that use the SQLite provider require SQLite client library (sqlite3.dll). The SQLite

provider dynamically loads SQLite client DLL available on user systems. To locate DLL you

can set the ClientLibrary specific option of TUniConnection with the path to the client library.

By default the SQLite provider searches a client library in directories specified in the PATH

environment variable.

Deployment

https://www.devart.com/dac.html
https://www.devart.com/unidac/features.html

Provider-Specific Notes 279

© 2024 Devart

When an application was built without runtime packages (Link with runtime packages set to

False in Project Options), you do not need to deploy any BPL files with it. For more

information, see Deployment.

Note that UniDAC Trial requires deployment of additional BPL files regardless of Link with

runtime packages.

SQLite-specific options
Though UniDAC is components that provide unified interface to work with different database

servers, it also lets you tune behaviour for each server individually. For thin setup of a certain

database server, UniDAC provides server-specific options. These options can be applied to

such components as TUniConnection, TUniQuery, TUniTable, TUniStoredProc, TUniSQL,

TUniScript via their SpecificOptions property. SpecificOptions is a sting list. Therefore you

can use the following syntax to assign an option value:

 UniConnection.SpecificOptions.Values['CharLength'] := '1';

Below you will find the description of allowed options grouped by components.

TUniConnection

Option Description

ASCIIDataBase

Enables or disables ASCII support. The default value is False.
Note: Set the UseUnicode option to False before enabling ASCII

support.

BusyTimeout
Sets the timeout in milliseconds for a locked resource (database
or table). If the resource is not unlocked during this time, SQLite
returns the SQLITE_BUSY error. The default value is 0.

CipherLicense Holds a license key for SQLCipher Commercial Edition. Note
that SQLCipher is not supported in the Direct mode.

ConnectMode

The connection mode.
cmDefault

The default value. The database is opened for reading and
writing. Corresponds to the SQLite default behavior.
cmReadWrite

The database is opened for reading and writing.
cmReadOnly

The database is opened in read-only mode.
Note that the ForceCreateDatabase option can be used to
enable the automatic creation of the database when it doesn't
already exist.

Universal Data Access Components280

© 2024 Devart

ClientLibrary Use the ClientLibrary option to set or get the location of the client
library.

DateFormat
The format for storing dates in the database. If no format is
specified, the default format yyyy-mm-dd is used. The default
value is an empty string.

DefaultCollations Enables or disables automatic default collations registration on
connection establishing.

Direct

When True, UniDAC connects to the database directly using the
embedded SQLite3 engine, without the SQLite3 client library.
The Direct mode also enables you to work with an encrypted
database using the EncryptionAlgorithm and EncryptionKey
options and the EncryptDatabase method.

EnableLoadExtensio
n

Enables loading and using an SQLite extension:

UniConnection.ExecSQL('SELECT load_extension(''C:\ext.dll'', ''sqlite3_ext_init'');');

EnableSharedCache Enables or disables the SQLite shared-cache mode. The default
value is False.

EncryptionAlgorithm Used to specify the encryption algorithm for an encrypted
database.

EncryptionKey
This property is used for password input and for working with
encrypted database. Password can be set or changed using
EncryptDatabase method.

ForceCreateDataba
se

Forces TLiteConnection to create a new database before
opening a connection, if the database doesn't already exist.

ForeignKeys
Enables or disables foreign keys constraints without explicitly
executing the "PRAGMA foreign_keys = ON;" and "PRAGMA
foreign_keys = OFF;" statements. The default value if True.

IntegerAsLargeInt

Maps INT (INTEGER) columns to TLargeIntField fields. If True,
INT (INTEGER) columns are mapped to TLargeIntField fields. If
False, INT (INTEGER) columns are mapped to TIntegerField
fields. The default value is False.

JournalMode

The journal mode.
jmDelete

The rollback journal is deleted at the conclusion of each
transaction.
jmTruncate

The rollback journal is stored in volatile RAM. It reduces disk I/O,
but decreases database safety and integrity. If the application
using SQLite crashes in the middle of a transaction, the database
file may become corrupt.
jmPersist

The rollback journal file is not deleted when the transaction is
commited. The header of the journal is filled with zeroes to
prevent other connections rolling back from the journal. This mode
optimizes performance on platforms where deleting or truncating

Provider-Specific Notes 281

© 2024 Devart

a file is much more expensive than overwriting the first block of a
file with zeros.
jmMemory

The rollback journal is stored in volatile RAM. This reduces the
disk I/O, but decreases database safety and integrity. If the
application using SQLite crashes in the middle of a transaction in
this mode, the database file is likely to become corrupt.
jmWAL

A write-ahead log is used instead of a rollback journal to
implement transactions. When data database is updated, the
original content is preserved in the database file and the changes
are appended in a separate WAL file. All the transactions that are
appended in the WAL file are eventually transferred back into the
original database.
jmOff

The rollback journal is completely disabled. No rollback journal is
created, thus there is no rollback journal to delete. The
ROLLBACK command does not work -- it behaves in an
undefined way. Avoid using the ROLLBACK command when the
journal mode is disabled.
jmDefault

The default value. If the database was previously opened in the
WAL mode, then Default will open the database in the WAL
mode; otherwise, the database will be opened in the Delete
mode.

LockingMode

The database locking mode.
lmExclusive

The database connection never releases file locks. The first time
the database is read or written in this mode, a shared lock is
obtained and held. Use this mode if you want to prevent other
processes from accessing the database file, reduce the number
of filesystem operations, or access WAL databases without using
the shared memory.
lmNormal

The database connection unlocks the database file at the
conclusion of each read or write transaction.
Note: Keep the default LockingMode=lmExclusive and
Synchronous=smOff for the best perfomance.

NativeDate

If the option is set to True, the date and time values will be stored
in the database in the native SQLite format, and when retrieved,
they will be converted to the TDateTime type. If set to False, no
conversion to the TDateTime type will be made. The default value
is True.

ReadUncommitted
Enables or disables the Read Uncommitted isolation mode. A
database connection in this mode doesn't attempt to acquire a

Universal Data Access Components282

© 2024 Devart

read lock on the table before reading from it. This can lead to
inconsistent query results if another database connection
modifies data in the table while it is being read, but it also means
that a read transaction opened by a connection in the Read
Uncommitted mode can neither block nor be blocked by another
connection. The default value is False.

Synchronous

The database synchronization mode when writing to disk.
smOff

The database engine continues without syncing after handing
data off to the operating system. If the application running SQLite
crashes, the data will safe, unless the operating system crashes
or the computer loses power before data has been written to
disk, in which case the database might become corrupted. This
is the fastest mode.
smNormal

The database engine still syncs at the most critical moments, but
less often than in the FULL mode. The Normal mode is faster
than the Full mode. When using the WAL mode (and probably the
DELETE mode) with synchronous=NORMAL, data is safe from
corruption. The synchronous=NORMAL setting is a reasonable
choice for most applications running in the WAL mode.
smFull

The database engine ensures that all content is safely written to
disk before continuing. This preserves database integrity even in
case of an operating system failure or power outage. It is a safe,
but slower mode, and is most commonly used when not in the
WAL mode.
smExtra

This mode is similar to the FULL mode, but in the DELETE
mode, the directory containing the rollback journal is synced after
that journal is unlinked to commit a transaction. This provides
additional durability if a power outage occurs right after the
commit.
Note: Keep the default Synchronous=smOff and
LockingMode=lmExclusive for the best perfomance.

TimeFormat
The format for storing time in the database. If no format is
specified, the default format hh24:mi:ss will be used. The default
value is an empty string.

UseUnicode
Enables or disables Unicode support. When set to True, all
character data is stored as WideString, and TStringField is used
instead of TWideStringField. The default value is False.

TUniSQL

The TUniSQL component has no SQLite-specific options.

Provider-Specific Notes 283

© 2024 Devart

TUniQuery, TUniTable, TUniStoredProc

Option Description

AdvancedTypeDetec
tion

When False, standard metadata retrieval is performed when
detecting the field type in a database. When True, a number of
trecords will be prefetched from a table, and the field type will be
detected based on the type of data stored in the corresponding
column in the table. The default value is False.

FetchAll

When True, all records of a query are requested from the
database server when opening the dataset. If False, records are
retrieved when a data-aware component or a program requests
it. The default value is False.

ExtendedFieldsInfo

If True, the driver performs additional queries to the database
when opening a dataset. These queries return information about
which fields of the dataset are required or autoincrement. Set this
option to True, if you need the Required property of fields be set
automatically.

UnknownAsString

If set to True, all SQLite data types that are fetched as text and
don't have the size limit, are mapped to TStringField with the
default size 8192 bytes. If False (default value), such types are
mapped to TMemoField. The TEXT data type is always mapped
to TMemoField regardless of the value of this option.

TUniScript

The TUniScript component has no SQLite-specific options.

TUniLoader

Option Description

AutoCommit

Used to automatically perform a commit after loading a certain
amount of records. When the property is set to True, a transaction
implicitly starts before loading the block of records and commits
automatically after records were loaded. The default value is
True.

AutoCommitRowCou
nt

Use the AutoCommitRowCount property to specify the number of
records, after which the transaction will be commited
automatically when the TUni.AutoCommit property is set to True.
The default value is 1000.

QuoteNames
Use the QuoteNames option to quote all database object names
in automatically generated SQL statements, such as UPDATE
statements. The default value is False.

Universal Data Access Components284

© 2024 Devart

TUniDump

The TUniDump component has no SQLite-specific options.

Data Type Mapping
The following table lists the constants for mapping SQLite data types to Delphi data types.

See Data Type Mapping for more information.

Constant Description
liteInteger Maps INTEGER to Delphi data types.
liteReal Maps REAL to Delphi data types.
liteText Maps TEXT to Delphi data types.
liteBlob Maps BLOB to Delphi data types.
liteNull Maps NULL to Delphi data types.
liteBit Maps BIT to Delphi data types.
liteTinyInt Maps TINYINT to Delphi data types.
liteSmallInt Maps SMALLINT to Delphi data types.
liteInt2 Maps INT2 to Delphi data types.
liteInt Maps INT to Delphi data types.
liteMediumInt Maps MEDIUMINT to Delphi data types.
liteBigInt Maps BIGINT to Delphi data types.
liteUBigInt Maps UNSIGNED BIG INT to Delphi data types.
liteInt8 Maps INT8 to Delphi data types.
liteInt64 Maps INT64 to Delphi data types.
liteChar Maps CHAR to Delphi data types.
liteVarChar Maps VARCHAR to Delphi data types.
liteClob Maps CLOB to Delphi data types.
liteFloat Maps FLOAT to Delphi data types.
liteDouble Maps DOUBLE to Delphi data types.
liteNumeric Maps NUMERIC to Delphi data types.
liteDecimal Maps DECIMAL to Delphi data types.
liteNumber Maps NUMBER to Delphi data types.
liteMoney Maps MONEY to Delphi data types.
liteBool Maps BOOLEAN to Delphi data types.
liteBinary Maps BINARY to Delphi data types.
liteVarBinary Maps VARBINARY to Delphi data types.
liteDate Maps DATE to Delphi data types.
liteTime Maps TIME to Delphi data types.
liteDateTime Maps DATETIME to Delphi data types.

Provider-Specific Notes 285

© 2024 Devart

liteTimestamp Maps TIMESTAMP to Delphi data types.
liteTimestampTZ Maps TIMESTAMP WITH TIME ZONE to Delphi data types.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

5.1.14.2 Database File Encryption

What constitutes Database File Encryption
The SQLite architecture provides the functionality for work with encrypted databases. This

means that encoding/decoding is applied to a database file, in the moment of execution of the

file read/write operations. This is a low-level encryption "on the fly", it is implemented at the

level of the SQLite client library and is completely transparent to the applications working with

the database.

But, the fact is that in the client libraries available at the official SQLite website, the algorithms

of database file encryption are not implemented. Therefore, usually, to work with encrypted

databases one has to either use a custom-built client library with encryption support, or create

an own library from the source code, available on the SQLite website.

UniDAC functionality for Database File Encryption
UniDAC provides built-in capabilities for Database File Encryption, which becomes available

when working in Direct mode. Database File Encryption, built in UniDAC, allows to:

encrypt a database;

create a new encrypted database;

connect and work with the encrypted database;

change the encryption key of the encrypted database;

decryp the encrypted database.

To encrypt/decrypt the database file, one of the following encryption algorithms can be used:

the Triple DES encryption algorithm;

the Blowfish encryption algorithm;

the AES encryption algorithm with a key size of 128 bits;

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components286

© 2024 Devart

the AES encryption algorithm with a key size of 192 bits;

the AES encryption algorithm with a key size of 256 bits;

the Cast-128 encryption algorithm;

the RC4 encryption algorithm.

Important note: there are no strict standardized requirements for implementation of

database file encryption in SQLite. Therefore, implementation of Database File Encryption in

UniDAC is incompatible with other implementations. When using UniDAC, it is possible to

work only with encrypted databases, created with the use of UniDAC. In turn, no third-party

application will be able to work with encrypted databases, created with the use of UniDAC

The difference between Database File Encryption and
Data Encryption.
The functionality of Data Encryption, which is realized with the help of the TUniEncryptor

component, allows to encrypt individual fields in database tables. In this case, the database

itself is not encrypted. I.e. on the one hand, the information in this database (with the

exception of the encrypted fields) is easily accessible for viewing by any SQLite DB-tools. On

the other hand, such database is more simple in terms of modification of data structures.

Database File Encryption encrypts all the data file. Both structure and information on such

database becomes unavailable for any third-party applications. An indisputable advantage is

the increased level of secrecy of information. The disadvantage is that, for making any

changes in the structure of the database, developers will have to use only UniDAC.

Both Database File Encryption and Data Encryption methods are not mutually exclusive and

can be used at the same time.

The usage of Database File Encryption in UniDAC
To control database encryption in UniDAC, the following properties and methods of the

TUniConnection component are used:

The TUniConnection.Options.EncryptionAlgorithm property - specifies the encryption

algorithm that will be used to connect to an encrypted database, or to create a new

encrypted database.

The TUniConnection.EncryptionKey property - specifies the encryption key that will be used

Provider-Specific Notes 287

© 2024 Devart

to connect to an encrypted database, or to create a new encrypted database.

The TUniConnection.EncryptDatabase method - is used to change the encryption key in an

encrypted database, or to decrypt the database.

Encrypt a database
The following example shows how to encrypt an existing database:

UniConnection.Database := 'C:\sqlite.db3'; // the name of the database to be encrypted
UniConnection.SpecificOptions.Values['ForceCreateDatabase'] := 'False'; // to check that the database exists
UniConnection.SpecificOptions.Values['Direct'] := 'True'; // database file encryption is supported in the Direct mode only
UniConnection.SpecificOptions.Values['EncryptionAlgorithm'] := 'leBlowfish'; // the database will be encrypted with the Blowfish encryption algorithm
UniConnection.SpecificOptions.Values['EncryptionKey'] := ''; // no encryption key specified, because the database is not encrypted yet
UniConnection.Open; // connect to the database
TLiteUtils.EncryptDatabase(UniConnection, '11111'); // encrypt the database using the "11111" encryption key

Creating of a new encrypted database
The following example shows creating a new encrypted database:

UniConnection.Database : = 'C:\sqlite_encoded.db3'; // the name of the database to be created
UniConnection.SpecificOptions.Values['ForceCreateDatabase'] := 'True'; // this will allow to create the new database
UniConnection.SpecificOptions.Values['Direct'] := 'True'; // database file encryption is supported in the Direct mode only
UniConnection.SpecificOptions.Values['EncryptionAlgorithm'] := 'leBlowfish'; // the database will be encrypted with the Blowfish encryption algorithm
UniConnection.SpecificOptions.Values['EncryptionKey'] := '11111'; // the encryption key for the database
UniConnection.Open; // create and connect to the database

Connecting to an encrypted database
To connect to an existing encrypted database, the following should be performed:

UniConnection.Database := 'C:\sqlite_encoded.db3'; // the name of the database to connect to
UniConnection.SpecificOptions.Values['ForceCreateDatabase'] := 'False'; // to check that the database exists
UniConnection.SpecificOptions.Values['Direct'] := 'True'; // database file encryption is supported in the Direct mode only
UniConnection.SpecificOptions.Values['EncryptionAlgorithm'] := 'leBlowfish'; // the encryption algorithm of the database
UniConnection.SpecificOptions.Values['EncryptionKey'] := '11111'; // the encryption key for the database
UniConnection.Open; // connect to the database

Changing the encryption key for the database
To change the encryption key in the encrypted database, you must perform the following:

UniConnection.Database := 'C:\sqlite_encoded.db3'; // the name of the database to connect to
UniConnection.SpecificOptions.Values['ForceCreateDatabase'] := 'False'; // to check that the database exists
UniConnection.SpecificOptions.Values['Direct'] := 'True'; // database file encryption is supported in the Direct mode only
UniConnection.SpecificOptions.Values['EncryptionAlgorithm'] := 'leBlowfish'; // the encryption algorithm of the database
UniConnection.SpecificOptions.Values['EncryptionKey'] := '11111'; // the encryption key for the database
UniConnection.Open; // connect to the database
TLiteUtils.EncryptDatabase(UniConnection, '22222'); // change the database encryption key to '22222'

Universal Data Access Components288

© 2024 Devart

After changing the encryption key, the database connection remains open and the further

work with the database can continue. However, if disconnected from the database and for

subsequent connection, the new value of the encryption key should be assigned to the

UniConnection.EncryptionKey property.

Decryption of the database
The encrypted database can be decrypted, after that it becomes available for viewing and

editing in third-party applications. To decrypt the database you must first connect to it, as

shown in the examples above, and then execute the UniConnection.EncryptDatabase('')

method, specifying an empty string as a new key.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

5.1.15 UniDAC and SQL Server

This article provides a brief overview of the SQL Server data access provider for UniDAC

used to establish a connection to SQL Server databases from Delphi and Lazarus. You will

find the description of some useful features and how to get started quickly.

Overview

Compatibility

Requirements

Deployment

SQL Server-specific options

TUniConnection

TUniSQL

TUniQuery, TUniTable, TUniStoredProc

TUniScript

TUniLoader

TUniDump

SQL Server specific notes

Connecting in Direct mode

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Provider-Specific Notes 289

© 2024 Devart

Data Type Mapping

Overview
SQL Server data access provider is based on the SQL Server Data Access Components

(SDAC) library, which is one of the best known Delphi data access solutions for SQL Server.

The main features of SQL Server data access provider are:

Access to the SQL Server through the lowest documented protocol level (OLE DB)

High performance

Easy deployment

Comprehensive support for the latest versions of SQL Server

The full list of SQL Server provider features can be found on the UniDAC features page.

Both Professional and Standard Editions of UniDAC include the SQL Server provider. For

Expess Edition of UniDAC, the SQL Server provider can be installed with SDAC.

Compatibility
To learn about SQL Server compatibility, refer to the Compatibility section.

Requirements
SQL Server provider requires OLE DB or SQL Native Client installed on workstation.

In the current versions of Microsoft Windows, since Windows 2000, OLE DB is already

included as a standard package. But it's highly recommended to download the latest version

(higher than 2.5) of Microsoft Data Access Components (MDAC) or SQL Native Provider.

Some features of SQL Server 2005 are available only with SQL Native Provider.

If you are working with SQL Server Compact Edition, you should have it installed. You can

download SQL Server Compact Edition from the site of Microsoft.

Deployment
When an application was built without runtime packages (Link with runtime packages set to

https://www.devart.com/dac.html
https://www.devart.com/sdac/
http://www.devart.com/unidac/features.html

Universal Data Access Components290

© 2024 Devart

False in Project Options), you do not need to deploy any BPL files with it. For more

information, see Deployment.

Note that UniDAC Trial requires deployment of additional BPL files regardless of Link with

runtime packages.

SQL Server-specific options
Though UniDAC is components that provide unified interface to work with different database

servers, it also lets you tune the behaviour for each server individually. For thin setup of a

certain database server, UniDAC provides server-specific options. These options can be

applied to such components as TUniConnection, TUniQuery, TUniTable, TUniStoredProc,

TUniSQL, TUniScript via their SpecificOptions property. SpecificOptions is a string list.

Therefore you can use the following syntax to assign an option value:

UniConnection.SpecificOptions.Values['ApplicationName'] := 'My application';

Below you will find the description of allowed options grouped by components.

TUniConnection

Option name Description

ApplicationIntent Specifies the application workload type when connecting to a
server.

ApplicationName The name of a client application. The default value is the name of
the executable file of your application.

Authentication

Use the Authentication property to specify authentication service
used by the database server to identify a user. The Authentication
property accepts one of the following values:

auWindows
Uses Windows NT/2000/XP integrated security, or
"SSPI" (Security Support Provider Interface). Username,
Password and LoginPrompt properties are ignored.
auServer (default)
An alternative way of identifying users by database server. To
establish a connection valid Username and Password either
hardcoded into application or provided in server login prompt
fields are required.

AutoTranslate

When set to True, character strings sent between the client and
server are translated by converting through Unicode to minimize
problems in matching extended characters between the code
pages on the client and the server.

CompactAutoShrink Specifies the amount of free space in the database file before

Provider-Specific Notes 291

© 2024 Devart

Threshold automatic shrink will start. Measured in percents. The default
value is 60.

CompactDefaultLock
Escalation

Specifies how many locks should be performed before trying
escalation from row to page or from page to table. The default
value is 100.

Compact
FlushInterval

Specifies the interval at which committed transactions are flushed
to disk. Measured in seconds. The default value is 10.

CompactInitMode

Use this property to specify the file mode that will be used to open
the database file. The InitMode property accepts one of the
following values:

imExclusive
Database file is opened for exclusive use. This mode prevents
others from opening this database file.
imReadOnly
Database file is opened for reading. All operations that write to
database are unallowable.
imReadWrite (default)
Both read and write operations are allowed.
imShareRead
Opens a database file preventing others from opening the same
file in the read mode.

CompactLocaleIdenti
fier

Specifies the locale ID. The default value is the system default
locale on Windows systems and 0 on other systems.

CompaLockEscalati
on

Specifies how many locks should be performed before trying
escalation from row to page or from page to table. Measured in
milliseconds. The default value is 100.

CompactLockTimeo
ut

Specifies how much time a transaction will wait for a lock.
Measured in milliseconds. The default value is 2000.

CompactMaxBufferS
ize

Specifies how much memory SQL Server Compact Edition can
use before flushing changes to disc. Measured in kilobytes. The
default value is 640.

CompactMaxDataba
seSize

Specified maximum size of the main database file. Measured in
megabytes. The default value is 128.

CompactTempFileDi
rectory

Specifies the temp file directory. If this option is not assigned, the
current database is used as a temporary database.

CompactTempFileM
axSize

Specified maximum size of the temporary database file.
Measured in megabytes. The default value is 128.

CompactTransaction
CommitMode

Specifies in what way the buffer pool will be flushed on
transaction commit. The following two values are allowed:
cmAsynchCommit
Asynchronous commit to disk.
cmSynchCommit (default)
Synchronous commit to disk.

Universal Data Access Components292

© 2024 Devart

CompactVersion

Specifies which version of SQL Server Compact Edition will be
used.

cvAuto (default)
Version of SQL Server Compact Edition will be chosen
automatically depending on database version. If database is not
provided, the higher available server version will be chosen.
cv30
Uses SQL Server Compact Edition Version 3.0 or 3.1.
cv35
Uses SQL Server Compact Edition Version 3.5.

ConnectionTimeout
Use ConnectionTimeout to specify the amount of time, in
seconds, that can expire before an attempt to consider a
connection unsuccessful. The default value is 15 seconds.

Encrypt Specifies if data should be encrypted before sending it over the
network. The default value is False.

FailoverPartner

Specifies the SQL Server name to which SQL Native Client will
reconnect when a failover of the principal SQL Server occurs.
This option is supported only for SQL Server 2005 using SQL
Native Client as an OLE DB provider.

ForceCreateDataba
se

Used to force TLiteConnection to create a new database before

opening a connection, if the database does not exist.

HttpPassword Use the HttpPassword option to specify the password for HTTP
authorization.

HttpTrustServerCertif
icate

This option specifies whether or not the driver should trust the
server certificate when connecting to the server. The default value
is False – the driver won't trust the server certificate and will verify
validity of the server certificate instead. If set to True, the driver
will trust the server certificate.

HttpUrl Use the HttpUrl option to specify the URL of the PHP tunneling
script.

HttpUsername Use the HttpUsername option to specify the username for HTTP
authorization.

IPVersion

Use the IPVersion property to specify Internet Protocol Version.

Supported values:

ivIPBoth
Specifies that either Internet Protocol Version 6 (IPv6) or Version
4 (IPv4) will be used.

ivIPv4 (default)
Specifies that Internet Protocol Version 4 (IPv4) will be used.

Provider-Specific Notes 293

© 2024 Devart

ivIPv6
Specifies that Internet Protocol Version 6 (IPv6) will be used.

Note: When the TIPVersion property is set to ivIPBoth, a
connection attempt will be made via IPv6 if it is enabled on the
operating system. If the connection attempt fails, a new
connection attempt will be made via IPv4.

InitialFileName

Specifies the name of the main database file. This database will
be default database for the connection. SQL Server attaches the
database to the server if it has not been attached to the server
yet. So, this property can be used to connect to the database that
has not been attached to the server yet.

Language

A SQL Server language name. Identifies the language used for
system message selection and formatting. The language must be
installed on the computer running an instance of SQL Server
otherwise the connection will fail.

LockTimeout
Specifies the number of milliseconds that a transaction will wait to
obtain a lock to avoid global deadlocks. The default value is
2000.

MSOLEDBVersion Use this option to indicate the version of Microsoft OLE DB driver

MultipleActiveResult
Sets

Enables support for SQL Server 2005 Multiple Active Result Sets
(MARS) technology. It allows applications to have more than one
pending request per connection, and in particular, to have more
than one active default result set per connection. Current session
is not blocked when using FetchAll = False, and it is not
necessary for OLE DB to create additional sessions for any
query executing. MARS is only supported by SQL Server 2005
with using SQL Native Client as OLE DB provider.

MultipleConnections Enables or disables the creation of additional connections to
support concurrent sessions, commands and rowset objects.

MultiSubnetFailover

Use the MultiSubnetFailover option to configure the
prNativeClient or prMSOLEDB provider to faster detect and
connect to the currently active server by making simultaneous
connection attempts to all IP addresses associated with the
group listener of a SQL Server AlwaysOn Availability Group or a
SQL Server Failover Cluster Instance. The default value is False.

NativeClientVersion
Specifies which version of SQL Native Client will be used. The
default value is ncAuto. NativeClientVersion is applied when the
Provider property is set to prNativeClient or prAuto.

NetworkLibrary

The name of the Net-Library (DLL) used to communicate with an
instance of SQL Server. The name should not include the path or
the .dll file name extension. The default name is provided by the
SQL Server Client Network Utility.

PacketSize
Network packet size in bytes. The packet size property value
must be between 512 and 32,767. The default network packet

Universal Data Access Components294

© 2024 Devart

size is 4,096.

PersistSecurityInfo
The data source object is allowed to persist sensitive
authentication information such as password along with other
authentication information.

Provider

This property allows you to specify a provider from the list of
supported providers or use the Direct mode. Some features
added to SQL Server 2005 require the SQL Native Client
(prNativeClient) provider to be used. If chosen provider is not
installed, an exception is raised.

Supported values:

prAuto (default)
prAuto is the default value of the Provider property. With default
value, UniDAC will use the most recent version of one of the
supported providers in the following order:
1. prNativeClient

2. prMSOLEDB

3. prSQL

First UniDAC checks whether SQL Server Native Client is
installed in the system. If SQL Server Native Client is not found,
UniDAC looks for Microsoft OLE DB Driver for SQL Server. If
neither SQLNCLI nor MSOLEDBSQL is installed in the system,
the driver will use Microsoft OLE DB Provider for SQL Server.

prSQL
Uses the provider preinstalled with Windows that has limited
functionality.

prMSOLEDB
Uses Microsoft OLE DB Driver for SQL Server (MSOLEDBSQL).
You need to have the driver installed on your system to use this
value for Provider.

prNativeClient
Uses the SQL Native Client. It should be installed on the
computer to use this Provider value. This provider offers the
maximum functionality set.

prCompact
SQL Server Compact Edition provider.

prDirect

Provider-Specific Notes 295

© 2024 Devart

Connect to SQL Server directly via TCP/IP.

QuotedIdentifier

Causes Microsoft® SQL Server™ to follow the SQL-92 rules
regarding quotation mark delimiting identifiers and literal strings.
Identifiers delimited by double quotation marks can be either
Transact-SQL reserved keywords or can contain characters not
usually allowed by the Transact-SQL syntax rules for identifiers.
QuotedIdentifier must be True when creating or manipulating
indexes on computed columns or indexed views. If
QuotedIdentifier is False, CREATE, UPDATE, INSERT, and
DELETE statements on tables with indexes on computed
columns or indexed views will fail.

True (default)
Identifiers can be delimited by double quotation marks, and
literals must be delimited by single quotation marks.
All strings delimited by double quotation marks are interpreted as
object identifiers. Therefore, quoted identifiers do not have to
follow the Transact-SQL rules for identifiers. They can be
reserved keywords and can include characters not usually
allowed in Transact-SQL identifiers. Double quotation marks
cannot be used to delimit literal string expressions; single
quotation marks must be used to enclose literal strings. If a single
quotation mark (') is a part of the literal string, it can be
represented by two single quotation marks ("). QuotedIdentifier
must be True when reserved keywords are used for object names
in the database.
False (BDE compatibility)
Identifiers cannot be quoted and must follow all Transact-SQL
rules for identifiers. Literals can be delimited by either single or
double quotation marks. If a literal string is delimited by double
quotation marks, the string can contain embedded single
quotation marks, such as apostrophes.

UseHttp The UseHttp option enables the use of HTTP tunneling to connect
to the server. The default value is False.

UseWideMemos

Use the option to manage the field type that will be created for the
NTEXT data type. If True (default), TWideMemo fields will be
created for the NTEXT data type. If False, TMemo fields will be
created.

UuidWithBraces Use the UuidWithBraces option to specify whether the values of
UUID fields are returned with braces. The default value is True.

TrustServerCertificat
e

Lets enabling traffic encryption without validation. The default
value is False. This option is only supported by SQL Server 2005
with using SQL Native Client as OLE DB provider.

WorkstationID A string identifying the workstation. The default value is the name
of your machine.

Universal Data Access Components296

© 2024 Devart

TUniSQL

Option name Description

CommandTimeout

Use CommandTimeout to specify the amount of time that expires
before an attempt to execute a command is considered
unsuccessful. Is measured in seconds.
If a command is successfully executed prior to the expiration of
the seconds specified, CommandTimeout has no effect.
The default value is 0 (infinite).

DescribeParams
Specifies whether to query the Name, ParamType, DataType,
Size, and TableTypeName properties from the server when
preparing a query. The default value is False.

NonBlocking
Used to execute an SQL statement in a separate thread. Set the
NonBlocking option to True to fetch rows in a separate thread.

TUniQuery, TUniTable, TUniStoredProc

Option name Description

CheckRowVersion

Determines whether the dataset checks for rows modifications
made by another user on automatic generation of SQL statement
for update or delete data. If CheckRowVersion property is False
and DataSet has keyfields, the WHERE clause of SQL statement
is generated basing on these keyfields. If there is no primary key
and no Identity field, then all non-BLOB fields will take part in
generating SQL statements. If CheckRowVersion is True and
DataSet has TIMESTAMP field, only this field is included into
WHERE clause of generated SQL statement. Otherwise, all non
BLOB fields are included. All mentioned fields refer to the current
UpdatingTable. The default value is False. The
CheckRowVersion option requires enabled DMLRefresh.

CommandTimeout

Use CommandTimeout to specify the amount of time that expires
before an attempt to execute a command is considered
unsuccessful. Is measured in seconds.
If a command is successfully executed prior to the expiration of
the seconds specified, CommandTimeout has no effect.
The default value is 0 (infinite).

CursorType

Allows choosing cursor types supported by SQL Server. The
available values are:

ctBaseTable
Base table cursor. This cursor is used for working with Compact
Edition. This cursor is the fastest of the SQL server cursors and
the only cursor that interacts directly with the storage engine. This
allows to increase the speed of data access several times. Data

Provider-Specific Notes 297

© 2024 Devart

modifications, deletions, and insertions by other users are visible.
If UniDirectional=False, the cursor is used only when fetching
data, and Data updates are reflected on database by SQL
statements execution. In order to use the cursor also for data
modification it is necessary to set the UniDirectional property to
True. But in this case the cursor does not support bookmarks and
cannot be represented in multiline controls such as DBGrid.

ctDefaultResultSet (default)
By the old SQL Server terminology is the Firehose cursor. It
serves for the fastest data fetch from server to the client side.
Allows to run batches. Data updates are reflected in the database
only by SQL statements execution. The default value.

ctDynamic
Dynamic cursor. Used when data is not cached at the server and
fetch is performed row by row as required. Doesn't support
bookmarks and cannot be represented in multiline controls such
as DBGrid. Data modifications, deletions, and insertions by other
users are visible. Data updates are reflected on database both
by SQL statements execution and server cursors means.

ctKeyset
Allows to cache only keyfields at the server. Fetching is
performed row by row when a data-aware component or a
program requests it. Records added by other users are not
visible, and records deleted by other users are inaccessible.
Data updates are reflected in the database both by SQL
statements execution and server cursors means.

ctStatic
Static copying of records. Query execution results are cashed at
the server. Fetch is performed row by row when a data-aware
component or a program requests it. When a cursor is opened,
all newly added updates are invisible. Used mostly for reporting.

CursorUpdate

Specifies what way data updates reflect on database when
modifying dataset by using server cursors ctKeySet and
ctDynamic. If the CursorUpdate property is True, all dataset
modifications pass to database by server cursors. If the
CursorUpdate property is False, all dataset updates pass to
server by SQL statements generated automatically or specified in
SQLUpdate, SQLInsert or SQLDelete. The default value is True.

DescribeParams
Specifies whether to query the Name, ParamType, DataType,
Size, and TableTypeName properties from the server when
preparing a query. The default value is False.

DisableMultipleResul Use the option to disable support for the Multiple Active Result

Universal Data Access Components298

© 2024 Devart

ts
Sets (MARS) technology, which allows applications to have
multiple pending requests per connection and multiple default
result sets per connection. The default value is False.

FetchAll

If True, all records of the query are requested from the database
server when the dataset is being opened. If False, records are
retrieved when a data-aware component or a program requests
it. The default value is True.

HideSystemUniqueFi
elds

Used the option to hide system fields for the prSQL,
prNativeClient and prMSOLEDB providers. The default value is
True.

LastIdentityValueFun
ction

Determines which system function to use to obtain an identifier
when adding a record. The available values are:

vfIdentCurrent
The IDENT_CURRENT system function is used. It returns the last
identity value generated for a specified table or view. The last
identity value generated can be for any session and any scope.

vfIdentity
The @@IDENTITY system function is used. It returns the last-
inserted identity value.

vfScopeIdentity
The SCOPE_IDENTITY system function is used. It returns the last
identity value inserted into an identity column in the same scope.
A scope is a module: a stored procedure, trigger, function, or
batch.

NonBlocking

Set the NonBlocking option to True to fetch rows in a separate
thread. The BeforeFetch event is called in the additional thread
context that performs data fetching. This event is called every
time on the Fetch method call. The AfterFetch event is called in
the main thread context only once after fetching is completely
completed. In the NonBlocking mode, as well as if FetchAll =
False, an extra connection is created. When setting the
NonBlocking option to True, you should keep in mind that
execution of such queries blocks the current session. In order to
avoid blocking, OLE DB creates an additional session as in
FetchAll = False. It causes the same problems when FetchAll =
False. This problem can be solved by using MARS (the specific
option MultipleActiveResultSets = True). The current session is
not blocked and OLE DB is not required to create an addition
session to run a query. MARS is supported since SQL Server
2005 if SQL Native Client is used as OLE DB provider.

QueryIdentity
Specifies whether to request Identity field value, if such exists, on
execution Insert or Append method. If to refuse of getting Identity
you can have an impact on performance of Insert or Append by

Provider-Specific Notes 299

© 2024 Devart

about 20%. Affects only for ctDefaultResultSet cursor. If you are
inserting value into SQL_VARIANT field, and QueryIdentity is
True then an error is raised. The default value is True.

UniqueRecords

Use UniqueRecords to specify whether to query additional key
fields from the server. If UniqueRecords is False, keyfields are
not queried from the server when they are not included in the
query explicitly. For example, the result of the query execution
"SELECT ShipName FROM Orders" holds the only field
ShipName. When used with ReadOnly property set to True,
UniqueRecords option gives insignificant advantage of
performance. But in this case SQLRefresh will be generated in
simplified way. If UniqueRecord is True, keyfields needed for
complete automatic generation of SQLInsert, SQLUpdate,
SQLDelete or SQLRefresh statements are queried from the
server implicitly. For example, the result of query execution
"SELECT ShipName FROM Orders" holds at least two fields
ShipName and OrderID. The default value is False. Has effect
only for ctDefaultResultSet cursor.

TUniScript

The TUniScript component has no SQL Server-specific options.

TUniLoader

Option name Description

FireTrigger Use the option to fire table triggers with TMSLoader on SQL
Server during insertion operations. The default value is False.

KeepIdentity

Use the KeepIdentity property to specify in what way IDENTITY
column values must be handled. If KeepIdentity is set to False,
IDENTITY columns will be initialized by the server. Any value
assigned to such column in your application is ignored. If
KeepIdentity is set to True, the IDENTITY property will not be
available for all IDENTITY fields accepting NULL. So in this case
unique values should be generated and assigned by the client
application. The default value of the KeepIdentity property is
False.

KeepNulls

If this option is set to False, each NULL value inserted into a field
with a DEFAULT constraint will be replaced with the default value.
If KeepNulls is set to True, NULL values inserted into a field with a
DEFAULT constraint will not be replaced with the default values.
The default value of the KeepNulls property is False.

RowsPerBatch
Use the RowsPerBatch property to specify the number of rows to
load in a single batch. Server optimizes loading according to this

Universal Data Access Components300

© 2024 Devart

value. The default value of this option is Unknown.

KilobytesPerBatch
Use the KilobytesPerBatch option to specify the size of data in
kilobytes to load in a single batch. The default value of this option
is Unknown.

LockTable

Use the LockTable property to specify if the table-level lock is
performed while loading is in progress. Setting this option to True
should improve the performance greatly. If this option is set to
False, the locking behaviour is determined by the table option.
The default value of the LockTable option is False.

CheckConstraints

Use the CheckConstraints property to specify if the table
constraints are checked during loading. If this option is set to
False, the table constraints are not checked. The default value of
the CheckConstraints option is False.

QuoteNames
Use the QuoteNames option to quote all database object names
in automatically generated SQL statements, such as UPDATE
statements. The default value is False.

TUniDump

Option name Description

IdentityInsert

Use the IdentityInsert property to add SET IDENTITY_INSERT
TableName ON at the beginning of the script and SET
IDENTITY_INSERT TableName OFF at the end of the script. The
first line allows explicit values to be inserted into the identity
column of a table and INSERT statements are generated with
IDENTITY field values. Otherwise the IDENTITY field will not be
included to the INSERT statements. SET IDENTITY_INSERT will
not be added while the option is ON if the table does not have a
field identified as IDENTITY or there are no records in the table.

SQL Server specific notes

Connecting in Direct mode

By default, the OLE DB interface is used directly through a set of COM-based interfaces to

connect to server. Such approach allows using client applications on Windows workstations

only.

To overcome these problems, the prDirect value for the Provider property was added for

ability to connect to SQL Server directly over the network using the TCP/IP protocol. This is

referred to as connecting in the Direct mode. Connection in the Direct mode does not require

OLEDB provider or SQL Native Client provider to be installed on target machines. The only

Provider-Specific Notes 301

© 2024 Devart

requirement for running an UniDAC-based application that uses the Direct mode is that the

operating system must support the TCP/IP protocol.

Setting up Direct mode connections

Here is an example that illustrates connecting to SQL Server in the Direct mode. The server's

IP address is 205.227.44.44, its port number is 1433 (this is the most commonly used port for

SQL Server).

var
 UniConnection: TUniConnection;
. . .
 UniConnection.ProviderName := 'SQL Server';
 UniConnection.SpecificOptions.Values['Provider'] := 'prDirect';
 UniConnection.SpecificOptions.Values['Authentication'] := 'auServer';
 UniConnection.Username := 'sa';
 UniConnection.Password := '';
 UniConnection.Server := '205.227.44.44';
 UniConnection.Port := 1433;
 UniConnection.Connect;

All we have to do is to set the TUniConnection.Options.Provider property to prDirect to enable

Direct mode connections in your application. You do not have to rewrite other parts of your

code.

Data Type Mapping
The following table lists the constants for mapping SQL Server data types to Delphi data

types. See Data Type Mapping for more information.

Constant Description
msBigint Maps bigint to Delphi data types.
msBinary Maps binary to Delphi data types.
msBit Maps bit to Delphi data types.
msChar Maps char to Delphi data types.
msDate Maps date to Delphi data types.
msDatetime Maps datetime to Delphi data types.
msDatetime2 Maps datetime2 to Delphi data types.
msDatetimeoffset Maps datetimeoffset to Delphi data types.
msDecimal Maps decimal to Delphi data types.
msFloat Maps float to Delphi data types.
msImage Maps image to Delphi data types.
msInt Maps int to Delphi data types.

Universal Data Access Components302

© 2024 Devart

msMoney Maps money to Delphi data types.
msNChar Maps nchar to Delphi data types.
msNText Maps ntext to Delphi data types.
msNumeric Maps numeric to Delphi data types.
msNVarchar Maps nvarchar to Delphi data types.
msReal Maps real to Delphi data types.
msSmalldatetime Maps smalldatetime to Delphi data types.
msSmallint Maps smallint to Delphi data types.
msSmallmoney Maps smallmoney to Delphi data types.
msSqlVariant Maps sql_variant to Delphi data types.
msText Maps text to Delphi data types.
msTime Maps time to Delphi data types.
msTimestamp Maps timestamp to Delphi data types.
msTinyint Maps tinyint to Delphi data types.
msUniQueIdentifier Maps uniqueidentifier to Delphi data types.
msVarbinary Maps varbinary to Delphi data types.
msVarchar Maps varchar to Delphi data types.
msXml Maps xml to Delphi data types.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

5.2 Cloud Providers

5.2.1 UniDAC and BigCommerce

This article provides a brief overview of the BigCommerce cloud provider for UniDAC used to

access BigCommerce from Delphi and Lazarus. You will find the description of some useful

features and how to get started quickly.

Overview

Compatibility

Requirements

Deployment

Bigcommerce-specific options

TUniConnection

TUniSQL

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Provider-Specific Notes 303

© 2024 Devart

TUniQuery, TUniTable, TUniStoredProc

TUniScript

TUniLoader

TUniDump

Overview

Main features of BigCommerce cloud provider are:

Direct access to BigCommerce cloud databases via HTTPS

Extended SQL Syntax

The full list of Cloud provider features can be found on the UniDAC features page.

Both Professional and Standard Editions of UniDAC include the BigCommerce cloud

provider.

Compatibility
BigCommerce provider supports BigCommerce data types and API.

Requirements
Applications that use the BigCommerce cloud provider require Devart ODBC Driver for

BigCommerce to be installed on the client computer. The driver is sold and distributed

separately from UniDAC.

Deployment
When an application was built without runtime packages (Link with runtime packages set to

False in Project Options), you do not need to deploy any BPL files with it. For more

information, see Deployment.

Note that UniDAC Trial requires deployment of additional BPL files regardless of Link with

runtime packages.

Connecting to BigCommerce
To connect to BigCommerce using legacy authentication and Devart ODBC Driver, you

should configure the driver and set up a DSN. In the TUniConnection component, specify the

https://www.devart.com/unidac/features.html
https://www.devart.com/odbc/bigcommerce/
https://www.devart.com/odbc/bigcommerce/
https://www.devart.com/odbc/bigcommerce/docs/driver_configuration_and_conne.htm#dsn

Universal Data Access Components304

© 2024 Devart

following parameters:

Server

Username

AuthenticationToken

For more information on how to obtain BigCommerce AuthenticationToken, see the article.

To connect to BigCommerce using the OAuth authentication and Devart ODBC Driver, you

should configure the driver and set up a DSN. In the TUniConnection component, specify the

following parameters:

Authentication

StoreId

ClientId

AccessToken

For more information on how to obtain BigCommerce AccessToken, ClientId and StoreId, see

the article.

BigCommerce-specific options
Though UniDAC is components that provide a unified interface to work with various cloud

services, it also lets you tune behaviour for each cloud individually. For thin setup of a certain

cloud, UniDAC provides specific options. These options can be applied to such components

as TUniConnection, TUniQuery, TUniTable, TUniStoredProc, TUniSQL, TUniScript via their

SpecificOptions property. SpecificOptions is a sting list.

Below you will find the description of allowed options grouped by components.

TUniConnection

Option name Description

AccessToken Used to supply a unique Access Token for your app.

Authentication

Used to specify the required BigCommerce authentication. The
available values are:

Basic

https://www.devart.com/odbc/bigcommerce/docs/obtaining_token.htm
https://www.devart.com/odbc/freshbooks/docs/driver_configuration.htm
https://www.devart.com/odbc/bigcommerce/docs/obtaining_oauth_token.htm

Provider-Specific Notes 305

© 2024 Devart

OAuth

The default value is Basic.
AuthenticationToken Used to supply an API key to login to BigCommerce.
ClientId Used to supply a unique Client ID for your app.

ConnectionTimeout The time to wait for a connection to open before raising an
exception.

StoreId Used to identify the store you are logging into.

UseUnicode

Enables or disables Unicode support. Affects character data
fetched from the server. When set to True, all character data is
stored as WideStrings, and TStringField is replaced by
TWideStringField.

UTCDates Use the UTCDates option to return the datetime values from the
data source as UTC values.

Proxy connection options

Option name Description

ProxyPassword
If Proxy User authorization is used, specify Proxy user password
in this option.

ProxyPort
Specify the Proxy port here. You can learn Proxy Port in the same
way as described above for the host.

ProxyServer

If you are using Proxy for connection to your network, specify the
Proxy server address in this option.
To learn your Proxy server address, open Control Panel->Internet
Options->Connections->LAN settings.

ProxyUser
If Proxy User authorization is used, specify Proxy user name (ID)
in this option.

TUniSQL

Option name Description

CommandTimeout The time to wait for a statement to be executed.

TUniQuery, TUniTable, TUniStoredProc

Option name Description

CommandTimeout The time to wait for a statement to be executed.

ExtendedFieldsInfo
If True, an additional query is performed to get information about
the returned fields and tables they belong to. The default value is
False.

FetchAll If True, all records of a query are requested from database server

Universal Data Access Components306

© 2024 Devart

when the dataset is being opened.
If False, records are retrieved when a data-aware component or
a program requests it. The default value is False.

FieldsAsString If set to True, all non-BLOB fields are handled as strings. The
default value is False.

UnknownAsString

If set to True, all BigCommerce data types that are fetched as text
and don't have the size limit, are mapped to TStringField with the
default size 8192 bytes. If False (default value), such types are
mapped to TMemoField. The TEXT data type is always mapped
to TMemoField regardless of the value of this option.

TUniScript

The TUniDump component has no BigCommerce-specific options.

TUniLoader

The TUniLoader component has no BigCommerce-specific options.

TUniDump

The TUniDump component has no BigCommerce-specific options.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

5.2.2 UniDAC and Dynamics 365

This article provides a brief overview of the Dynamics 365 cloud provider for UniDAC used to

access Dynamics 365 from Delphi and Lazarus. You will find the description of some useful

features and how to get started quickly.

Overview

Compatibility

Requirements

Deployment

Dynamics 365-specific options

TUniConnection

TUniSQL

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Provider-Specific Notes 307

© 2024 Devart

TUniQuery, TUniTable, TUniStoredProc

TUniScript

TUniLoader

TUniDump

Overview

Main features of Dynamics 365 cloud provider are:

Direct access to Dynamics 365 cloud databases via HTTPS

Extended SQL Syntax

The full list of Cloud provider features can be found on the UniDAC features page.

Both Professional and Standard Editions of UniDAC include the Dynamics 365 cloud provider.

Compatibility
Dynamics 365 provider supports Dynamics 365 Field data types and API.

Requirements
Applications that use the Dynamics 365 cloud provider require Devart ODBC Driver for

Dynamics 365 to be installed on the client computer. The driver is sold and distributed

separately from UniDAC.

Deployment
When an application was built without runtime packages (Link with runtime packages set to

False in Project Options), you do not need to deploy any BPL files with it. For more

information, see Deployment.

Note that UniDAC Trial requires deployment of additional BPL files regardless of Link with

runtime packages.

Connecting to Dynamics 365
To connect to Dynamics 365 using Devart ODBC Driver, you should configure the driver and

set up a DSN. In the TUniConnection component, specify the following parameters:

Server

https://www.devart.com/unidac/features.html
https://www.devart.com/odbc/dynamics/
https://www.devart.com/odbc/dynamics/
https://www.devart.com/odbc/dynamics/docs/driver_configuration_and_conne.htm#dsn

Universal Data Access Components308

© 2024 Devart

Username

Password

If using OAuth2.0 authentication, you need to specify the Refresh Token. It is available when

the OAuth 2.0 authentication type is selected.

In the TUniConnection component, specify the following parameters:

Server

RefreshToken

Dynamics 365-specific options
Though UniDAC is components that provide a unified interface to work with various cloud

services, it also lets you tune behaviour for each cloud individually. For thin setup of a certain

cloud, UniDAC provides specific options. These options can be applied to such components

as TUniConnection, TUniQuery, TUniTable, TUniStoredProc, TUniSQL, TUniScript via their

SpecificOptions property. SpecificOptions is a sting list.

Below you will find the description of allowed options grouped by components.

TUniConnection

Option name Description

Authentication

The authentication type to use when connecting to Salesforce.
Defaults to OAuth.
OAuth

The OAuth 2.0 authentication.
User ID and Password

The basic user/password authentication.
ClientId Сustom Client Id for the Dynamics 365 OAuth 2.0.

ClientSecret Custom Client Secret for the Dynamics 365 OAuth 2.0.

ConnectionTimeout The time to wait for a connection to open before raising an
exception.

RefreshToken
The Dynamics 365 OAuth 2.0 token. Available when the OAuth

2.0 authentication type is selected.

UseUnicode Enables or disables Unicode support. Affects character data

https://docs.devart.com/odbc/dynamics/driver_configuration_and_conne.htm
https://docs.devart.com/odbc/dynamics/driver_configuration_and_conne.htm
https://docs.devart.com/odbc/dynamics/driver_configuration_and_conne.htm

Provider-Specific Notes 309

© 2024 Devart

fetched from the server. When set to True, all character data is
stored as WideStrings, and TStringField is replaced by
TWideStringFiled.

UTCDates Use the UTCDates option to return the datetime values from the
data source as UTC values.

Proxy connection options

Option name Description

ProxyPassword
If Proxy User authorization is used, specify Proxy user password
in this option.

ProxyPort
Specify the Proxy port here. You can learn Proxy Port in the same
way as described above for the host.

ProxyServer

If you are using Proxy for connection to your network, specify the
Proxy server address in this option.
To learn your Proxy server address, open Control Panel->Internet
Options->Connections->LAN settings.

ProxyUser
If Proxy User authorization is used, specify Proxy user name (ID)
in this option.

TUniSQL

Option name Description

CommandTimeout The time to wait for a statement to be executed.

TUniQuery, TUniTable, TUniStoredProc

Option name Description

CommandTimeout The time to wait for a statement to be executed.

ExtendedFieldsInfo
If True, an additional query is performed to get information about
the returned fields and tables they belong to. The default value is
False.

FetchAll

If True, all records of a query are requested from database server
when the dataset is being opened.
If False, records are retrieved when a data-aware component or
a program requests it. The default value is False.

FieldsAsString If set to True, all non-BLOB fields are handled as strings. The
default value is False.

UnknownAsString

If set to True, all Dynamics 365 data types that are fetched as text
and don't have the size limit, are mapped to TStringField with the
default size 8192 bytes. If False (default value), such types are
mapped to TMemoField. The TEXT data type is always mapped

Universal Data Access Components310

© 2024 Devart

to TMemoField regardless of the value of this option.

TUniScript

The TUniDump component has no Dynamics 365-specific options.

TUniLoader

The TUniLoader component has no Dynamics 365-specific options.

TUniDump

The TUniDump component has no Dynamics 365-specific options.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

5.2.3 UniDAC and FreshBooks

This article provides a brief overview of the FreshBooks cloud provider for UniDAC used to

access FreshBooks from Delphi and Lazarus. You will find the description of some useful

features and how to get started quickly.

Overview

Compatibility

Requirements

Deployment

FreshBooks-specific options

TUniConnection

TUniSQL

TUniQuery, TUniTable, TUniStoredProc

TUniScript

TUniLoader

TUniDump

Overview

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Provider-Specific Notes 311

© 2024 Devart

Main features of FreshBooks cloud provider are:

Direct access to FreshBooks cloud databases via HTTPS

Extended SQL Syntax

The full list of Cloud provider features can be found on the UniDAC features page.

Both Professional and Standard Editions of UniDAC include the FreshBooks provider.

Compatibility
FreshBooks provider supports supports FreshBooks data types and API.

Requirements
Applications that use the FreshBooks cloud provider require Devart ODBC Driver for

FreshBooks to be installed on the client computer. The driver is sold and distributed

separately from UniDAC.

Deployment
When an application was built without runtime packages (Link with runtime packages set to

False in Project Options), you do not need to deploy any BPL files with it. For more

information, see Deployment.

Note that UniDAC Trial requires deployment of additional BPL files regardless of Link with

runtime packages.

Connecting to FreshBooks
To connect to FreshBooks Classic using Devart ODBC Driver, you should configure the

driver and set up a DSN. In the TUniConnection component, specify the following parameters:

ApiVersion

Server

AuthenticationToken

For more information on how to obtain FreshBooks AuthenticationToken, see the article.

To connect to FreshBooks New using Devart ODBC Driver, you should configure the driver

https://www.devart.com/unidac/features.html
https://www.devart.com/odbc/freshbooks/
https://www.devart.com/odbc/freshbooks/
https://www.devart.com/odbc/freshbooks/docs/driver_configuration_and_conne.htm
https://www.devart.com/odbc/freshbooks/docs/obtaining_token.htm

Universal Data Access Components312

© 2024 Devart

and set up a DSN. In the TUniConnection component, specify the following parameters:

ApiVersion

CompanyName

AccessToken

For more information on how to request FreshBooks AccessToken, see the article.

FreshBooks-specific options
Though UniDAC is components that provide a unified interface to work with various cloud

services, it also lets you tune behaviour for each cloud individually. For thin setup of a certain

cloud, UniDAC provides specific options. These options can be applied to such components

as TUniConnection, TUniQuery, TUniTable, TUniStoredProc, TUniSQL, TUniScript via their

SpecificOptions property. SpecificOptions is a sting list.

Below you will find the description of allowed options grouped by components.

TUniConnection

Option name Description

ApiVersion

Used to specify the required FreshBooks version. The available
values are:

Classic

New

The default value - Classic.

ConnectionTimeout
The time to wait for a connection to open before raising an
exception.

UseUnicode

Enables or disables Unicode support. Affects character data
fetched from the server. When set to True, all character data is
stored as WideStrings, and TStringField is replaced by
TWideStringFiled.

UTCDates
Use the UTCDates option to return the datetime values from the
data source as UTC values.

FreshBooks Classic

Option name Description

https://www.devart.com/odbc/freshbooks/docs/driver_configuration.htm
https://www.devart.com/odbc/freshbooks/docs/requesting_access_token.htm

Provider-Specific Notes 313

© 2024 Devart

AuthenticationToken Authentication token is used to securely connect to your
FreshBooks account.

FreshBooks New

Option name Description

AccessToken
Access token is used to securely connect to your FreshBooks
account.

CompanyName The company name used when creating a FreshBooks account.

RefreshToken
A refresh token allows an application to obtain a new access
token without prompting the user. Only one FreshBooks refresh
token can be valid at any time per user per application.

Proxy connection options

Option name Description

ProxyPassword
If Proxy User authorization is used, specify Proxy user password
in this option.

ProxyPort
Specify the Proxy port here. You can learn Proxy Port in the same
way as described above for the host.

ProxyServer

If you are using Proxy for connection to your network, specify the
Proxy server address in this option.
To learn your Proxy server address, open Control Panel->Internet
Options->Connections->LAN settings.

ProxyUser
If Proxy User authorization is used, specify Proxy user name (ID)
in this option.

TUniSQL

Option name Description

CommandTimeout The time to wait for a statement to be executed.

TUniQuery, TUniTable, TUniStoredProc

Option name Description

CommandTimeout The time to wait for a statement to be executed.

ExtendedFieldsInfo
If True, an additional query is performed to get information about
the returned fields and tables they belong to. The default value is
False.

FetchAll
If True, all records of a query are requested from database server
when the dataset is being opened.

Universal Data Access Components314

© 2024 Devart

If False, records are retrieved when a data-aware component or
a program requests it. The default value is False.

FieldsAsString If set to True, all non-BLOB fields are handled as strings. The
default value is False.

UnknownAsString

If set to True, all FreshBooks data types that are fetched as text
and don't have the size limit, are mapped to TStringField with the
default size 8192 bytes. If False (default value), such types are
mapped to TMemoField. The TEXT data type is always mapped
to TMemoField regardless of the value of this option.

TUniScript

The TUniDump component has no FreshBooks-specific options.

TUniLoader

The TUniLoader component has no FreshBooks-specific options.

TUniDump

The TUniDump component has no FreshBooks-specific options.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

5.2.4 UniDAC and Google BigQuery

This article provides a brief overview of the Google BigQuery database provider for UniDAC

used to access Google BigQuery from Delphi and Lazarus. You will find the description of

some useful features and how to get started quickly.

Overview

Compatibility

Requirements

Deployment

Google Bigquery-specific options

TUniConnection

TUniSQL

TUniQuery, TUniTable, TUniStoredProc

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Provider-Specific Notes 315

© 2024 Devart

TUniScript

TUniLoader

TUniDump

Overview

Main features of Google BigQuery data access provider are:

Direct access to Google BigQuery without client library and additional tools

Extended SQL Syntax

The full list of Database provider features can be found on the UniDAC features page.

Both Professional and Standard Editions of UniDAC include the Google BigQuery provider.

Compatibility
Google BigQuery provider supports Google BigQuery data types and API.

Requirements
Applications that use the Google BigQuery provider require Devart ODBC Driver for Google

BigQuery to be installed on the client computer. The driver is sold and distributed separately

from UniDAC.

Deployment
When an application was built without runtime packages (Link with runtime packages set to

False in Project Options), you do not need to deploy any BPL files with it. For more

information, see Deployment.

Note that UniDAC Trial requires deployment of additional BPL files regardless of Link with

runtime packages.

Connecting to Google BigQuery
To connect to Google BigQuery using legacy authentication and Devart ODBC Driver, you

should configure the driver and set up a DSN. In the TUniConnection component, specify the

following parameters:

Project ID

https://www.devart.com/unidac/features.html
https://www.devart.com/odbc/bigquery/
https://www.devart.com/odbc/bigquery/
https://www.devart.com/odbc/bigquery/docs/driver_configuration_and_conne.htm#dsn

Universal Data Access Components316

© 2024 Devart

Dataset ID

Refresh Token

For more information on how to obtain Google BigQuery Refresh Token, see the article.

Google BigQuery-specific options
Though UniDAC is components that provide a unified interface to work with various database

services, it also lets you tune behaviour for each server individually. For thin setup of a certain

database service, UniDAC provides specific options. These options can be applied to such

components as TUniConnection, TUniQuery, TUniTable, TUniStoredProc, TUniSQL,

TUniScript via their SpecificOptions property. SpecificOptions is a sting list.

Below you will find the description of allowed options grouped by components.

TUniConnection

Option name Description

ConnectionTimeout
The time to wait for a connection to open before raising an
exception.

DataSetId Allows referring the dataset by its name.

PrimaryKeyColumns
Contains unique keys that are used to identify all existing rows in
the table.

ProjectID
Used to identify the projectы you have created from the existing
ones.

RefreshToken Used to supply an API key to log in to Google BigQuery.

UseUnicode

Enables or disables Unicode support. Affects character data
fetched from the server. When set to True, all character data is
stored as WideStrings, and TStringField is replaced by
TWideStringField.

UTCDates
Use the UTCDates option to return the datetime values from the
data source as UTC values.

Proxy connection options

Option name Description

ProxyPassword If Proxy User authorization is used, specify Proxy user password
in this option.

ProxyPort Specify the Proxy port here. You can learn Proxy Port in the same

https://docs.devart.com/odbc/bigquery/driver_configuration_and_conne.htm

Provider-Specific Notes 317

© 2024 Devart

way as described above for the host.

ProxyServer

If you are using Proxy for connection to your network, specify the
Proxy server address in this option.
To learn your Proxy server address, open Control Panel->Internet
Options->Connections->LAN settings.

ProxyUser If Proxy User authorization is used, specify Proxy user name (ID)
in this option.

TUniSQL

Option name Description

CommandTimeout The time to wait for a statement to be executed.

TUniQuery, TUniTable, TUniStoredProc

Option name Description

CommandTimeout The time to wait for a statement to be executed.

ExtendedFieldsInfo
If True, an additional query is performed to get information about
the returned fields and tables they belong to. The default value is
False.

FetchAll

If True, all records of a query are requested from database server
when the dataset is being opened.
If False, records are retrieved when a data-aware component or
a program requests it. The default value is False.

FieldsAsString
If set to True, all non-BLOB fields are handled as strings. The
default value is False.

UnknownAsString

If set to True, all Google BigQuery data types that are fetched as
text and don't have the size limit, are mapped to TStringField with
the default size 8192 bytes. If False (default value), such types are
mapped to TMemoField. The TEXT data type is always mapped
to TMemoField regardless of the value of this option.

TUniScript

The TUniDump component has no Google BigQuery-specific options.

TUniLoader

The TUniLoader component has no Google BigQuery-specific options.

TUniDump

The TUniDump component has no Google BigQuery-specific options.

Universal Data Access Components318

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

5.2.5 UniDAC and HubSpot

This article provides a brief overview of the HubSpot cloud provider for UniDAC used to

access HubSpot from Delphi and Lazarus. You will find the description of some useful

features and how to get started quickly.

Overview

Compatibility

Requirements

Deployment

HubSpot-specific options

TUniConnection

TUniSQL

TUniQuery, TUniTable, TUniStoredProc

TUniScript

TUniLoader

TUniDump

Overview

Main features of HubSpot cloud provider are:

Direct access to HubSpot cloud databases via HTTPS

Extended SQL Syntax

The full list of Cloud provider features can be found on the UniDAC features page.

Both Professional and Standard Editions of UniDAC include the HubSpot provider.

Compatibility
HubSpot provider supports supports HubSpot data types and API.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/unidac/features.html

Provider-Specific Notes 319

© 2024 Devart

Requirements
Applications that use the HubSpot cloud provider require Devart ODBC Driver for HubSpot to

be installed on the client computer. The driver is sold and distributed separately from UniDAC.

Deployment
When an application was built without runtime packages (Link with runtime packages set to

False in Project Options), you do not need to deploy any BPL files with it. For more

information, see Deployment.

Note that UniDAC Trial requires deployment of additional BPL files regardless of Link with

runtime packages.

Connecting to HubSpot
To connect to HubSpot via OAuth using Devart ODBC Driver, you should configure the driver

and set up a DSN. In the TUniConnection component, specify the following parameters:

RefreshToken

For more information on how to obtain HubSpot RefreshToken, see the article.

To connect to HubSpot via Private App API Key using Devart ODBC Driver, you should

configure the driver and set up a DSN. In the TUniConnection component, specify the

following parameters:

API Key

For more information on how to get HubSpot Private App API Key, see the article.

HubSpot-specific options
Though UniDAC is components that provide a unified interface to work with various cloud

services, it also lets you tune behaviour for each cloud individually. For thin setup of a certain

cloud, UniDAC provides specific options. These options can be applied to such components

as TUniConnection, TUniQuery, TUniTable, TUniStoredProc, TUniSQL, TUniScript via their

SpecificOptions property. SpecificOptions is a sting list.

https://www.devart.com/odbc/hubspot/
https://www.devart.com/odbc/hubspot/docs/driver_configuration_and_conne.htm
https://docs.devart.com/odbc/hubspot/driver_configuration_and_conne.htm
https://www.devart.com/odbc/hubspot/docs/driver_configuration.htm
https://docs.devart.com/odbc/hubspot/private_app.htm

Universal Data Access Components320

© 2024 Devart

Below you will find the description of allowed options grouped by components.

TUniConnection

Option name Description

API Key The API key authentication.

ConnectionTimeout
The time to wait for a connection to open before raising an
exception.

UseUnicode

Enables or disables Unicode support. Affects character data
fetched from the server. When set to True, all character data is
stored as WideStrings, and TStringField is replaced by
TWideStringFiled.

UTCDates
Use the UTCDates option to return the datetime values from the
data source as UTC values.

RefreshToken
A refresh token allows an application to obtain a new access
token without prompting the user. Only one HubSpot refresh token
can be valid at any time per user per application.

Proxy connection options

Option name Description

ProxyPassword
If Proxy User authorization is used, specify Proxy user password
in this option.

ProxyPort
Specify the Proxy port here. You can learn Proxy Port in the same
way as described above for the host.

ProxyServer

If you are using Proxy for connection to your network, specify the
Proxy server address in this option.
To learn your Proxy server address, open Control Panel->Internet
Options->Connections->LAN settings.

ProxyUser
If Proxy User authorization is used, specify Proxy user name (ID)
in this option.

TUniSQL

Option name Description

CommandTimeout The time to wait for a statement to be executed.

TUniQuery, TUniTable, TUniStoredProc

Option name Description

CommandTimeout The time to wait for a statement to be executed.

Provider-Specific Notes 321

© 2024 Devart

ExtendedFieldsInfo
If True, an additional query is performed to get information about
the returned fields and tables they belong to. The default value is
False.

FetchAll

If True, all records of a query are requested from database server
when the dataset is being opened.
If False, records are retrieved when a data-aware component or
a program requests it. The default value is False.

FieldsAsString If set to True, all non-BLOB fields are handled as strings. The
default value is False.

UnknownAsString

If set to True, all HubSpot data types that are fetched as text and
don't have the size limit, are mapped to TStringField with the
default size 8192 bytes. If False (default value), such types are
mapped to TMemoField. The TEXT data type is always mapped
to TMemoField regardless of the value of this option.

TUniScript

The TUniDump component has no HubSpot-specific options.

TUniLoader

The TUniLoader component has no HubSpot-specific options.

TUniDump

The TUniDump component has no HubSpot-specific options.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

5.2.6 UniDAC and Magento

This article provides a brief overview of the Magento cloud provider for UniDAC used to

access Magento from Delphi and Lazarus. You will find the description of some useful

features and how to get started quickly.

Overview

Compatibility

Requirements

Deployment

Magento-specific options

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components322

© 2024 Devart

TUniConnection

TUniSQL

TUniQuery, TUniTable, TUniStoredProc

TUniScript

TUniLoader

TUniDump

Overview

Main features of Magento cloud provider are:

Direct access to Magento cloud databases via HTTPS

Extended SQL Syntax

The full list of Cloud provider features can be found on the UniDAC features page.

Both Professional and Standard Editions of UniDAC include the Magento cloud provider.

Compatibility
Magento provider supports Magento data types and API.

Requirements
Applications that use the Magento cloud provider require Devart ODBC Driver for Magento to

be installed on the client computer. The driver is sold and distributed separately from UniDAC.

Deployment
When an application was built without runtime packages (Link with runtime packages set to

False in Project Options), you do not need to deploy any BPL files with it. For more

information, see Deployment.

Note that UniDAC Trial requires deployment of additional BPL files regardless of Link with

runtime packages.

Connecting to Magento
To connect to Magento 1.x using Devart ODBC Driver, you should configure the driver and

https://www.devart.com/unidac/features.html
https://www.devart.com/odbc/magento/

Provider-Specific Notes 323

© 2024 Devart

set up a DSN. In the TUniConnection component, specify the following parameters:

ApiVersion

Server

Username

ApiKey

For more information on how to obtain an API Key while creating Magento Api User, see the

article.

To connect to Magento 2.x using Devart ODBC Driver, you should configure the driver and

set up a DSN. In the TUniConnection component, specify the following parameters:

ApiVersion

Server

Username

Password

For more information on how to obtain a password while creating Magento Api User, see the

article.

Magento-specific options
Though UniDAC is components that provide a unified interface to work with various cloud

services, it also lets you tune behaviour for each cloud individually. For thin setup of a certain

cloud, UniDAC provides specific options. These options can be applied to such components

as TUniConnection, TUniQuery, TUniTable, TUniStoredProc, TUniSQL, TUniScript via their

SpecificOptions property. SpecificOptions is a sting list.

Below you will find the description of allowed options grouped by components.

TUniConnection

Option name Description

ApiKey API Key is used for secure authorization of API users to Magento
store.

https://www.devart.com/odbc/magento/docs/driver_configuration_and_conne.htm
https://www.devart.com/odbc/magento/docs/obtaining_token.htm
https://www.devart.com/odbc/magento/docs/driver_configuration.htm
https://www.devart.com/odbc/magento/docs/obtaining_password.htm

Universal Data Access Components324

© 2024 Devart

ApiVersion

API Version is used to specify the required Magento version. The
available values are:

Ver1

Ver2

The default value is Ver1.

ConnectionTimeout The time to wait for a connection to open before raising an
exception.

UseUnicode

Enables or disables Unicode support. Affects character data
fetched from the server. When set to True, all character data is
stored as WideStrings, and TStringField is replaced by
TWideStringField.

UTCDates Use the UTCDates option to return the datetime values from the
data source as UTC values.

Proxy connection options

Option name Description

ProxyPassword
If Proxy User authorization is used, specify Proxy user password
in this option.

ProxyPort
Specify the Proxy port here. You can learn Proxy Port in the same
way as described above for the host.

ProxyServer

If you are using Proxy for connection to your network, specify the
Proxy server address in this option.
To learn your Proxy server address, open Control Panel->Internet
Options->Connections->LAN settings.

ProxyUser
If Proxy User authorization is used, specify Proxy user name (ID)
in this option.

TUniSQL

Option name Description

CommandTimeout The time to wait for a statement to be executed.

TUniQuery, TUniTable, TUniStoredProc

Option name Description

CommandTimeout The time to wait for a statement to be executed.

ExtendedFieldsInfo
If True, an additional query is performed to get information about
the returned fields and tables they belong to. The default value is
False.

Provider-Specific Notes 325

© 2024 Devart

FetchAll

If True, all records of a query are requested from database server
when the dataset is being opened.
If False, records are retrieved when a data-aware component or
a program requests it. The default value is False.

FieldsAsString If set to True, all non-BLOB fields are handled as strings. The
default value is False.

UnknownAsString

If set to True, all Magento data types that are fetched as text and
don't have the size limit, are mapped to TStringField with the
default size 8192 bytes. If False (default value), such types are
mapped to TMemoField. The TEXT data type is always mapped
to TMemoField regardless of the value of this option.

TUniScript

The TUniDump component has no Magento-specific options.

TUniLoader

The TUniLoader component has no Magento-specific options.

TUniDump

The TUniDump component has no Magento-specific options.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

5.2.7 UniDAC and Mailchimp

This article provides a brief overview of the Mailchimp cloud provider for UniDAC used to

access Mailchimp from Delphi and Lazarus. You will find the description of some useful

features and how to get started quickly.

Overview

Compatibility

Requirements

Deployment

Mailchimp-specific options

TUniConnection

TUniSQL

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components326

© 2024 Devart

TUniQuery, TUniTable, TUniStoredProc

TUniScript

TUniLoader

TUniDump

Overview

Main features of Mailchimp cloud provider are:

Direct access to Mailchimp cloud databases via HTTPS

Extended SQL Syntax

The full list of Cloud provider features can be found on the UniDAC features page.

Both Professional and Standard Editions of UniDAC include the MailChimp cloud provider.

Compatibility
Mailchimp cloud provider supports Mailchimp data types and API.

Requirements
Applications that use the Mailchimp cloud provider require Devart ODBC Driver for Mailchimp

to be installed on the client computer. The driver is sold and distributed separately from

UniDAC.

Deployment
When an application was built without runtime packages (Link with runtime packages set to

False in Project Options), you do not need to deploy any BPL files with it. For more

information, see Deployment.

Note that UniDAC Trial requires deployment of additional BPL files regardless of Link with

runtime packages.

Connecting to Mailchimp
To connect to Mailchimp using Devart ODBC Driver, you should configure the driver and set

up a DSN. In the TUniConnection component, specify the following parameters:

ApiKey

https://www.devart.com/unidac/features.html
https://www.devart.com/odbc/mailchimp/
https://www.devart.com/odbc/mailchimp/docs/driver_configuration_and_conne.htm

Provider-Specific Notes 327

© 2024 Devart

For more information on how to obtain an API Key, see the article.

Mailchimp-specific options
Though UniDAC is components that provide a unified interface to work with various cloud

services, it also lets you tune behaviour for each cloud individually. For thin setup of a certain

cloud, UniDAC provides specific options. These options can be applied to such components

as TUniConnection, TUniQuery, TUniTable, TUniStoredProc, TUniSQL, TUniScript via their

SpecificOptions property. SpecificOptions is a sting list.

Below you will find the description of allowed options grouped by components.

TUniConnection

Option name Description

ApiKey Your Mailchimp API Key (token).

ApiVersion

Used to specify the Mailchimp API version. The choice of the API
version will impact the scope of Mailchimp objects and fields
available to you.

Supported values:

apiVer2
Mailchimp API 2.0. will be used.

apiVer3 (default)
Mailchimp API 3.0. will be used.

ConnectionTimeout The time to wait for a connection to open before raising an
exception.

MergeCustomFields

Use the option to specify how custom fields(merge tags) are
handled when working with the ListMembers table.

Supported values:

mcfNone
Merge tags are not read from Mailchimp.

mcfJoinCommon (default)
Merge tags are read from Mailchimp, but only the tags that are
defined for all the Lists are joined to other ListMembers table
columns. Other tags are ignored.

mcfJoinAll

https://www.devart.com/odbc/mailchimp/docs/obtaining_token.htm

Universal Data Access Components328

© 2024 Devart

All the merge tags are joined to other ListMembers table
columns. If a merge tag is not defined for the list that a list
member belongs to, NULL value is returned for the corresponding
column of the list member.

UseMergeTagAsFiel
dName

Determines whether to use merge tag values as column names
for Mailchimp merge tags instead of merge tag labels. The
default value if False.

UseUnicode

Enables or disables Unicode support. Affects character data
fetched from the server. When set to True, all character data is
stored as WideStrings, and TStringField is replaced by
TWideStringFiled.

UTCDates Use the UTCDates option to return the datetime values from the
data source as UTC values.

Proxy connection options

Option name Description

ProxyPassword
If Proxy User authorization is used, specify Proxy user password
in this option.

ProxyPort
Specify the Proxy port here. You can learn Proxy Port in the same
way as described above for the host.

ProxyServer

If you are using Proxy for connection to your network, specify the
Proxy server address in this option.
To learn your Proxy server address, open Control Panel->Internet
Options->Connections->LAN settings.

ProxyUser
If Proxy User authorization is used, specify Proxy user name (ID)
in this option.

TUniSQL

Option name Description

CommandTimeout The time to wait for a statement to be executed.

TUniQuery, TUniTable, TUniStoredProc

Option name Description

CommandTimeout The time to wait for a statement to be executed.

ExtendedFieldsInfo
If True, an additional query is performed to get information about
the returned fields and tables they belong to. The default value is
False.

FetchAll
If True, all records of a query are requested from database server
when the dataset is being opened.

Provider-Specific Notes 329

© 2024 Devart

If False, records are retrieved when a data-aware component or
a program requests it. The default value is False.

FieldsAsString If set to True, all non-BLOB fields are handled as strings. The
default value is False.

UnknownAsString

If set to True, all Mailchimp data types that are fetched as text and
don't have the size limit, are mapped to TStringField with the
default size 8192 bytes. If False (default value), such types are
mapped to TMemoField. The TEXT data type is always mapped
to TMemoField regardless of the value of this option.

TUniScript

The TUniDump component has no Mailchimp-specific options.

TUniLoader

The TUniLoader component has no Mailchimp-specific options.

TUniDump

The TUniDump component has no Mailchimp-specific options.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

5.2.8 UniDAC and NetSuite

This article provides a brief overview of the NetSuite cloud provider for UniDAC used to

access NetSuite from Delphi and Lazarus. You will find the description of some useful

features and how to get started quickly.

Overview

Compatibility

Requirements

Deployment

NetSuite-specific options

TUniConnection

TUniSQL

TUniQuery, TUniTable, TUniStoredProc

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components330

© 2024 Devart

TUniScript

TUniLoader

TUniDump

Overview

Main features of NetSuite cloud provider are:

Direct access to NetSuite cloud databases via HTTPS

Extended SQL Syntax

The full list of Cloud provider features can be found on the UniDAC features page.

Both Professional and Standard Editions of UniDAC include the NetSuite cloud provider.

Compatibility
NetSuite cloud provider supports NetSuite data types and API.

Requirements
Applications that use the NetSuite cloud provider require Devart ODBC Driver for NetSuite to

be installed on the client computer. The driver is sold and distributed separately from UniDAC.

Deployment
When an application was built without runtime packages (Link with runtime packages set to

False in Project Options), you do not need to deploy any BPL files with it. For more

information, see Deployment.

Note that UniDAC Trial requires deployment of additional BPL files regardless of Link with

runtime packages.

Connecting to NetSuite
To connect to NetSuite using Devart ODBC Driver, you should configure the driver and set up

a DSN. In the TUniConnection component, specify the following parameters:

Username

Password

https://www.devart.com/unidac/features.html
https://www.devart.com/odbc/netsuite/
https://www.devart.com/odbc/netsuite/docs/driver_configuration_and_conne.htm

Provider-Specific Notes 331

© 2024 Devart

AccountID

ApplicationID

For more information on how to obtain an AccountID and ApplicationID, see the article.

If using token-based authentication, you need to specify the following parameters in the

TUniConnection component:

AccountID

RoleID

ConsumerKey

ConsumerSecret

Token

TokenSecret

For more information on how to set up the token-based authentication, see the article.

NetSuite-specific options
Though UniDAC is components that provide a unified interface to work with various cloud

services, it also lets you tune behaviour for each cloud individually. For thin setup of a certain

cloud, UniDAC provides specific options. These options can be applied to such components

as TUniConnection, TUniQuery, TUniTable, TUniStoredProc, TUniSQL, TUniScript via their

SpecificOptions property. SpecificOptions is a sting list.

Below you will find the description of allowed options grouped by components.

TUniConnection

Option name Description

AccountID Used together with User ID and Password fields to authenticate
to NetSuite.

ApplicationID Used for authentication as well as User ID, Password and
Acccount ID.

AuthenticationType
Use the option to specify the autentication type: token-based
(atTokenBased) or regular authentication (atBasic). The default
value is atTokenBased.

https://www.devart.com/odbc/netsuite/docs/obtaining_id.htm
https://docs.devart.com/odbc/netsuite/?obtaining_netsuite_token.htm

Universal Data Access Components332

© 2024 Devart

ConnectionTimeout The time to wait for a connection to open before raising an
exception.

ConsumerKey Consumer Key and Consumer Secret keys are private keys
generated when you create an app in your NetSuite account in
the Setup > Integration > Integration Management > Manage
Integrations > New tab. Check the Token-based Authentication
box to get the Consumer Key and Consumer Secret.

ConsumerKeySecret

CustomFields Allows accessing custom table fields.
CustomTables Allows accessing a custom table.
RoleID Use the option to specify your NetSuite Role ID.
Sandbox Allows connecting to Sandbox instead of Production data.
TokenId Use the option to specify your NetSuite Token ID.
TokenSecret Use the option to specify your NetSuite Token Secret.

UseUnicode

Enables or disables Unicode support. Affects character data
fetched from the server. When set to True, all character data is
stored as WideStrings, and TStringField is replaced by
TWideStringFiled.

UTCDates Use the UTCDates option to return the datetime values from the
data source as UTC values.

Proxy connection options

Option name Description

ProxyPassword
If Proxy User authorization is used, specify Proxy user password
in this option.

ProxyPort
Specify the Proxy port here. You can learn Proxy Port in the same
way as described above for the host.

ProxyServer

If you are using Proxy for connection to your network, specify the
Proxy server address in this option.
To learn your Proxy server address, open Control Panel->Internet
Options->Connections->LAN settings.

ProxyUser
If Proxy User authorization is used, specify Proxy user name (ID)
in this option.

TUniSQL

Option name Description

CommandTimeout The time to wait for a statement to be executed.

TUniQuery, TUniTable, TUniStoredProc

Option name Description

Provider-Specific Notes 333

© 2024 Devart

CommandTimeout The time to wait for a statement to be executed.

ExtendedFieldsInfo
If True, an additional query is performed to get information about
the returned fields and tables they belong to. The default value is
False.

FetchAll

If True, all records of a query are requested from database server
when the dataset is being opened.
If False, records are retrieved when a data-aware component or
a program requests it. The default value is False.

FieldsAsString If set to True, all non-BLOB fields are handled as strings. The
default value is False.

UnknownAsString

If set to True, all NetSuite data types that are fetched as text and
don't have the size limit, are mapped to TStringField with the
default size 8192 bytes. If False (default value), such types are
mapped to TMemoField. The TEXT data type is always mapped
to TMemoField regardless of the value of this option.

TUniScript

The TUniDump component has no NetSuite-specific options.

TUniLoader

The TUniLoader component has no NetSuite-specific options.

TUniDump

The TUniDump component has no NetSuite-specific options.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

5.2.9 UniDAC and QuickBooks

This article provides a brief overview of the QuickBooks cloud provider for UniDAC used to

access QuickBooks from Delphi and Lazarus. You will find the description of some useful

features and how to get started quickly.

Overview

Compatibility

Requirements

Deployment

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components334

© 2024 Devart

QuickBooks-specific options

TUniConnection

TUniSQL

TUniQuery, TUniTable, TUniStoredProc

TUniScript

TUniLoader

TUniDump

Overview

Main features of QuickBooks cloud provider are:

Direct access to QuickBooks cloud databases via HTTPS

Extended SQL Syntax

The full list of Cloud provider features can be found on the UniDAC features page.

Both Professional and Standard Editions of UniDAC include the QuickBooks provider.

Compatibility
QuickBooks cloud provider supports QuickBooks data types and API.

Requirements
Applications that use the QuickBooks cloud provider require Devart ODBC Driver for

QuickBooks to be installed on the client computer. The driver is sold and distributed

separately from UniDAC.

Deployment
When an application was built without runtime packages (Link with runtime packages set to

False in Project Options), you do not need to deploy any BPL files with it. For more

information, see Deployment.

Note that UniDAC Trial requires deployment of additional BPL files regardless of Link with

runtime packages.

Connecting to QuickBooks

https://www.devart.com/unidac/features.html
https://www.devart.com/odbc/quickbooks/
https://www.devart.com/odbc/quickbooks/

Provider-Specific Notes 335

© 2024 Devart

To connect to QuickBooks using Devart ODBC Driver, you should configure the driver and

set up a DSN. In the TUniConnection component, specify the following parameters:

CompanyId

RefreshToken

QuickBooks-specific options
Though UniDAC is components that provide a unified interface to work with various cloud

services, it also lets you tune behaviour for each cloud individually. For thin setup of a certain

cloud, UniDAC provides specific options. These options can be applied to such components

as TUniConnection, TUniQuery, TUniTable, TUniStoredProc, TUniSQL, TUniScript via their

SpecificOptions property. SpecificOptions is a sting list.

Below you will find the description of allowed options grouped by components.

TUniConnection

Option name Description

AccessToken Deprecated now by QuickBooks.
AccessTokenSecret Deprecated now by QuickBooks.

CompanyId

Used to supply your QuickBooks registered Company ID. This
field is filled in automatically after you authorize to QuickBooks.
To learn your Company ID, sign in to QuickBooks at intuit.com,
go to Your Account settings and select Company Info tab - you
Company ID is provided at the top of the appeared window.

ConnectionTimeout The time to wait for a connection to open before raising an
exception.

ConsumerKey
Deprecated now by QuickBooks.

ConsumerKeySecret

RefreshToken
Used to specify the refresh token to generate access tokens
when they expire. QuickBooks access tokens are valid for an
hour.

Sandbox Helps to build and test intergration with QuickBooks.

UseUnicode

Enables or disables Unicode support. Affects character data
fetched from the server. When set to True, all character data is
stored as WideStrings, and TStringField is replaced by
TWideStringFiled.

UTCDates Use the UTCDates option to return the datetime values from the
data source as UTC values.

https://www.devart.com/odbc/quickbooks/docs/driver_configuration_and_conne.htm

Universal Data Access Components336

© 2024 Devart

Proxy connection options

Option name Description

ProxyPassword
If Proxy User authorization is used, specify Proxy user password
in this option.

ProxyPort
Specify the Proxy port here. You can learn Proxy Port in the same
way as described above for the host.

ProxyServer

If you are using Proxy for connection to your network, specify the
Proxy server address in this option.
To learn your Proxy server address, open Control Panel->Internet
Options->Connections->LAN settings.

ProxyUser
If Proxy User authorization is used, specify Proxy user name (ID)
in this option.

TUniSQL

Option name Description

CommandTimeout The time to wait for a statement to be executed.

TUniQuery, TUniTable, TUniStoredProc

Option name Description

CommandTimeout The time to wait for a statement to be executed.

ExtendedFieldsInfo
If True, an additional query is performed to get information about
the returned fields and tables they belong to. The default value is
False.

FetchAll

If True, all records of a query are requested from database server
when the dataset is being opened.
If False, records are retrieved when a data-aware component or
a program requests it. The default value is False.

FieldsAsString
If set to True, all non-BLOB fields are handled as strings. The
default value is False.

UnknownAsString

If set to True, all QuickBooks data types that are fetched as text
and don't have the size limit, are mapped to TStringField with the
default size 8192 bytes. If False (default value), such types are
mapped to TMemoField. The TEXT data type is always mapped
to TMemoField regardless of the value of this option.

TUniScript

The TUniDump component has no QuickBooks-specific options.

Provider-Specific Notes 337

© 2024 Devart

TUniLoader

The TUniLoader component has no QuickBooks-specific options.

TUniDump

The TUniDump component has no QuickBooks-specific options.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

5.2.10 UniDAC and Salesforce

This article provides a brief overview of the Salesforce cloud provider for UniDAC used to

access Salesforce from Delphi and Lazarus. You will find the description of some useful

features and how to get started quickly.

Overview

Compatibility

Requirements

Deployment

Salesforce-specific options

TUniConnection

TUniSQL

TUniQuery, TUniTable, TUniStoredProc

TUniScript

TUniLoader

TUniDump

Overview

Main features of Salesforce cloud provider are:

Direct access to Salesforce cloud databases via HTTPS

Extended SQL Syntax

The full list of Cloud provider features can be found on the UniDAC features page.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/unidac/features.html

Universal Data Access Components338

© 2024 Devart

Both Professional and Standard Editions of UniDAC include the Salesforce cloud provider.

Compatibility
Salesforce provider supports Salesforce data types and API.

Requirements
Applications that use the Salesforce cloud provider require Devart ODBC Driver for

Salesforce to be installed on the client computer. The driver is sold and distributed separately

from UniDAC.

Deployment
When an application was built without runtime packages (Link with runtime packages set to

False in Project Options), you do not need to deploy any BPL files with it. For more

information, see Deployment.

Note that UniDAC Trial requires deployment of additional BPL files regardless of Link with

runtime packages.

Connecting to Salesforce
To connect to Salesforce using Devart ODBC Driver, you should configure the driver and set

up a DSN. In the TUniConnection component, specify the following parameters:

Username

Password

SecurityToken

If using OAuth2.0 authentication, you need to specify the Refresh Token. It is available when

the OAuth 2.0 authentication type is selected.

For more information on how to obtain Salesforce SecurityToken, see the article.

In the TUniConnection component, specify the following parameters:

Server

RefreshToken

https://www.devart.com/odbc/salesforce/
https://www.devart.com/odbc/salesforce/
https://docs.devart.com/odbc/salesforce/driver_configuration_and_conne.htm
https://docs.devart.com/odbc/salesforce/driver_configuration_and_conne.htm
https://docs.devart.com/odbc/salesforce/driver_configuration_and_conne.htm

Provider-Specific Notes 339

© 2024 Devart

Salesforce-specific options
Though UniDAC is components that provide a unified interface to work with various cloud

services, it also lets you tune behaviour for each cloud individually. For thin setup of a certain

cloud, UniDAC provides specific options. These options can be applied to such components

as TUniConnection, TUniQuery, TUniTable, TUniStoredProc, TUniSQL, TUniScript via their

SpecificOptions property. SpecificOptions is a sting list.

Below you will find the description of allowed options grouped by components.

TUniConnection

Option name Description

Authentication

The authentication type to use when connecting to Salesforce.
Defaults to OAuth.
OAuth

The OAuth 2.0 authentication.
User ID and Password

The basic user/password authentication.

ConnectionTimeout The time to wait for a connection to open before raising an
exception.

IncludeDeleted If set to True, the result set of a query will contain deleted records
that are visible in the recycle bin. The default value is False.

RefreshToken
This option is available when the OAuth 2.0 authentication type is
selected.

SecurityToken Enter the security token of your Salesforce account in this field.

Server

This option specifies the URL of the Salesforce server.
Supported domains include:

salesforce.com

force.com

database.com

By default, the login.salesforce.com domain is selected.

UseUnicode

Enables or disables Unicode support. Affects character data
fetched from the server. When set to True, all character data is
stored as WideStrings, and TStringField is replaced by
TWideStringFiled.

UTCDates Use the UTCDates option to return the datetime values from the
data source as UTC values.

Universal Data Access Components340

© 2024 Devart

Proxy connection options

Option name Description

ProxyPassword
If Proxy User authorization is used, specify Proxy user password
in this option.

ProxyPort
Specify the Proxy port here. You can learn Proxy Port in the same
way as described above for the host.

ProxyServer

If you are using Proxy for connection to your network, specify the
Proxy server address in this option.
To learn your Proxy server address, open Control Panel->Internet
Options->Connections->LAN settings.

ProxyUser
If Proxy User authorization is used, specify Proxy user name (ID)
in this option.

Refresh Token
The Salesforce OAuth 2.0 token. Available when the OAuth 2.0
authentication type is selected.

TUniSQL

Option name Description

CommandTimeout The time to wait for a statement to be executed.

TUniQuery, TUniTable, TUniStoredProc

Option name Description

CommandTimeout The time to wait for a statement to be executed.

ExtendedFieldsInfo
If True, an additional query is performed to get information about
the returned fields and tables they belong to. The default value is
False.

FetchAll

If True, all records of a query are requested from database server
when the dataset is being opened.
If False, records are retrieved when a data-aware component or
a program requests it. The default value is False.

FieldsAsString
If set to True, all non-BLOB fields are handled as strings. The
default value is False.

UnknownAsString

If set to True, all Salesforce data types that are fetched as text
and don't have the size limit, are mapped to TStringField with the
default size 8192 bytes. If False (default value), such types are
mapped to TMemoField. The TEXT data type is always mapped
to TMemoField regardless of the value of this option.

TUniScript

Provider-Specific Notes 341

© 2024 Devart

The TUniDump component has no Salesforce-specific options.

TUniLoader

The TUniLoader component has no Salesforce-specific options.

TUniDump

The TUniDump component has no Salesforce-specific options.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

5.2.11 UniDAC and Salesforce MC

This article provides a brief overview of the Salesforce MC cloud provider for UniDAC used to

access Salesforce MC from Delphi and Lazarus. You will find the description of some useful

features and how to get started quickly.

Overview

Compatibility

Requirements

Deployment

Salesforce MC-specific options

TUniConnection

TUniSQL

TUniQuery, TUniTable, TUniStoredProc

TUniScript

TUniLoader

TUniDump

Overview

Main features of Salesforce MC cloud provider are:

Direct access to Salesforce MC cloud databases via HTTPS

Extended SQL Syntax

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components342

© 2024 Devart

The full list of Cloud provider features can be found on the UniDAC features page.

Both Professional and Standard Editions of UniDAC include the Salesforce MC cloud

provider.

Compatibility
Salesforce MC cloud provider supports Salesforce MC data types and API.

Requirements
Applications that use the Salesforce MC cloud provider require Devart ODBC Driver for

Salesforce MC to be installed on the client computer. The driver is sold and distributed

separately from UniDAC.

Deployment
When an application was built without runtime packages (Link with runtime packages set to

False in Project Options), you do not need to deploy any BPL files with it. For more

information, see Deployment.

Note that UniDAC Trial requires deployment of additional BPL files regardless of Link with

runtime packages.

Connecting to Salesforce MC
To connect to Salesforce MC using Devart ODBC Driver and User/Password

Authentication, you should configure the driver and set up a DSN. In the TUniConnection

component, specify the following parameters:

Server

Username

Password

To connect to Salesforce MC using Devart ODBC Driver and App Center Client

Authentication, you should configure the driver and set up a DSN. In the TUniConnection

component, specify the following parameters:

Authentication

https://www.devart.com/unidac/features.html
https://www.devart.com/odbc/exacttarget/
https://www.devart.com/odbc/exacttarget/
https://www.devart.com/odbc/exacttarget/docs/driver_configuration_and_conne.htm
https://www.devart.com/odbc/exacttarget/docs/appcenter_client_authentication.htm

Provider-Specific Notes 343

© 2024 Devart

ClientID

ClientSecret

Salesforce MC-specific options
Though UniDAC is components that provide a unified interface to work with various cloud

services, it also lets you tune behaviour for each cloud individually. For thin setup of a certain

cloud, UniDAC provides specific options. These options can be applied to such components

as TUniConnection, TUniQuery, TUniTable, TUniStoredProc, TUniSQL, TUniScript via their

SpecificOptions property. SpecificOptions is a sting list.

Below you will find the description of allowed options grouped by components.

TUniConnection

Option name Description

AppClientID Used to supply Application Client ID for App Center Client
authentication.

AppClientSecret Used to supply Application center client secret for App Center
Client authentication.

AppSandbox Allows using a production or sandbox account for App Center
Client authentication.

Authentication

Specifies the authentication type.

atUserAndPassword (default)
Authentication with a user ID and a password. You will have to
specify your Username and Password.

AtAppCenterClient
Authentication as an App Center Client. You will have to specify
your AppClientID and AppClientSecret.

ConnectionTimeout The time to wait for a connection to open before raising an
exception.

PartnerIDs The list of specific partner accounts or business units for retrieve
requests.

UseUnicode

Enables or disables Unicode support. Affects character data
fetched from the server. When set to True, all character data is
stored as WideStrings, and TStringField is replaced by
TWideStringFiled.

UTCDates Use the UTCDates option to return the datetime values from the
data source as UTC values.

Universal Data Access Components344

© 2024 Devart

Proxy connection options

Option name Description

ProxyPassword
If Proxy User authorization is used, specify Proxy user password
in this option.

ProxyPort
Specify the Proxy port here. You can learn Proxy Port in the same
way as described above for the host.

ProxyServer

If you are using Proxy for connection to your network, specify the
Proxy server address in this option.
To learn your Proxy server address, open Control Panel->Internet
Options->Connections->LAN settings.

ProxyUser
If Proxy User authorization is used, specify Proxy user name (ID)
in this option.

TUniSQL

Option name Description

CommandTimeout The time to wait for a statement to be executed.

TUniQuery, TUniTable, TUniStoredProc

Option name Description

CommandTimeout The time to wait for a statement to be executed.

ExtendedFieldsInfo
If True, an additional query is performed to get information about
the returned fields and tables they belong to. The default value is
False.

FetchAll

If True, all records of a query are requested from database server
when the dataset is being opened.
If False, records are retrieved when a data-aware component or
a program requests it. The default value is False.

FieldsAsString
If set to True, all non-BLOB fields are handled as strings. The
default value is False.

UnknownAsString

If set to True, all Salesforce Marketing Cloud data types that are
fetched as text and don't have the size limit, are mapped to
TStringField with the default size 8192 bytes. If False (default
value), such types are mapped to TMemoField. The TEXT data
type is always mapped to TMemoField regardless of the value of
this option.

TUniScript

The TUniDump component has no Salesforce MC-specific options.

Provider-Specific Notes 345

© 2024 Devart

TUniLoader

The TUniLoader component has no Salesforce MC-specific options.

TUniDump

The TUniDump component has no Salesforce MC-specific options.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

5.2.12 UniDAC and SugarCRM

This article provides a brief overview of the SugarCRM cloud provider for UniDAC used to

access SugarCRM from Delphi and Lazarus. You will find the description of some useful

features and how to get started quickly.

Overview

Compatibility

Requirements

Deployment

SugarCRM-specific options

TUniConnection

TUniSQL

TUniQuery, TUniTable, TUniStoredProc

TUniScript

TUniLoader

TUniDump

Overview

Main features of SugarCRM cloud provider are:

Direct access to SugarCRM cloud databases via HTTPS

Extended SQL Syntax

The full list of Cloud provider features can be found on the UniDAC features page.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/unidac/features.html

Universal Data Access Components346

© 2024 Devart

Both Professional and Standard Editions of UniDAC include the SugarCRM cloud provider.

Compatibility
SugarCRM cloud provider supports SugarCRM data types and API.

Requirements
Applications that use the SugarCRM cloud provider require Devart ODBC Driver for

SugarCRM to be installed on the client computer. The driver is sold and distributed separately

from UniDAC.

Deployment
When an application was built without runtime packages (Link with runtime packages set to

False in Project Options), you do not need to deploy any BPL files with it. For more

information, see Deployment.

Note that UniDAC Trial requires deployment of additional BPL files regardless of Link with

runtime packages.

Connecting
To connect to SugarCRM using Devart ODBC Driver, you should configure the driver and set

up a DSN. In the TUniConnection component, specify the following parameters:

Server

Username

Password

SugarCRM-specific options
Though UniDAC is components that provide a unified interface to work with various cloud

services, it also lets you tune behaviour for each cloud individually. For thin setup of a certain

cloud, UniDAC provides specific options. These options can be applied to such components

as TUniConnection, TUniQuery, TUniTable, TUniStoredProc, TUniSQL, TUniScript via their

SpecificOptions property. SpecificOptions is a sting list.

Below you will find the description of allowed options grouped by components.

https://www.devart.com/odbc/sugar/
https://www.devart.com/odbc/sugar/
https://www.devart.com/odbc/sugar/docs/driver_configuration_and_conne.htm

Provider-Specific Notes 347

© 2024 Devart

TUniConnection

Option name Description

ConnectionTimeout
The time to wait for a connection to open before raising an
exception.

UseUnicode

Enables or disables Unicode support. Affects character data
fetched from the server. When set to True, all character data is
stored as WideStrings, and TStringField is replaced by
TWideStringFiled.

UTCDates
Use the UTCDates option to return the datetime values from the
data source as UTC values.

Proxy connection options

Option name Description

ProxyPassword
If Proxy User authorization is used, specify Proxy user password
in this option.

ProxyPort
Specify the Proxy port here. You can learn Proxy Port in the same
way as described above for the host.

ProxyServer

If you are using Proxy for connection to your network, specify the
Proxy server address in this option.
To learn your Proxy server address, open Control Panel->Internet
Options->Connections->LAN settings.

ProxyUser
If Proxy User authorization is used, specify Proxy user name (ID)
in this option.

TUniSQL

Option name Description

CommandTimeout The time to wait for a statement to be executed.

TUniQuery, TUniTable, TUniStoredProc

Option name Description

CommandTimeout The time to wait for a statement to be executed.

ExtendedFieldsInfo
If True, an additional query is performed to get information about
the returned fields and tables they belong to. The default value is
False.

FetchAll

If True, all records of a query are requested from database server
when the dataset is being opened.
If False, records are retrieved when a data-aware component or
a program requests it. The default value is False.

Universal Data Access Components348

© 2024 Devart

FieldsAsString If set to True, all non-BLOB fields are handled as strings. The
default value is False.

UnknownAsString

If set to True, all SugarCRM data types that are fetched as text
and don't have the size limit, are mapped to TStringField with the
default size 8192 bytes. If False (default value), such types are
mapped to TMemoField. The TEXT data type is always mapped
to TMemoField regardless of the value of this option.

TUniScript

The TUniDump component has no SugarCRM-specific options.

TUniLoader

The TUniLoader component has no SugarCRM-specific options.

TUniDump

The TUniDump component has no SugarCRM-specific options.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

5.2.13 UniDAC and Zoho CRM

This article provides a brief overview of the Zoho CRM cloud provider for UniDAC used to

access Zoho CRM from Delphi and Lazarus. You will find the description of some useful

features and how to get started quickly.

Overview

Compatibility

Requirements

Deployment

Zoho CRM-specific options

TUniConnection

TUniSQL

TUniQuery, TUniTable, TUniStoredProc

TUniScript

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Provider-Specific Notes 349

© 2024 Devart

TUniLoader

TUniDump

Overview

Main features of Zoho CRM cloud provider are:

Direct access to Zoho CRM cloud databases via HTTPS

Extended SQL Syntax

The full list of Cloud provider features can be found on the UniDAC features page.

Both Professional and Standard Editions of UniDAC include the Zoho CRM cloud provider.

Compatibility
Zoho CRM cloud provider supports Zoho CRM data types and API.

Requirements
Applications that use the Zoho CRM cloud provider require Devart ODBC Driver for Zoho

CRM to be installed on the client computer. The driver is sold and distributed separately from

UniDAC.

Deployment
When an application was built without runtime packages (Link with runtime packages set to

False in Project Options), you do not need to deploy any BPL files with it. For more

information, see Deployment.

Note that UniDAC Trial requires deployment of additional BPL files regardless of Link with

runtime packages.

Connecting
To connect to Zoho CRM using Devart ODBC Driver, you should configure the driver and set

up a DSN. In the TUniConnection component, specify the following parameters:

RefreshToken

For more information on how to obtain Zoho CRM Refresh token, see the article.

https://www.devart.com/unidac/features.html
https://www.devart.com/odbc/zoho/
https://www.devart.com/odbc/zoho/
https://docs.devart.com/odbc/zoho/driver_configuration_and_conne.htm
https://docs.devart.com/odbc/zoho/driver_configuration_and_conne.htm

Universal Data Access Components350

© 2024 Devart

Zoho CRM-specific options
Though UniDAC is components that provide a unified interface to work with various cloud

services, it also lets you tune behaviour for each cloud individually. For thin setup of a certain

cloud, UniDAC provides specific options. These options can be applied to such components

as TUniConnection, TUniQuery, TUniTable, TUniStoredProc, TUniSQL, TUniScript via their

SpecificOptions property. SpecificOptions is a sting list.

Below you will find the description of allowed options grouped by components.

TUniConnection

Option name Description

AccessToken Access Token is now deprecated by Zoho CRM.

ApiVersion

Used to specify the Zoho CRM API version. The choice of the API
version will impact the syntax, output and methods available to
you.

apiVer2
Zoho CRM API 2.0. will be used.

apiVer1
The default value. Zoho CRM API 1.0. is now deprecated by Zoho
CRM.

AuthenticationToken Authentication Token is deprecated now by Zoho CRM.

ConnectionTimeout The time to wait for a connection to open before raising an
exception.

NonApprovedRecord
s

Enables retrieval of non-approved records from Zoho CRM. The
default value is False.

Normalize DB
Names

Replaces the . character in column names with the _ character.
Enable the option for third-party tools that don't support the .
character in column names.

RefreshToken

The option is available when apiVer2 is chosen. Zoho CRM API
access tokens are valid for only an hour. To generate a new
access token, use the refresh token. Enter your refresh token in
the field to refresh access tokens when they expire.

Server

Specifies the URL to the Zoho CRM. Now the available domains
are:

crm.zoho.com

crm.zoho.eu

Provider-Specific Notes 351

© 2024 Devart

crm.zoho.in

crm.zoho.com.cn

If the new ones appear, you can specify them by yourself in the
connection string or in the Connection Editor dialog box.

UseUnicode

Enables or disables Unicode support. Affects character data
fetched from the server. When set to True, all character data is
stored as WideStrings, and TStringField is replaced by
TWideStringFiled.

UTCDates Use the UTCDates option to return the datetime values from the
data source as UTC values.

Proxy connection options

Option name Description

ProxyPassword
If Proxy User authorization is used, specify Proxy user password
in this option.

ProxyPort
Specify the Proxy port here. You can learn Proxy Port in the same
way as described above for the host.

ProxyServer

If you are using Proxy for connection to your network, specify the
Proxy server address in this option.
To learn your Proxy server address, open Control Panel->Internet
Options->Connections->LAN settings.

ProxyUser
If Proxy User authorization is used, specify Proxy user name (ID)
in this option.

TUniSQL

Option name Description

CommandTimeout The time to wait for a statement to be executed.

TUniQuery, TUniTable, TUniStoredProc

Option name Description

CommandTimeout The time to wait for a statement to be executed.

ExtendedFieldsInfo
If True, an additional query is performed to get information about
the returned fields and tables they belong to. The default value is
False.

FetchAll

If True, all records of a query are requested from database server
when the dataset is being opened.
If False, records are retrieved when a data-aware component or
a program requests it. The default value is False.

Universal Data Access Components352

© 2024 Devart

FieldsAsString If set to True, all non-BLOB fields are handled as strings. The
default value is False.

UnknownAsString

If set to True, all Zoho CRM data types that are fetched as text
and don't have the size limit, are mapped to TStringField with the
default size 8192 bytes. If False (default value), such types are
mapped to TMemoField. The TEXT data type is always mapped
to TMemoField regardless of the value of this option.

TUniScript

The TUniDump component has no Zoho CRM-specific options.

TUniLoader

The TUniLoader component has no Zoho CRM-specific options.

TUniDump

The TUniDump component has no Zoho CRM-specific options.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

5.3 Database Specific Aspects of 64-bit Development

Oracle Connectivity Aspects
OCI mode:

Since at design-time Rad Studio XE 2 works only with x32 libraries and if a connection to the

server is needed at design-time, you need to install Oracle Client (x32) regardless of the

intended platform. (If the x32 client is needed only for development, you can use only Oracle

Instant Client). By default, UniDAC use DEFAULT of Oracle Client, that is why, if a x64 client

is the default client at design-time, you need to specify a x32 client. To prevent conflicts

between different versions of Oracle Client on the end-user side, you can leave the Home

property empty, in this case, the default client will be used.

DIRECT mode:

Since there is no need to install Oracle Client for the DIRECT mode, the development of

applications for the x64 platform does not differ from the development of application for

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Provider-Specific Notes 353

© 2024 Devart

Windows x86.

SQL Server Connectivity Aspects
If you are working in the Direct mode or developing a 32-bit application only, then the

development process will not be different for you, except some peculiarities of each particular

platform. But if you are developing a 64-bit application, you have to be aware of specifics of

working with client libraries at design-time and run-time. To connect to a SQL Server

database at design-time, you must have its 32-bit client library. You have to place it to the C:

\Windows\SysWOW64 directory. This requirement flows out from the fact that RAD Studio

XE2 is a 32-bit application and it cannot load 64-bit libraries at design-time. To work with a

SQL Server database at run-time (64-bit application), you must have the 64-bit client library

placed to the C:\Windows\System32 directory.

MySQL Connectivity Aspects
Client mode:

If you are developing a 64-bit application, you have to be aware of specifics of working with

client libraries at design-time and run-time. To connect to a MySQL database at design-time,

you must have its 32-bit client library. You have to place it to the C:\Windows\SysWOW64

directory. This requirement flows out from the fact that RAD Studio XE2 is a 32-bit application

and it cannot load 64-bit libraries at design-time. To work with a MySQL database in run-time

(64-bit application), you must have the 64-bit client library placed to the C:\Windows

\System32 directory.

DIRECT mode:

Since there is no need to install client library for the DIRECT mode, the specifics of

developing applications that use UniDAC as data access components, depends exclusively

on peculiarities of each target platform.

InterBase and FireBird Connectivity Aspects
To work with InterBase and Firebird, UniDAC uses theirs client libraries (gds32.dll and

fbclient.dll correspondingly). If you are developing a 32-bit application, then the development

process will not be different for you, except some peculiarities of each particular platform. But

if you are developing a 64-bit application, you have to be aware of specifics of working with

Universal Data Access Components354

© 2024 Devart

client libraries at design-time and run-time. To connect to an InterBase or Firebird database at

design-time, you must have its 32-bit client library. You have to place it to the C:\Windows

\SysWOW64 directory. This requirement flows out from the fact that RAD Studio XE2 is a 32-

bit application and it cannot load 64-bit libraries in design-time. To work with an InterBase or

Firebird database at run-time (64-bit application), you must have the 64-bit client library placed

to the C:\Windows\System32 directory.

PostgreSQL Connectivity Aspects
Since UniDAC does not require that the PostgreSQL client be installed to work with the

database, the development of applications for the x64 platform does not differ from the

development of application for Windows x86.

SQLite Connectivity Aspects
Presently, developers of SQLite do not provide a ready driver for x64 platforms, that is why,

for x64 applications you need to manually compile the sqlite library (for example, in MS

VisualStudio). By default, the sqlite libraries must be placed to the following directories: for

Win32 you need only the x32 library placed into C:\Windows\System32, and for windows x64,

the x64 library should be placed to C:\Windows\System32 and the x32 library to C:\Windows

\SysWow64. >If the libraries are located as described above, you don't have to make

additional settings for different target platforms when developing applications to work with the

SQLite database; the required libraries will be correctly located both at design-time and run-

time. Besides, when delivering your application to its end-users, you can supply the required

library (x32 or x64) together with the application by placing it to the folder that contains the

executable file. (If at design-time you don't need to connect to the database, then the x32

library is not needed either.)

If the libraries are located in different directories, then at design-time you will have to specify

the path to the x32 library in the ClientLibrary option, and when building the final application for

the x64 platform, you will have to specify the path to the x64 library.

MS Access Connectivity Aspects
When developing cross-platform application to work with the MS Access database, you

should remember that it is impossible to install two (32- and 64-bit) drivers on the same

system (Microsoft limitation). That is why, if you need to connect to the database at design-

Provider-Specific Notes 355

© 2024 Devart

time, the 32-bit driver must be installed on the development computer, since Rad Studio XE 2

uses x32 libraries at design-time. If no such connection is needed, you can install the x64 MS

Access driver. All the other aspects of x64 and x32 development are identical.

Other ODBC Connectivity Aspects
As regards all other providers using ODBC, for information on drivers for different platforms

and specifics contact their developers.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6 Reference

This page shortly describes units that exist in UniDAC.

Units

Unit Name Description

CRAccess
This unit contains base
classes for accessing
databases.

CRBatchMove
This unit contains
implementation of the
TCRBatchMove component.

CREncryption This unit contains base
classes for data encryption.

CRGrid This unit contains the
TCRDBGrid component.

CRVio
This unit contains classes for
establishing HTTP
connections.

CRXml Description is not available
at the moment.

DAAlerter
This unit contains the base
class for the TUniAlerter
component.

DADump
This unit contains the base
class for the TUniDump
component.

DALoader This unit contains the base
class for the TUniLoader

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components356

© 2024 Devart

component.

DAScript
This unit contains the base
class for the TUniScript
component.

DASQLMonitor

This unit contains the base
class for the
TUniSQLMonitor
component.

DBAccess
This unit contains base
classes for most of the
components.

LiteCollation
This unit contains types for
registering user-defined
collations.

LiteFunction
This unit contains types for
registering user-defined
functions.

MemData This unit contains classes for
storing data in memory.

MemDS
This unit contains
implementation of the
TMemDataSet class.

OracleUniProvider

This unit contains the
TOraUtils class that allows
you to use features of Oracle
database.

SQLiteUniProvider

This unit contains the
TLiteUtils class that allows
you to use features of
SQLite database.

SQLServerUniProvider

This unit contains the
TMSSqlUtils class that
allows you to use features of
SQL Server database.

Uni This unit contains main
components of UniDAC.

UniAlerter
This unit contains the
implementation of the
TUniAlerter component.

UniDacVcl This unit contains the visual
constituent of UniDAC.

UniDump
This unit contains the
implementation of the
TUniDump component.

Reference 357

© 2024 Devart

UniLoader
This unit contains the
implementation of the
TUniLoader component.

UniProvider

This unit contains the
TUniProvider class for
linking the server-specific
providers to application.

UniScript
This unit contains the
implementation of the
TUniScript component.

UniSQLMonitor

This unit contains the
implementation of the
TUniSQLMonitor
component.

VirtualDataSet
This unit contains
implementation of the
TVirtualDataSet component.

VirtualQuery Description is not available
at the moment.

VirtualTable
This unit contains
implementation of the
TVirtualTable component.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.1 CRAccess

This unit contains base classes for accessing databases.

Classes

Name Description

TCRCursor A base class for classes that
work with database cursors.

Types

Name Description

TBeforeFetchProc
This type is used for the
TCustomDADataSet.Before
Fetch event.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components358

© 2024 Devart

Enumerations

Name Description

TCRIsolationLevel
Specifies how to handle
transactions containing
database modifications.

TCRTransactionAction

Specifies the transaction
behaviour when it is
destroyed while being
active, or when one of its
connections is closed with
the active transaction.

TCursorState Used to set cursor state

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.1.1 Classes

Classes in the CRAccess unit.

Classes

Name Description

TCRCursor A base class for classes that
work with database cursors.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.1.1.1 TCRCursor Class

A base class for classes that work with database cursors.

For a list of all members of this type, see TCRCursor members.

Unit

CRAccess

Syntax

TCRCursor = class(TSharedObject);

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 359

© 2024 Devart

Remarks

TCRCursor is a base class for classes that work with database cursors.

Inheritance Hierarchy

TSharedObject

 TCRCursor

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.1.1.1.1 Members

TCRCursor class overview.

Properties

Name Description

RefCount (inherited from TSharedObject)
Used to return the count of
reference to a
TSharedObject object.

Methods

Name Description

AddRef (inherited from TSharedObject)

Increments the reference
count for the number of
references dependent on the
TSharedObject object.

Release (inherited from TSharedObject) Decrements the reference
count.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.1.2 Types

Types in the CRAccess unit.

Types

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components360

© 2024 Devart

Name Description

TBeforeFetchProc
This type is used for the
TCustomDADataSet.Before
Fetch event.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.1.2.1 TBeforeFetchProc Procedure Reference

This type is used for the TCustomDADataSet.BeforeFetch event.

Unit

CRAccess

Syntax

TBeforeFetchProc = procedure (var Cancel: boolean) of object;

Parameters

Cancel

True, if the current fetch operation should be aborted.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.1.3 Enumerations

Enumerations in the CRAccess unit.

Enumerations

Name Description

TCRIsolationLevel
Specifies how to handle
transactions containing
database modifications.

TCRTransactionAction

Specifies the transaction
behaviour when it is
destroyed while being
active, or when one of its
connections is closed with
the active transaction.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 361

© 2024 Devart

TCursorState Used to set cursor state

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.1.3.1 TCRIsolationLevel Enumeration

Specifies how to handle transactions containing database modifications.

Unit

CRAccess

Syntax

TCRIsolationLevel = (ilReadCommitted, ilReadUnCommitted,

ilRepeatableRead, ilIsolated, ilSnapshot, ilCustom);

Values

Value Meaning

ilCustom The parameters of the transaction are set manually in the Params
property.

ilIsolated

The most restricted level of transaction isolation. Database
server isolates data involved in current transaction by putting
additional processing on range locks. Used to put aside all
undesired effects observed in the concurrent accesses to the
same set of data, but may lead to a greater latency at times of a
congested database environment.

ilReadCommitted

Sets isolation level at which transaction cannot see changes
made by outside transactions until they are committed. Only dirty
reads (changes made by uncommitted transactions) are
eliminated by this state of the isolation level. The default value.

ilReadUnCommitte
d

The most unrestricted level of the transaction isolation. All types
of data access interferences are possible. Mainly used for
browsing database and to receive instant data with prospective
changes.

ilRepeatableRead

Prevents concurrent transactions from modifying data in the
current uncommitted transaction. This level eliminates dirty reads
as well as nonrepeatable reads (repeatable reads of the same
data in one transaction before and after outside transactions may
have started and committed).

ilSnapshot Uses row versioning. Provides transaction-level read

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components362

© 2024 Devart

consistency. A data snapshot is taken when the snapshot
transaction starts, and remains consistent for the duration of a
transaction.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.1.3.2 TCRTransactionAction Enumeration

Specifies the transaction behaviour when it is destroyed while being active, or when one of its

connections is closed with the active transaction.

Unit

CRAccess

Syntax

TCRTransactionAction = (taCommit, taRollback);

Values

Value Meaning

taCommit Transaction is committed.

taRollback Transaction is rolled back.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.1.3.3 TCursorState Enumeration

Used to set cursor state

Unit

CRAccess

Syntax

TCursorState = (csInactive, csOpen, csParsed, csPrepared, csBound,

csExecuteFetchAll, csExecuting, csExecuted, csFetching,

csFetchingAll, csFetched);

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 363

© 2024 Devart

Values

Value Meaning

csBound Parameters bound

csExecuted Statement successfully executed

csExecuteFetchAll Set before FetchAll

csExecuting Statement is set before executing

csFetched Fetch finished or canceled

csFetching Set on first

csFetchingAll Set on the FetchAll start

csInactive Default state

csOpen statement open

csParsed Statement parsed

csPrepared Statement prepared

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.2 CRBatchMove

This unit contains implementation of the TCRBatchMove component.

Classes

Name Description

TCRBatchMove Transfers records between
datasets.

Types

Name Description

TCRBatchMoveProgressEvent
This type is used for the
TCRBatchMove.OnBatchMo
veProgress event.

Enumerations

Name Description

TCRBatchMode Used to set the type of the
batch operation that will be

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components364

© 2024 Devart

executed after calling the
TCRBatchMove.Execute
method.

TCRFieldMappingMode

Used to specify the way
fields of the destination and
source datasets will be
mapped to each other if the
TCRBatchMove.Mappings
list is empty.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.2.1 Classes

Classes in the CRBatchMove unit.

Classes

Name Description

TCRBatchMove Transfers records between
datasets.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.2.1.1 TCRBatchMove Class

Transfers records between datasets.

For a list of all members of this type, see TCRBatchMove members.

Unit

CRBatchMove

Syntax

TCRBatchMove = class(TComponent);

Remarks

The TCRBatchMove component transfers records between datasets. Use it to copy dataset

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 365

© 2024 Devart

records to another dataset or to delete datasets records that match records in another

dataset. The TCRBatchMove.Mode property determines the desired operation type, the

TCRBatchMove.Source and TCRBatchMove.Destination properties indicate corresponding

datasets.

Note: A TCRBatchMove component is added to the Data Access page of the component

palette, not to the UniDAC page.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.2.1.1.1 Members

TCRBatchMove class overview.

Properties

Name Description

AbortOnKeyViol

Used to specify whether the
batch operation should be
terminated immediately after
key or integrity violation.

AbortOnProblem

Used to specify whether the
batch operation should be
terminated immediately
when it is necessary to
truncate data to make it fit
the specified Destination.

ChangedCount
Used to get the number of
records changed in the
destination dataset.

CommitCount
Used to set the number of
records to be batch moved
before commit occurs.

Destination
Used to specify the
destination dataset for the
batch operation.

FieldMappingMode

Used to specify the way
fields of destination and
source datasets will be
mapped to each other if the
TCRBatchMove.Mappings
list is empty.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components366

© 2024 Devart

KeyViolCount

Used to get the number of
records that could not be
moved to or from the
destination dataset because
of integrity or key violations.

Mappings

Used to set field matching
between source and
destination datasets for the
batch operation.

Mode

Used to set the type of the
batch operation that will be
executed after calling the
TCRBatchMove.Execute
method.

MovedCount

Used to get the number of
records that were read from
the source dataset during
the batch operation.

ProblemCount

Used to get the number of
records that could not be
added to the destination
dataset because of the field
type mismatch.

RecordCount

Used to indicate the
maximum number of records
in the source dataset that will
be applied to the destination
dataset.

Source
Used to specify the source
dataset for the batch
operation.

Methods

Name Description

Execute Performs the batch
operation.

Events

Name Description

OnBatchMoveProgress Occurs when providing
feedback to the user about

Reference 367

© 2024 Devart

the batch operation in
progress is needed.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.2.1.1.2 Properties

Properties of the TCRBatchMove class.

For a complete list of the TCRBatchMove class members, see the TCRBatchMove

Members topic.

Public

Name Description

ChangedCount
Used to get the number of
records changed in the
destination dataset.

KeyViolCount

Used to get the number of
records that could not be
moved to or from the
destination dataset because
of integrity or key violations.

MovedCount

Used to get the number of
records that were read from
the source dataset during
the batch operation.

ProblemCount

Used to get the number of
records that could not be
added to the destination
dataset because of the field
type mismatch.

Published

Name Description

AbortOnKeyViol

Used to specify whether the
batch operation should be
terminated immediately after
key or integrity violation.

AbortOnProblem Used to specify whether the
batch operation should be

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components368

© 2024 Devart

terminated immediately
when it is necessary to
truncate data to make it fit
the specified Destination.

CommitCount
Used to set the number of
records to be batch moved
before commit occurs.

Destination
Used to specify the
destination dataset for the
batch operation.

FieldMappingMode

Used to specify the way
fields of destination and
source datasets will be
mapped to each other if the
TCRBatchMove.Mappings
list is empty.

Mappings

Used to set field matching
between source and
destination datasets for the
batch operation.

Mode

Used to set the type of the
batch operation that will be
executed after calling the
TCRBatchMove.Execute
method.

RecordCount

Used to indicate the
maximum number of records
in the source dataset that will
be applied to the destination
dataset.

Source
Used to specify the source
dataset for the batch
operation.

See Also
TCRBatchMove Class

TCRBatchMove Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 369

© 2024 Devart

6.2.1.1.2.1 AbortOnKeyViol Property

Used to specify whether the batch operation should be terminated immediately after key or

integrity violation.

Class

TCRBatchMove

Syntax

property AbortOnKeyViol: boolean default True;

Remarks

Use the AbortOnKeyViol property to specify whether the batch operation is terminated

immediately after key or integrity violation.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.2.1.1.2.2 AbortOnProblem Property

Used to specify whether the batch operation should be terminated immediately when it is

necessary to truncate data to make it fit the specified Destination.

Class

TCRBatchMove

Syntax

property AbortOnProblem: boolean default True;

Remarks

Use the AbortOnProblem property to specify whether the batch operation is terminated

immediately when it is necessary to truncate data to make it fit the specified Destination.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components370

© 2024 Devart

6.2.1.1.2.3 ChangedCount Property

Used to get the number of records changed in the destination dataset.

Class

TCRBatchMove

Syntax

property ChangedCount: Integer;

Remarks

Use the ChangedCount property to get the number of records changed in the destination

dataset. It shows the number of records that were updated in the bmUpdate or

bmAppendUpdate mode or were deleted in the bmDelete mode.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.2.1.1.2.4 CommitCount Property

Used to set the number of records to be batch moved before commit occurs.

Class

TCRBatchMove

Syntax

property CommitCount: integer default 0;

Remarks

Use the CommitCount property to set the number of records to be batch moved before the

commit occurs. If it is set to 0, the operation will be chunked to the number of records to fit 32

Kb.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 371

© 2024 Devart

6.2.1.1.2.5 Destination Property

Used to specify the destination dataset for the batch operation.

Class

TCRBatchMove

Syntax

property Destination: TDataSet;

Remarks

Specifies the destination dataset for the batch operation.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.2.1.1.2.6 FieldMappingMode Property

Used to specify the way fields of destination and source datasets will be mapped to each

other if the Mappings list is empty.

Class

TCRBatchMove

Syntax

property FieldMappingMode: TCRFieldMappingMode default

mmFieldIndex;

Remarks

Specifies in what way fields of destination and source datasets will be mapped to each other

if the Mappings list is empty.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.2.1.1.2.7 KeyViolCount Property

Used to get the number of records that could not be moved to or from the destination dataset

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components372

© 2024 Devart

because of integrity or key violations.

Class

TCRBatchMove

Syntax

property KeyViolCount: Integer;

Remarks

Use the KeyViolCount property to get the number of records that could not be replaced,

added, deleted from the destination dataset because of integrity or key violations.

If AbortOnKeyViol is True, then KeyViolCount will never exceed one, because the operation

aborts when the integrity or key violation occurs.

See Also
AbortOnKeyViol

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.2.1.1.2.8 Mappings Property

Used to set field matching between source and destination datasets for the batch operation.

Class

TCRBatchMove

Syntax

property Mappings: TStrings;

Remarks

Use the Mappings property to set field matching between the source and destination datasets

for the batch operation. By default fields matching is based on their position in the datasets.

To map the column ColName in the source dataset to the column with the same name in the

destination dataset, use:

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 373

© 2024 Devart

ColName

Example

To map a column named SourceColName in the source dataset to the column named

DestColName in the destination dataset, use:

DestColName=SourceColName

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.2.1.1.2.9 Mode Property

Used to set the type of the batch operation that will be executed after calling the Execute

method.

Class

TCRBatchMove

Syntax

property Mode: TCRBatchMode default bmAppend;

Remarks

Use the Mode property to set the type of the batch operation that will be executed after calling

the Execute method.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.2.1.1.2.10 MovedCount Property

Used to get the number of records that were read from the source dataset during the batch

operation.

Class

TCRBatchMove

Syntax

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components374

© 2024 Devart

property MovedCount: Integer;

Remarks

Use the MovedCount property to get the number of records that were read from the source

dataset during the batch operation. This number includes records that caused key or integrity

violations or were trimmed.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.2.1.1.2.11 ProblemCount Property

Used to get the number of records that could not be added to the destination dataset because

of the field type mismatch.

Class

TCRBatchMove

Syntax

property ProblemCount: Integer;

Remarks

Use the ProblemCount property to get the number of records that could not be added to the

destination dataset because of the field type mismatch.

If AbortOnProblem is True, then ProblemCount will never exceed one, because the operation

aborts when the problem occurs.

See Also
AbortOnProblem

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.2.1.1.2.12 RecordCount Property

Used to indicate the maximum number of records in the source dataset that will be applied to

the destination dataset.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 375

© 2024 Devart

Class

TCRBatchMove

Syntax

property RecordCount: Integer default 0;

Remarks

Determines the maximum number of records in the source dataset, that will be applied to the

destination dataset. If it is set to 0, all records in the source dataset will be applied to the

destination dataset, starting from the first record. If RecordCount is greater than 0, up to the

RecordCount records are applied to the destination dataset, starting from the current record

in the source dataset. If RecordCount exceeds the number of records left in the source

dataset, batch operation terminates after reaching last record.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.2.1.1.2.13 Source Property

Used to specify the source dataset for the batch operation.

Class

TCRBatchMove

Syntax

property Source: TDataSet;

Remarks

Specifies the source dataset for the batch operation.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components376

© 2024 Devart

6.2.1.1.3 Methods

Methods of the TCRBatchMove class.

For a complete list of the TCRBatchMove class members, see the TCRBatchMove

Members topic.

Public

Name Description

Execute Performs the batch
operation.

See Also
TCRBatchMove Class

TCRBatchMove Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.2.1.1.3.1 Execute Method

Performs the batch operation.

Class

TCRBatchMove

Syntax

procedure Execute;

Remarks

Call the Execute method to perform the batch operation.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 377

© 2024 Devart

6.2.1.1.4 Events

Events of the TCRBatchMove class.

For a complete list of the TCRBatchMove class members, see the TCRBatchMove

Members topic.

Published

Name Description

OnBatchMoveProgress

Occurs when providing
feedback to the user about
the batch operation in
progress is needed.

See Also
TCRBatchMove Class

TCRBatchMove Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.2.1.1.4.1 OnBatchMoveProgress Event

Occurs when providing feedback to the user about the batch operation in progress is needed.

Class

TCRBatchMove

Syntax

property OnBatchMoveProgress: TCRBatchMoveProgressEvent;

Remarks

Write the OnBatchMoveProgress event handler to provide feedback to the user about the

batch operation progress.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components378

© 2024 Devart

6.2.2 Types

Types in the CRBatchMove unit.

Types

Name Description

TCRBatchMoveProgressEvent
This type is used for the
TCRBatchMove.OnBatchMo
veProgress event.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.2.2.1 TCRBatchMoveProgressEvent Procedure Reference

This type is used for the TCRBatchMove.OnBatchMoveProgress event.

Unit

CRBatchMove

Syntax

TCRBatchMoveProgressEvent = procedure (Sender: TObject; Percent:

integer) of object;

Parameters

Sender

An object that raised the event.

Percent

Percentage of the batch operation progress.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.2.3 Enumerations

Enumerations in the CRBatchMove unit.

Enumerations

Name Description

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 379

© 2024 Devart

TCRBatchMode

Used to set the type of the
batch operation that will be
executed after calling the
TCRBatchMove.Execute
method.

TCRFieldMappingMode

Used to specify the way
fields of the destination and
source datasets will be
mapped to each other if the
TCRBatchMove.Mappings
list is empty.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.2.3.1 TCRBatchMode Enumeration

Used to set the type of the batch operation that will be executed after calling the

TCRBatchMove.Execute method.

Unit

CRBatchMove

Syntax

TCRBatchMode = (bmAppend, bmUpdate, bmAppendUpdate, bmDelete);

Values

Value Meaning

bmAppend Appends the records from the source dataset to the destination
dataset. The default mode.

bmAppendUpdate
Replaces records in the destination dataset with the matching
records from the source dataset. If there is no matching record in
the destination dataset, the record will be appended to it.

bmDelete Deletes records from the destination dataset if there are
matching records in the source dataset.

bmUpdate Replaces records in the destination dataset with the matching
records from the source dataset.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components380

© 2024 Devart

6.2.3.2 TCRFieldMappingMode Enumeration

Used to specify the way fields of the destination and source datasets will be mapped to each

other if the TCRBatchMove.Mappings list is empty.

Unit

CRBatchMove

Syntax

TCRFieldMappingMode = (mmFieldIndex, mmFieldName);

Values

Value Meaning

mmFieldIndex Specifies that the fields of the destination dataset will be mapped
to the fields of the source dataset by field index.

mmFieldName Mapping is performed by field names.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.3 CREncryption

This unit contains base classes for data encryption.

Classes

Name Description

TCREncryptor

The class that performs data
encryption and decryption.
For the list of all members of
this type, see CREncryption
members.

Enumerations

Name Description

TCREncDataHeader

Specifies whether the
additional information is
stored with the encrypted
data.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 381

© 2024 Devart

TCREncryptionAlgorithm Specifies the algorithm of
data encryption.

TCRHashAlgorithm Specifies the algorithm of
generating hash data.

TCRInvalidHashAction
Specifies the action to
perform on data fetching
when hash data is invalid.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.3.1 Classes

Classes in the CREncryption unit.

Classes

Name Description

TCREncryptor

The class that performs data
encryption and decryption.
For the list of all members of
this type, see CREncryption
members.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.3.1.1 TCREncryptor Class

The class that performs data encryption and decryption. For the list of all members of this

type, see CREncryption members.

For a list of all members of this type, see TCREncryptor members.

Unit

CREncryption

Syntax

TCREncryptor = class(TComponent);

© 1997-2024
Devart. All Rights

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components382

© 2024 Devart

Reserved.

6.3.1.1.1 Members

TCREncryptor class overview.

Properties

Name Description

DataHeader

Specifies whether the
additional information is
stored with the encrypted
data.

EncryptionAlgorithm Specifies the algorithm of
data encryption.

HashAlgorithm Specifies the algorithm of
generating hash data.

InvalidHashAction
Specifies the action to
perform on data fetching
when hash data is invalid.

Password
Used to set a password that
is used to generate a key for
encryption.

Methods

Name Description

SetKey Sets a key, using which data
is encrypted.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.3.1.1.2 Properties

Properties of the TCREncryptor class.

For a complete list of the TCREncryptor class members, see the TCREncryptor Members

topic.

Published

Name Description

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 383

© 2024 Devart

DataHeader

Specifies whether the
additional information is
stored with the encrypted
data.

EncryptionAlgorithm Specifies the algorithm of
data encryption.

HashAlgorithm Specifies the algorithm of
generating hash data.

InvalidHashAction
Specifies the action to
perform on data fetching
when hash data is invalid.

Password
Used to set a password that
is used to generate a key for
encryption.

See Also
TCREncryptor Class

TCREncryptor Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.3.1.1.2.1 DataHeader Property

Specifies whether the additional information is stored with the encrypted data.

Class

TCREncryptor

Syntax

property DataHeader: TCREncDataHeader default ehTagAndHash;

Remarks

Use DataHeader to specify whether the additional information is stored with the encrypted

data. Default value is ehTagAndHash.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components384

© 2024 Devart

6.3.1.1.2.2 EncryptionAlgorithm Property

Specifies the algorithm of data encryption.

Class

TCREncryptor

Syntax

property EncryptionAlgorithm: TCREncryptionAlgorithm default

eaBlowfish;

Remarks

Use EncryptionAlgorithm to specify the algorithm of data encryption. Default value is

caBlowfish.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.3.1.1.2.3 HashAlgorithm Property

Specifies the algorithm of generating hash data.

Class

TCREncryptor

Syntax

property HashAlgorithm: TCRHashAlgorithm default haSHA1;

Remarks

Use HashAlgorithm to specify the algorithm of generating hash data. This property is used

only if hash is stored with the encrypted data (the DataHeader property is set to

ehTagAndHash). Default value is haSHA1.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 385

© 2024 Devart

6.3.1.1.2.4 InvalidHashAction Property

Specifies the action to perform on data fetching when hash data is invalid.

Class

TCREncryptor

Syntax

property InvalidHashAction: TCRInvalidHashAction default ihFail;

Remarks

Use InvalidHashAction to specify the action to perform on data fetching when hash data is

invalid. This property is used only if hash is stored with the encrypted data (the DataHeader

property is set to ehTagAndHash). Default value is ihFail. If the DataHeader property is set to

ehTagAndHash, then on data fetching from a server the hash check is performed for each

record in the following way: after data decryption its hash is calculated and compared with the

hash stored in the field. If these values don't coincide, it means that the stored data is

incorrect, and depending on the value of the InvalidHashAction property one of the following

actions is performed: ihFail - the EInvalidHash exception is raised and further data reading

from the server is interrupted. ihSkipData - the value of the field for this record is set to Null.

No exception is raised. ihIgnoreError - in spite of the fact that the data is not valid, the value is

set in the field. No exception is raised.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.3.1.1.2.5 Passw ord Property

Used to set a password that is used to generate a key for encryption.

Class

TCREncryptor

Syntax

property Password: string stored False;

Remarks

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components386

© 2024 Devart

Use Password to set a password that is used to generate a key for encryption. Note: Calling

of the SetKey method clears the Password property.

See Also
SetKey

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.3.1.1.3 Methods

Methods of the TCREncryptor class.

For a complete list of the TCREncryptor class members, see the TCREncryptor Members

topic.

Public

Name Description

SetKey Sets a key, using which data
is encrypted.

See Also
TCREncryptor Class

TCREncryptor Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.3.1.1.3.1 SetKey Method

Sets a key, using which data is encrypted.

Class

TCREncryptor

Syntax

procedure SetKey(const Key; Count: Integer); overload;procedure

SetKey(const Key: TBytes; Offset: Integer; Count: Integer);

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 387

© 2024 Devart

overload;

Parameters

Key

Offset

Sets a key with an offset, using which data is encrypted.

Count

Sets a key, using which data is encrypted.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.3.2 Enumerations

Enumerations in the CREncryption unit.

Enumerations

Name Description

TCREncDataHeader

Specifies whether the
additional information is
stored with the encrypted
data.

TCREncryptionAlgorithm Specifies the algorithm of
data encryption.

TCRHashAlgorithm Specifies the algorithm of
generating hash data.

TCRInvalidHashAction
Specifies the action to
perform on data fetching
when hash data is invalid.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.3.2.1 TCREncDataHeader Enumeration

Specifies whether the additional information is stored with the encrypted data.

Unit

CREncryption

Syntax

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components388

© 2024 Devart

TCREncDataHeader = (ehTagAndHash, ehTag, ehNone);

Values

Value Meaning

ehNone No additional information is stored.

ehTag GUID and the random initialization vector are stored with the
encrypted data.

ehTagAndHash Hash, GUID, and the random initialization vector are stored with
the encrypted data.

See Also
Data Encryption

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.3.2.2 TCREncryptionAlgorithm Enumeration

Specifies the algorithm of data encryption.

Unit

CREncryption

Syntax

TCREncryptionAlgorithm = (eaTripleDES, eaBlowfish, eaAES128,

eaAES192, eaAES256, eaCast128, eaRC4);

Values

Value Meaning

eaAES128 The AES encryption algorithm with key size of 128 bits is used.

eaAES192 The AES encryption algorithm with key size of 192 bits is used.

eaAES256 The AES encryption algorithm with key size of 256 bits is used.

eaBlowfish The Blowfish encryption algorithm is used.

eaCast128 The CAST-128 encryption algorithm with key size of 128 bits is
used.

eaRC4 The RC4 encryption algorithm is used.

eaTripleDES The Triple DES encryption algorithm is used.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 389

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.3.2.3 TCRHashAlgorithm Enumeration

Specifies the algorithm of generating hash data.

Unit

CREncryption

Syntax

TCRHashAlgorithm = (haSHA1, haMD5);

Values

Value Meaning

haMD5 The MD5 hash algorithm is used.

haSHA1 The SHA-1 hash algorithm is used.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.3.2.4 TCRInvalidHashAction Enumeration

Specifies the action to perform on data fetching when hash data is invalid.

Unit

CREncryption

Syntax

TCRInvalidHashAction = (ihFail, ihSkipData, ihIgnoreError);

Values

Value Meaning

ihFail An exception is raised.

ihIgnoreError Hash checking is not performed. No exception is raised.

ihSkipData If hash is invalid the field value is set to Null. No exception is
raised.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components390

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.4 CRVio

This unit contains classes for establishing HTTP connections.

Classes

Name Description

THttpOptions
This class is used to
establish an HTTP
connection.

TProxyOptions

This class is used to
establish an HTTP
connection through a proxy
server.

Enumerations

Name Description

TIPVersion Specifies Internet Protocol
version.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.4.1 Classes

Classes in the CRVio unit.

Classes

Name Description

THttpOptions
This class is used to
establish an HTTP
connection.

TProxyOptions

This class is used to
establish an HTTP
connection through a proxy
server.

© 1997-2024 Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 391

© 2024 Devart

Devart. All Rights
Reserved.

6.4.1.1 THttpOptions Class

This class is used to establish an HTTP connection.

For a list of all members of this type, see THttpOptions members.

Unit

CRVio

Syntax

THttpOptions = class(TPersistent);

Remarks

The THttpOptions class is used to establish an HTTP connection.

For more information about HTTP tunneling, see Network Tunneling .

See Also
Network Tunneling

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.4.1.1.1 Members

THttpOptions class overview.

Properties

Name Description

Enabled Enables an HTTP
connection.

Password Holds the password for
HTTP authorization.

ProxyOptions
Holds a TProxyOptions
object that contains settings
for a proxy connection.

TrustServerCertificate Verifies the server certificate

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components392

© 2024 Devart

during an SSL handshake.

Url Holds the URL of the PHP
script for HTTP tunneling.

Username Holds the username for
HTTP authorization.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.4.1.1.2 Properties

Properties of the THttpOptions class.

For a complete list of the THttpOptions class members, see the THttpOptions Members

topic.

Public

Name Description

Enabled Enables an HTTP
connection.

ProxyOptions
Holds a TProxyOptions
object that contains settings
for a proxy connection.

Published

Name Description

Password Holds the password for
HTTP authorization.

TrustServerCertificate Verifies the server certificate
during an SSL handshake.

Url Holds the URL of the PHP
script for HTTP tunneling.

Username Holds the username for
HTTP authorization.

See Also
THttpOptions Class

THttpOptions Class Members

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 393

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.4.1.1.2.1 Enabled Property

Enables an HTTP connection.

Class

THttpOptions

Syntax

property Enabled: boolean default False;

Remarks

The Enabled property specifies that a connection is established through HTTP.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.4.1.1.2.2 Passw ord Property

Holds the password for HTTP authorization.

Class

THttpOptions

Syntax

property Password: string;

Remarks

The Password property holds the password for the password-protected directory that

contains the HTTP tunneling script.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components394

© 2024 Devart

6.4.1.1.2.3 ProxyOptions Property

Holds a TProxyOptions object that contains settings for a proxy connection.

Class

THttpOptions

Syntax

property ProxyOptions: TProxyOptions;

Remarks

The ProxyOptions property holds a TProxyOptions object that contains settings for a proxy

connection.

If it is necessary to connect to the server that resides in a different network, sometimes the

client can only connect to it through a proxy server. In this case, besides the connection

string, you have to set up ProxyOptions.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.4.1.1.2.4 TrustServerCertif icate Property

Verifies the server certificate during an SSL handshake.

Class

THttpOptions

Syntax

property TrustServerCertificate: boolean default False;

Remarks

The TrustServerCertificate property specifies whether to verify the server certificate during an

SSL handshake. When True, the UniDAC bypasses walking the certificate chain to verify the

certificate. The default value is False.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 395

© 2024 Devart

6.4.1.1.2.5 Url Property

Holds the URL of the PHP script for HTTP tunneling.

Class

THttpOptions

Syntax

property Url: string;

Remarks

The Url property holds the URL of the PHP script for HTTP tunneling. For example, if the

script is located in the server root, the URL can be the following: http://server/tunnel.php.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.4.1.1.2.6 Username Property

Holds the username for HTTP authorization.

Class

THttpOptions

Syntax

property Username: string;

Remarks

The Username property holds the username for the password-protected directory that

contains the HTTP tunneling script.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.4.1.2 TProxyOptions Class

This class is used to establish an HTTP connection through a proxy server.

For a list of all members of this type, see TProxyOptions members.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components396

© 2024 Devart

Unit

CRVio

Syntax

TProxyOptions = class(TPersistent);

Remarks

The TProxyOptions class is used to establish an HTTP connection through a proxy server.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.4.1.2.1 Members

TProxyOptions class overview.

Properties

Name Description

Hostname Holds the hostname or IP
address of the proxy server.

Password Holds the proxy password.

Port Holds the port number of the
proxy server.

Username Holds the proxy username.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.4.1.2.2 Properties

Properties of the TProxyOptions class.

For a complete list of the TProxyOptions class members, see the TProxyOptions Members

topic.

Published

Name Description

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 397

© 2024 Devart

Hostname Holds the hostname or IP
address of the proxy server.

Password Holds the proxy password.

Port Holds the port number of the
proxy server.

Username Holds the proxy username.

See Also
TProxyOptions Class

TProxyOptions Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.4.1.2.2.1 Hostname Property

Holds the hostname or IP address of the proxy server.

Class

TProxyOptions

Syntax

property Hostname: string;

Remarks

The Hostname property holds the hostname or IP address of the proxy server.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.4.1.2.2.2 Passw ord Property

Holds the proxy password.

Class

TProxyOptions

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components398

© 2024 Devart

Syntax

property Password: string;

Remarks

The Password property holds the proxy password.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.4.1.2.2.3 Port Property

Holds the port number of the proxy server.

Class

TProxyOptions

Syntax

property Port: integer default 0;

Remarks

Use the Port property to specify the port number of the proxy server.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.4.1.2.2.4 Username Property

Holds the proxy username.

Class

TProxyOptions

Syntax

property Username: string;

Remarks

The Username property holds the proxy username.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 399

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.4.2 Enumerations

Enumerations in the CRVio unit.

Enumerations

Name Description

TIPVersion Specifies Internet Protocol
version.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.4.2.1 TIPVersion Enumeration

Specifies Internet Protocol version.

Unit

CRVio

Syntax

TIPVersion = (ivIPv4, ivIPv6, ivIPBoth);

Values

Value Meaning

ivIPBoth Specifies that either IPv6 or IPv4 Internet Protocol version is used

ivIPv4 Specifies that the IPv4 Internet Protocol version is used

ivIPv6 Specifies that the IPv6 Internet Protocol version is used

Remarks

Note: When the TIPVersion property is set to ivIPBoth , a connection attempt is made via
IPv6 if it is enabled in the operating system settings. If the connection attempt fails, a new
connection attempt is made via IPv4.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components400

© 2024 Devart

6.5 CRXml

6.5.1 Structs

Structs in the CRXml unit.

Structs

Name Description

TAttribute TAttribute is not used in
UniDAC.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.5.1.1 TAttribute Record

TAttribute is not used in UniDAC.

Unit

CRXml

Syntax

TAttribute = record;

Fields

AttributeNo

Returns an attribute's ordinal position in object.

DataSize

Returns the size of an attribute value in internal representation.

DataType

Returns the type of data that was assigned to the Attribute.

Length

Returns the length of the string for dtString attribute and precision for dtInteger and dtFloat
attribute.

ObjectType

Returns a TObjectType object for an object attribute.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 401

© 2024 Devart

Offset

Returns an offset of the attribute value in internal representation.

Owner

Indicates TObjectType that uses the attribute to represent one of its attributes.

Scale

Returns the scale of dtFloat and dtInteger attributes.

Size

Returns the size of an attribute value in external representation.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.6 DAAlerter

This unit contains the base class for the TUniAlerter component.

Classes

Name Description

TDAAlerter
A base class that defines
functionality for database
event notification.

Types

Name Description

TAlerterErrorEvent This type is used for the
TDAAlerter.OnError event.

TAlerterEventEvent
This type is used for the
E:Devart.UniDac.TUniAlerte
r.OnEvent event.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components402

© 2024 Devart

6.6.1 Classes

Classes in the DAAlerter unit.

Classes

Name Description

TDAAlerter
A base class that defines
functionality for database
event notification.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.6.1.1 TDAAlerter Class

A base class that defines functionality for database event notification.

For a list of all members of this type, see TDAAlerter members.

Unit

DAAlerter

Syntax

TDAAlerter = class(TComponent);

Remarks

TDAAlerter is a base class that defines functionality for descendant classes support database

event notification. Applications never use TDAAlerter objects directly. Instead they use

descendants of TDAAlerter.

The TDAAlerter component allows you to register interest in and handle events posted by a

database server. Use TDAAlerter to handle events for responding to actions and database

changes made by other applications. To get events, an application must register required

events. To do this, set the Events property to the required events and call the Start method.

When one of the registered events occurs OnEvent handler is called.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 403

© 2024 Devart

6.6.1.1.1 Members

TDAAlerter class overview.

Properties

Name Description

Active
Used to determine if
TDAAlerter waits for
messages.

AutoRegister
Used to automatically
register events whenever
connection opens.

Connection Used to specify the
connection for TDAAlerter.

Methods

Name Description

SendEvent Sends an event with Name
and content Message.

Start Starts waiting process.

Stop Stops waiting process.

Events

Name Description

OnError Occurs if an exception
occurs in waiting process

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.6.1.1.2 Properties

Properties of the TDAAlerter class.

For a complete list of the TDAAlerter class members, see the TDAAlerter Members topic.

Public

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components404

© 2024 Devart

Name Description

Active
Used to determine if
TDAAlerter waits for
messages.

AutoRegister
Used to automatically
register events whenever
connection opens.

Connection Used to specify the
connection for TDAAlerter.

See Also
TDAAlerter Class

TDAAlerter Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.6.1.1.2.1 Active Property

Used to determine if TDAAlerter waits for messages.

Class

TDAAlerter

Syntax

property Active: boolean default False;

Remarks

Check the Active property to know whether TDAlerter waits for messages or not. Set it to

True to register events.

See Also
Start

Stop

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 405

© 2024 Devart

6.6.1.1.2.2 AutoRegister Property

Used to automatically register events whenever connection opens.

Class

TDAAlerter

Syntax

property AutoRegister: boolean default False;

Remarks

Set the AutoRegister property to True to automatically register events whenever connection

opens.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.6.1.1.2.3 Connection Property

Used to specify the connection for TDAAlerter.

Class

TDAAlerter

Syntax

property Connection: TCustomDAConnection;

Remarks

Use the Connection property to specify the connection for TDAAlerter.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.6.1.1.3 Methods

Methods of the TDAAlerter class.

For a complete list of the TDAAlerter class members, see the TDAAlerter Members topic.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components406

© 2024 Devart

Public

Name Description

SendEvent Sends an event with Name
and content Message.

Start Starts waiting process.

Stop Stops waiting process.

See Also
TDAAlerter Class

TDAAlerter Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.6.1.1.3.1 SendEvent Method

Sends an event with Name and content Message.

Class

TDAAlerter

Syntax

procedure SendEvent(const EventName: string; const Message:

string);

Parameters

EventName

Holds the event name.

Message

Holds the content Message of the event.

Remarks

Use SendEvent procedure to send an event with Name and content Message.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 407

© 2024 Devart

6.6.1.1.3.2 Start Method

Starts waiting process.

Class

TDAAlerter

Syntax

procedure Start;

Remarks

Call the Start method to run waiting process. After starting TDAAlerter waits for messages

with names defined by the Events property.

See Also
Stop

Active

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.6.1.1.3.3 Stop Method

Stops waiting process.

Class

TDAAlerter

Syntax

procedure Stop;

Remarks

Call Stop method to end waiting process.

See Also
Start

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components408

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.6.1.1.4 Events

Events of the TDAAlerter class.

For a complete list of the TDAAlerter class members, see the TDAAlerter Members topic.

Public

Name Description

OnError Occurs if an exception
occurs in waiting process

See Also
TDAAlerter Class

TDAAlerter Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.6.1.1.4.1 OnError Event

Occurs if an exception occurs in waiting process

Class

TDAAlerter

Syntax

property OnError: TAlerterErrorEvent;

Remarks

The OnError event occurs if an exception occurs in waiting process. Alerter stops in this

case. The exception can be accessed using the E parameter.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 409

© 2024 Devart

6.6.2 Types

Types in the DAAlerter unit.

Types

Name Description

TAlerterErrorEvent This type is used for the
TDAAlerter.OnError event.

TAlerterEventEvent
This type is used for the
E:Devart.UniDac.TUniAlerte
r.OnEvent event.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.6.2.1 TAlerterErrorEvent Procedure Reference

This type is used for the TDAAlerter.OnError event.

Unit

DAAlerter

Syntax

TAlerterErrorEvent = procedure (Sender: TDAAlerter; E: Exception)

of object;

Parameters

Sender

An object that raised the event.

E

Exception object.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.6.2.2 TAlerterEventEvent Procedure Reference

This type is used for the E:Devart.UniDac.TUniAlerter.OnEvent event.

Unit

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components410

© 2024 Devart

DAAlerter

Syntax

TAlerterEventEvent = procedure (Sender: TDAAlerter; const

EventName: string; const Message: string) of object;

Parameters

Sender

An object that raised the event.

EventName

A name of event (alert or pipe).

Message

The content of message waiting process receives.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.7 DADump

This unit contains the base class for the TUniDump component.

Classes

Name Description

TDADump

A base class that defines
functionality for descendant
classes that dump database
objects to a script.

TDADumpOptions
This class allows setting up
the behaviour of the
TDADump class.

Types

Name Description

TDABackupProgressEvent
This type is used for the
TDADump.OnBackupProgr
ess event.

TDARestoreProgressEvent
This type is used for the
TDADump.OnRestoreProgr
ess event.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 411

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.7.1 Classes

Classes in the DADump unit.

Classes

Name Description

TDADump

A base class that defines
functionality for descendant
classes that dump database
objects to a script.

TDADumpOptions
This class allows setting up
the behaviour of the
TDADump class.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.7.1.1 TDADump Class

A base class that defines functionality for descendant classes that dump database objects to

a script.

For a list of all members of this type, see TDADump members.

Unit

DADump

Syntax

TDADump = class(TComponent);

Remarks

TDADump is a base class that defines functionality for descendant classes that dump

database objects to a script. Applications never use TDADump objects directly. Instead they

use descendants of TDADump.

Use TDADump descedants to dump database objects, such as tables, stored procedures,

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components412

© 2024 Devart

and functions for backup or for transferring the data to another SQL server. The dump

contains SQL statements to create the table or other database objects and/or populate the

table.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.7.1.1.1 Members

TDADump class overview.

Properties

Name Description

Connection

Used to specify a
connection object that will be
used to connect to a data
store.

Debug

Used to display the
statement that is being
executed and the values and
types of its parameters.

Options
Used to specify the
behaviour of a TDADump
component.

SQL Used to set or get the dump
script.

TableNames Used to set the names of the
tables to dump.

Methods

Name Description

Backup
Dumps database objects to
the TDADump.SQL
property.

BackupQuery Dumps the results of a
particular query.

BackupToFile Dumps database objects to
the specified file.

BackupToStream Dumps database objects to
the stream.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 413

© 2024 Devart

Restore Executes a script contained
in the SQL property.

RestoreFromFile Executes a script from a file.

RestoreFromStream Executes a script received
from the stream.

Events

Name Description

OnBackupProgress

Occurs to indicate the
TDADump.Backup,
M:Devart.Dac.TDADump.Ba
ckupToFile(System.String)
or
M:Devart.Dac.TDADump.Ba
ckupToStream(Borland.Vcl.
TStream) method execution
progress.

OnError
Occurs when server raises
some error on
TDADump.Restore.

OnRestoreProgress

Occurs to indicate the
TDADump.Restore,
TDADump.RestoreFromFile
, or
TDADump.RestoreFromStr
eam method execution
progress.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.7.1.1.2 Properties

Properties of the TDADump class.

For a complete list of the TDADump class members, see the TDADump Members topic.

Public

Name Description

Connection Used to specify a
connection object that will be

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components414

© 2024 Devart

used to connect to a data
store.

Options
Used to specify the
behaviour of a TDADump
component.

Published

Name Description

Debug

Used to display the
statement that is being
executed and the values and
types of its parameters.

SQL Used to set or get the dump
script.

TableNames Used to set the names of the
tables to dump.

See Also
TDADump Class

TDADump Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.7.1.1.2.1 Connection Property

Used to specify a connection object that will be used to connect to a data store.

Class

TDADump

Syntax

property Connection: TCustomDAConnection;

Remarks

Use the Connection property to specify a connection object that will be used to connect to a

data store.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 415

© 2024 Devart

Set at design-time by selecting from the list of provided TCustomDAConnection or its

descendant class objects.

At runtime, link an instance of a TCustomDAConnection descendant to the Connection

property.

See Also
TCustomDAConnection

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.7.1.1.2.2 Debug Property

Used to display the statement that is being executed and the values and types of its

parameters.

Class

TDADump

Syntax

property Debug: boolean default False;

Remarks

Set the Debug property to True to display the statement that is being executed and the values

and types of its parameters.

You should add the UniDacVcl unit to the uses clause of any unit in your project to make the

Debug property work.

Note: If TUniSQLMonitor is used in the project and the TUniSQLMonitor.Active property is set

to False, the debug window is not displayed.

See Also
TCustomDADataSet.Debug

TCustomDASQL.Debug

© 1997-2024
Devart. All Rights

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components416

© 2024 Devart

Reserved.

6.7.1.1.2.3 Options Property

Used to specify the behaviour of a TDADump component.

Class

TDADump

Syntax

property Options: TDADumpOptions;

Remarks

Use the Options property to specify the behaviour of a TDADump component.

Descriptions of all options are in the table below.

Option Name Description

AddDrop
Used to add drop statements to a script
before creating statements.

CompleteInsert
Used to explicitly specify the table fields
names when generating the INSERT SQL
query. The default value is False.

GenerateHeader Used to add a comment header to a script.

QuoteNames
Used for TDADump to quote all database
object names in generated SQL
statements.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.7.1.1.2.4 SQL Property

Used to set or get the dump script.

Class

TDADump

Syntax

property SQL: TStrings;

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 417

© 2024 Devart

Remarks

Use the SQL property to get or set the dump script. The SQL property stores script that is

executed by the Restore method. This property will store the result of Backup and

BackupQuery. At design time the SQL property can be edited by invoking the String List editor

in Object Inspector.

See Also
Restore

Backup

BackupQuery

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.7.1.1.2.5 TableNames Property

Used to set the names of the tables to dump.

Class

TDADump

Syntax

property TableNames: string;

Remarks

Use the TableNames property to set the names of the tables to dump. Table names must be

separated with semicolons. If the property is empty, the Backup method will dump all

available tables.

See Also
Backup

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components418

© 2024 Devart

6.7.1.1.3 Methods

Methods of the TDADump class.

For a complete list of the TDADump class members, see the TDADump Members topic.

Public

Name Description

Backup
Dumps database objects to
the TDADump.SQL
property.

BackupQuery Dumps the results of a
particular query.

BackupToFile Dumps database objects to
the specified file.

BackupToStream Dumps database objects to
the stream.

Restore Executes a script contained
in the SQL property.

RestoreFromFile Executes a script from a file.

RestoreFromStream Executes a script received
from the stream.

See Also
TDADump Class

TDADump Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.7.1.1.3.1 Backup Method

Dumps database objects to the SQL property.

Class

TDADump

Syntax

procedure Backup;

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 419

© 2024 Devart

Remarks

Call the Backup method to dump database objects. The result script will be stored in the SQL

property.

See Also
SQL

Restore

BackupToFile

BackupToStream

BackupQuery

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.7.1.1.3.2 BackupQuery Method

Dumps the results of a particular query.

Class

TDADump

Syntax

procedure BackupQuery(const Query: string);

Parameters

Query

Holds a query used for data selection.

Remarks

Call the BackupQuery method to dump the results of a particular query. Query must be a

valid select statement. If this query selects data from several tables, only data of the first table

in the from list will be dumped.

See Also
Restore

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components420

© 2024 Devart

Backup

BackupToFile

BackupToStream

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.7.1.1.3.3 BackupToFile Method

Dumps database objects to the specified file.

Class

TDADump

Syntax

procedure BackupToFile(const FileName: string; const Query:

string = '');

Parameters

FileName

Holds the file name to dump database objects to.

Query

Your query to receive the data for dumping.

Remarks

Call the BackupToFile method to dump database objects to the specified file.

See Also
RestoreFromStream

Backup

BackupToStream

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 421

© 2024 Devart

6.7.1.1.3.4 BackupToStream Method

Dumps database objects to the stream.

Class

TDADump

Syntax

procedure BackupToStream(Stream: TStream; const Query: string =

'');

Parameters

Stream

Holds the stream to dump database objects to.

Query

Your query to receive the data for dumping.

Remarks

Call the BackupToStream method to dump database objects to the stream.

See Also
RestoreFromStream

Backup

BackupToFile

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.7.1.1.3.5 Restore Method

Executes a script contained in the SQL property.

Class

TDADump

Syntax

procedure Restore;

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components422

© 2024 Devart

Remarks

Call the Restore method to execute a script contained in the SQL property.

See Also
RestoreFromFile

RestoreFromStream

Backup

SQL

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.7.1.1.3.6 RestoreFromFile Method

Executes a script from a file.

Class

TDADump

Syntax

procedure RestoreFromFile(const FileName: string);

overload;procedure RestoreFromFile(const FileName: string;

Encoding: TEncoding); overload;

Parameters

FileName

Holds the file name to execute a script from.

Remarks

Call the RestoreFromFile method to execute a script from the specified file.

See Also
Restore

RestoreFromStream

BackupToFile

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 423

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.7.1.1.3.7 RestoreFromStream Method

Executes a script received from the stream.

Class

TDADump

Syntax

procedure RestoreFromStream(Stream: TStream);

Parameters

Stream

Holds a stream to receive a script to be executed.

Remarks

Call the RestoreFromStream method to execute a script received from the stream.

See Also
Restore

RestoreFromFile

BackupToStream

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.7.1.1.4 Events

Events of the TDADump class.

For a complete list of the TDADump class members, see the TDADump Members topic.

Published

Name Description

OnBackupProgress Occurs to indicate the
TDADump.Backup,

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components424

© 2024 Devart

M:Devart.Dac.TDADump.Ba
ckupToFile(System.String)
or
M:Devart.Dac.TDADump.Ba
ckupToStream(Borland.Vcl.
TStream) method execution
progress.

OnError
Occurs when server raises
some error on
TDADump.Restore.

OnRestoreProgress

Occurs to indicate the
TDADump.Restore,
TDADump.RestoreFromFile
, or
TDADump.RestoreFromStr
eam method execution
progress.

See Also
TDADump Class

TDADump Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.7.1.1.4.1 OnBackupProgress Event

Occurs to indicate the Backup, M:Devart.Dac.TDADump.BackupToFile(System.String) or

M:Devart.Dac.TDADump.BackupToStream(Borland.Vcl.TStream) method execution

progress.

Class

TDADump

Syntax

property OnBackupProgress: TDABackupProgressEvent;

Remarks

The OnBackupProgress event occurs several times during the dumping process of the

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 425

© 2024 Devart

Backup, M:Devart.Dac.TDADump.BackupToFile(System.String), or

M:Devart.Dac.TDADump.BackupToStream(Borland.Vcl.TStream) method execution and

indicates its progress. ObjectName parameter indicates the name of the currently dumping

database object. ObjectNum shows the number of the current database object in the backup

queue starting from zero. ObjectCount shows the quantity of database objects to dump.

Percent parameter shows the current percentage of the current table data dumped, not the

current percentage of the entire dump process.

See Also
Backup

BackupToFile

BackupToStream

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.7.1.1.4.2 OnError Event

Occurs when server raises some error on Restore.

Class

TDADump

Syntax

property OnError: TOnErrorEvent;

Remarks

The OnError event occurs when server raises some error on Restore.

Action indicates the action to take when the OnError handler exits. On entry into the handler,

Action is always set to eaException.

Note: You should add the DAScript module to the 'uses' list to use the OnError event handler.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components426

© 2024 Devart

6.7.1.1.4.3 OnRestoreProgress Event

Occurs to indicate the Restore, RestoreFromFile, or RestoreFromStream method execution

progress.

Class

TDADump

Syntax

property OnRestoreProgress: TDARestoreProgressEvent;

Remarks

The OnRestoreProgress event occurs several times during the dumping process of the

Restore, RestoreFromFile, or RestoreFromStream method execution and indicates its

progress. The Percent parameter of the OnRestoreProgress event handler indicates the

percentage of the whole restore script execution.

See Also
Restore

RestoreFromFile

RestoreFromStream

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.7.1.2 TDADumpOptions Class

This class allows setting up the behaviour of the TDADump class.

For a list of all members of this type, see TDADumpOptions members.

Unit

DADump

Syntax

TDADumpOptions = class(TPersistent);

© 1997-2024 Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 427

© 2024 Devart

Devart. All Rights
Reserved.

6.7.1.2.1 Members

TDADumpOptions class overview.

Properties

Name Description

AddDrop
Used to add drop
statements to a script before
creating statements.

CompleteInsert

Used to explicitly specify the
table fields names when
generating the INSERT SQL
query. The default value is
False.

GenerateHeader Used to add a comment
header to a script.

QuoteNames
Used for TDADump to quote
all database object names in
generated SQL statements.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.7.1.2.2 Properties

Properties of the TDADumpOptions class.

For a complete list of the TDADumpOptions class members, see the TDADumpOptions

Members topic.

Published

Name Description

AddDrop
Used to add drop
statements to a script before
creating statements.

CompleteInsert

Used to explicitly specify the
table fields names when
generating the INSERT SQL
query. The default value is

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components428

© 2024 Devart

False.

GenerateHeader Used to add a comment
header to a script.

QuoteNames
Used for TDADump to quote
all database object names in
generated SQL statements.

See Also
TDADumpOptions Class

TDADumpOptions Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.7.1.2.2.1 AddDrop Property

Used to add drop statements to a script before creating statements.

Class

TDADumpOptions

Syntax

property AddDrop: boolean default True;

Remarks

Use the AddDrop property to add drop statements to a script before creating statements.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.7.1.2.2.2 CompleteInsert Property

Used to explicitly specify the table fields names when generating the INSERT SQL query. The

default value is False.

Class

TDADumpOptions

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 429

© 2024 Devart

Syntax

property CompleteInsert: boolean default False;

Remarks

If the CompleteInsert property is set to True, SQL query will include the field names, for

example:

INSERT INTO dept(deptno, dname, loc) VALUES ('10', 'ACCOUNTING', 'NEW YORK');

If False, it won't include the field names, for example:

INSERT INTO dept VALUES ('10', 'ACCOUNTING', 'NEW YORK');

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.7.1.2.2.3 GenerateHeader Property

Used to add a comment header to a script.

Class

TDADumpOptions

Syntax

property GenerateHeader: boolean default True;

Remarks

Use the GenerateHeader property to add a comment header to a script. It contains script

generation date, DAC version, and some other information.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.7.1.2.2.4 QuoteNames Property

Used for TDADump to quote all database object names in generated SQL statements.

Class

TDADumpOptions

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components430

© 2024 Devart

Syntax

property QuoteNames: boolean default False;

Remarks

If the QuoteNames property is True, TDADump quotes all database object names in

generated SQL statements.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.7.2 Types

Types in the DADump unit.

Types

Name Description

TDABackupProgressEvent
This type is used for the
TDADump.OnBackupProgr
ess event.

TDARestoreProgressEvent
This type is used for the
TDADump.OnRestoreProgr
ess event.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.7.2.1 TDABackupProgressEvent Procedure Reference

This type is used for the TDADump.OnBackupProgress event.

Unit

DADump

Syntax

TDABackupProgressEvent = procedure (Sender: TObject; ObjectName:

string; ObjectNum: integer; ObjectCount: integer; Percent:

integer) of object;

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 431

© 2024 Devart

Parameters

Sender

An object that raised the event.

ObjectName

The name of the currently dumping database object.

ObjectNum

The number of the current database object in the backup queue starting from zero.

ObjectCount

The quantity of database objects to dump.

Percent

The current percentage of the current table data dumped.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.7.2.2 TDARestoreProgressEvent Procedure Reference

This type is used for the TDADump.OnRestoreProgress event.

Unit

DADump

Syntax

TDARestoreProgressEvent = procedure (Sender: TObject; Percent:

integer) of object;

Parameters

Sender

An object that raised the event.

Percent

The percentage of the whole restore script execution.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.8 DALoader

This unit contains the base class for the TUniLoader component.

Classes

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components432

© 2024 Devart

Name Description

TDAColumn Represents the attributes for
column loading.

TDAColumns Holds a collection of
TDAColumn objects.

TDALoader This class allows loading
external data into database.

TDALoaderOptions Allows loading external data
into database.

Types

Name Description

TDAPutDataEvent
This type is used for the
TDALoader.OnPutData
event.

TGetColumnDataEvent
This type is used for the
TDALoader.OnGetColumnD
ata event.

TLoaderProgressEvent
This type is used for the
TDALoader.OnProgress
event.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.8.1 Classes

Classes in the DALoader unit.

Classes

Name Description

TDAColumn Represents the attributes for
column loading.

TDAColumns Holds a collection of
TDAColumn objects.

TDALoader This class allows loading
external data into database.

TDALoaderOptions Allows loading external data
into database.

© 1997-2024 Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 433

© 2024 Devart

Devart. All Rights
Reserved.

6.8.1.1 TDAColumn Class

Represents the attributes for column loading.

For a list of all members of this type, see TDAColumn members.

Unit

DALoader

Syntax

TDAColumn = class(TCollectionItem);

Remarks

Each TDALoader uses TDAColumns to maintain a collection of TDAColumn objects.

TDAColumn object represents the attributes for column loading. Every TDAColumn object

corresponds to one of the table fields with the same name as its TDAColumn.Name property.

To create columns at design-time use the column editor of the TDALoader component.

See Also
TDALoader

TDAColumns

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.8.1.1.1 Members

TDAColumn class overview.

Properties

Name Description

FieldType Used to specify the types of
values that will be loaded.

Name Used to specify the field
name of loading table.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components434

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.8.1.1.2 Properties

Properties of the TDAColumn class.

For a complete list of the TDAColumn class members, see the TDAColumn Members topic.

Published

Name Description

FieldType Used to specify the types of
values that will be loaded.

Name Used to specify the field
name of loading table.

See Also
TDAColumn Class

TDAColumn Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.8.1.1.2.1 FieldType Property

Used to specify the types of values that will be loaded.

Class

TDAColumn

Syntax

property FieldType: TFieldType default ftString;

Remarks

Use the FieldType property to specify the types of values that will be loaded. Field types for

columns may not match data types for the corresponding fields in the database table.

TDALoader will cast data values to the types of their fields.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 435

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.8.1.1.2.2 Name Property

Used to specify the field name of loading table.

Class

TDAColumn

Syntax

property Name: string;

Remarks

Each TDAColumn corresponds to one field of the loading table. Use the Name property to

specify the name of this field.

See Also
FieldType

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.8.1.2 TDAColumns Class

Holds a collection of TDAColumn objects.

For a list of all members of this type, see TDAColumns members.

Unit

DALoader

Syntax

TDAColumns = class(TOwnedCollection);

Remarks

Each TDAColumns holds a collection of TDAColumn objects. TDAColumns maintains an

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components436

© 2024 Devart

index of the columns in its Items array. The Count property contains the number of columns

in the collection. At design-time, use the Columns editor to add, remove, or modify columns.

See Also
TDALoader

TDAColumn

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.8.1.2.1 Members

TDAColumns class overview.

Properties

Name Description

Items Used to access individual
columns.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.8.1.2.2 Properties

Properties of the TDAColumns class.

For a complete list of the TDAColumns class members, see the TDAColumns Members

topic.

Public

Name Description

Items Used to access individual
columns.

See Also
TDAColumns Class

TDAColumns Class Members

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 437

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.8.1.2.2.1 Items Property(Indexer)

Used to access individual columns.

Class

TDAColumns

Syntax

property Items[Index: integer]: TDAColumn; default;

Parameters

Index

Holds the Index of TDAColumn to refer to.

Remarks

Use the Items property to access individual columns. The value of the Index parameter

corresponds to the Index property of TDAColumn.

See Also
TDAColumn

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.8.1.3 TDALoader Class

This class allows loading external data into database.

For a list of all members of this type, see TDALoader members.

Unit

DALoader

Syntax

TDALoader = class(TComponent);

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components438

© 2024 Devart

Remarks

TDALoader allows loading external data into database. To specify the name of loading table

set the TDALoader.TableName property. Use the TDALoader.Columns property to access

individual columns. Write the TDALoader.OnGetColumnData or TDALoader.OnPutData event

handlers to read external data and pass it to the database. Call the TDALoader.Load method

to start loading data.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.8.1.3.1 Members

TDALoader class overview.

Properties

Name Description

Columns
Used to add a TDAColumn
object for each field that will
be loaded.

Connection

property. Used to specify
TCustomDAConnection in
which TDALoader will be
executed.

TableName
Used to specify the name of
the table to which data will
be loaded.

Methods

Name Description

CreateColumns

Creates TDAColumn
objects for all fields of the
table with the same name
as TDALoader.TableName.

Load Starts loading data.

LoadFromDataSet Loads data from the
specified dataset.

PutColumnData Overloaded. Puts the value
of individual columns.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 439

© 2024 Devart

Events

Name Description

OnGetColumnData Occurs when it is needed to
put column values.

OnProgress

Occurs if handling data
loading progress of the
TDALoader.LoadFromData
Set method is needed.

OnPutData Occurs when putting loading
data by rows is needed.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.8.1.3.2 Properties

Properties of the TDALoader class.

For a complete list of the TDALoader class members, see the TDALoader Members topic.

Public

Name Description

Columns
Used to add a TDAColumn
object for each field that will
be loaded.

Connection

property. Used to specify
TCustomDAConnection in
which TDALoader will be
executed.

TableName
Used to specify the name of
the table to which data will
be loaded.

See Also
TDALoader Class

TDALoader Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components440

© 2024 Devart

6.8.1.3.2.1 Columns Property

Used to add a TDAColumn object for each field that will be loaded.

Class

TDALoader

Syntax

property Columns: TDAColumns stored IsColumnsStored;

Remarks

Use the Columns property to add a TDAColumn object for each field that will be loaded.

See Also
TDAColumns

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.8.1.3.2.2 Connection Property

property. Used to specify TCustomDAConnection in which TDALoader will be executed.

Class

TDALoader

Syntax

property Connection: TCustomDAConnection;

Remarks

Use the Connection property to specify TCustomDAConnection in which TDALoader will be

executed. If Connection is not connected, the Load method calls

TCustomDAConnection.Connect.

See Also
TCustomDAConnection

© 1997-2024 Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 441

© 2024 Devart

Devart. All Rights
Reserved.

6.8.1.3.2.3 TableName Property

Used to specify the name of the table to which data will be loaded.

Class

TDALoader

Syntax

property TableName: string;

Remarks

Set the TableName property to specify the name of the table to which data will be loaded. Add

TDAColumn objects to Columns for the fields that are needed to be loaded.

See Also
TDAColumn

TCustomDAConnection.GetTableNames

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.8.1.3.3 Methods

Methods of the TDALoader class.

For a complete list of the TDALoader class members, see the TDALoader Members topic.

Public

Name Description

CreateColumns

Creates TDAColumn
objects for all fields of the
table with the same name
as TDALoader.TableName.

Load Starts loading data.

LoadFromDataSet Loads data from the

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components442

© 2024 Devart

specified dataset.

PutColumnData Overloaded. Puts the value
of individual columns.

See Also
TDALoader Class

TDALoader Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.8.1.3.3.1 CreateColumns Method

Creates TDAColumn objects for all fields of the table with the same name as TableName.

Class

TDALoader

Syntax

procedure CreateColumns;

Remarks

Call the CreateColumns method to create TDAColumn objects for all fields of the table with

the same name as TableName. If columns were created before, they will be recreated. You

can call CreateColumns from the component popup menu at design-time. After you can

customize column loading by setting properties of TDAColumn objects.

See Also
TDAColumn

TableName

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 443

© 2024 Devart

6.8.1.3.3.2 Load Method

Starts loading data.

Class

TDALoader

Syntax

procedure Load; virtual;

Remarks

Call the Load method to start loading data. At first it is necessary to create columns and write

one of the OnPutData or OnGetColumnData event handlers.

See Also
OnGetColumnData

OnPutData

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.8.1.3.3.3 LoadFromDataSet Method

Loads data from the specified dataset.

Class

TDALoader

Syntax

procedure LoadFromDataSet(DataSet: TDataSet);

Parameters

DataSet

Holds the dataset to load data from.

Remarks

Call the LoadFromDataSet method to load data from the specified dataset. There is no need

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components444

© 2024 Devart

to create columns and write event handlers for OnPutData and OnGetColumnData before

calling this method.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.8.1.3.3.4 PutColumnData Method

Puts the value of individual columns.

Class

TDALoader

Overload List

Name Description

PutColumnData(Col: integer; Row: integer;
const Value: variant)

Puts the value of individual columns by the
column index.

PutColumnData(const ColName: string;
Row: integer; const Value: variant)

Puts the value of individual columns by the
column name.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

Puts the value of individual columns by the column index.

Class

TDALoader

Syntax

procedure PutColumnData(Col: integer; Row: integer; const Value:

variant); overload; virtual;

Parameters

Col

Holds the index of a loading column. The first column has index 0.

Row

Holds the number of loading row. Row starts from 1.

Value

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 445

© 2024 Devart

Holds the column value.

Remarks

Call the PutColumnData method to put the value of individual columns. The Col parameter

indicates the index of loading column. The first column has index 0. The Row parameter

indicates the number of the loading row. Row starts from 1.

This overloaded method works faster because it searches the right index by its index, not by

the index name.

The value of a column should be assigned to the Value parameter.

See Also
TDALoader.OnPutData

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

Puts the value of individual columns by the column name.

Class

TDALoader

Syntax

procedure PutColumnData(const ColName: string; Row: integer;

const Value: variant); overload;

Parameters

ColName

Hods the name of a loading column.

Row

Holds the number of loading row. Row starts from 1.

Value

Holds the column value.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components446

© 2024 Devart

6.8.1.3.4 Events

Events of the TDALoader class.

For a complete list of the TDALoader class members, see the TDALoader Members topic.

Public

Name Description

OnGetColumnData Occurs when it is needed to
put column values.

OnProgress

Occurs if handling data
loading progress of the
TDALoader.LoadFromData
Set method is needed.

OnPutData Occurs when putting loading
data by rows is needed.

See Also
TDALoader Class

TDALoader Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.8.1.3.4.1 OnGetColumnData Event

Occurs when it is needed to put column values.

Class

TDALoader

Syntax

property OnGetColumnData: TGetColumnDataEvent;

Remarks

Write the OnGetColumnData event handler to put column values. TDALoader calls the

OnGetColumnData event handler for each column in the loop. Column points to a

TDAColumn object that corresponds to the current loading column. Use its Name or Index

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 447

© 2024 Devart

property to identify what column is loading. The Row parameter indicates the current loading

record. TDALoader increments the Row parameter when all the columns of the current

record are loaded. The first row is 1. Set EOF to True to stop data loading. Fill the Value

parameter by column values. To start loading call the Load method.

Another way to load data is using the OnPutData event.

Example

This handler loads 1000 rows.

procedure TfmMain.GetColumnData(Sender: TObject;
 Column: TDAColumn; Row: Integer; var Value: Variant;
 var EOF: Boolean);
begin
 if Row <= 1000 then begin
 case Column.Index of
 0: Value := Row;
 1: Value := Random(100);
 2: Value := Random*100;
 3: Value := 'abc01234567890123456789';
 4: Value := Date;
 else
 Value := Null;
 end;
 end
 else
 EOF := True;
end;

See Also
OnPutData

Load

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.8.1.3.4.2 OnProgress Event

Occurs if handling data loading progress of the LoadFromDataSet method is needed.

Class

TDALoader

Syntax

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components448

© 2024 Devart

property OnProgress: TLoaderProgressEvent;

Remarks

Add a handler to this event if you want to handle data loading progress of the

LoadFromDataSet method.

See Also
LoadFromDataSet

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.8.1.3.4.3 OnPutData Event

Occurs when putting loading data by rows is needed.

Class

TDALoader

Syntax

property OnPutData: TDAPutDataEvent;

Remarks

Write the OnPutData event handler to put loading data by rows.

Note that rows should be loaded from the first in the ascending order.

To start loading, call the Load method.

Example

This handler loads 1000 rows.

procedure TfmMain.PutData(Sender: TDALoader);
var
 Count: Integer;
 i: Integer;
begin
 Count := StrToInt(edRows.Text);
 for i := 1 to Count dobegin
 Sender.PutColumnData(0, i, 1);
 Sender.PutColumnData(1, i, Random(100));

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 449

© 2024 Devart

 Sender.PutColumnData(2, i, Random*100);
 Sender.PutColumnData(3, i, 'abc01234567890123456789');
 Sender.PutColumnData(4, i, Date);
 end;
end;

See Also
TDALoader.PutColumnData

Load

OnGetColumnData

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.8.1.4 TDALoaderOptions Class

Allows loading external data into database.

For a list of all members of this type, see TDALoaderOptions members.

Unit

DALoader

Syntax

TDALoaderOptions = class(TPersistent);

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.8.1.4.1 Members

TDALoaderOptions class overview.

Properties

Name Description

UseBlankValues

Forces UniDAC to fill the
buffer with null values after
loading a row to the
database.

© 1997-2024 Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components450

© 2024 Devart

Devart. All Rights
Reserved.

6.8.1.4.2 Properties

Properties of the TDALoaderOptions class.

For a complete list of the TDALoaderOptions class members, see the TDALoaderOptions

Members topic.

Public

Name Description

UseBlankValues

Forces UniDAC to fill the
buffer with null values after
loading a row to the
database.

See Also
TDALoaderOptions Class

TDALoaderOptions Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.8.1.4.2.1 UseBlankValues Property

Forces UniDAC to fill the buffer with null values after loading a row to the database.

Class

TDALoaderOptions

Syntax

property UseBlankValues: boolean default True;

Remarks

Used to force UniDAC to fill the buffer with null values after loading a row to the database.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 451

© 2024 Devart

6.8.2 Types

Types in the DALoader unit.

Types

Name Description

TDAPutDataEvent
This type is used for the
TDALoader.OnPutData
event.

TGetColumnDataEvent
This type is used for the
TDALoader.OnGetColumnD
ata event.

TLoaderProgressEvent
This type is used for the
TDALoader.OnProgress
event.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.8.2.1 TDAPutDataEvent Procedure Reference

This type is used for the TDALoader.OnPutData event.

Unit

DALoader

Syntax

TDAPutDataEvent = procedure (Sender: TDALoader) of object;

Parameters

Sender

An object that raised the event.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.8.2.2 TGetColumnDataEvent Procedure Reference

This type is used for the TDALoader.OnGetColumnData event.

Unit

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components452

© 2024 Devart

DALoader

Syntax

TGetColumnDataEvent = procedure (Sender: TObject; Column:

TDAColumn; Row: integer; var Value: variant; var IsEOF: boolean)

of object;

Parameters

Sender

An object that raised the event.

Column

Points to TDAColumn object that corresponds to the current loading column.

Row

Indicates the current loading record.

Value

Holds column values.

IsEOF

True, if data loading needs to be stopped.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.8.2.3 TLoaderProgressEvent Procedure Reference

This type is used for the TDALoader.OnProgress event.

Unit

DALoader

Syntax

TLoaderProgressEvent = procedure (Sender: TObject; Percent:

integer) of object;

Parameters

Sender

An object that raised the event.

Percent

Percentage of the load operation progress.

© 1997-2024 Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 453

© 2024 Devart

Devart. All Rights
Reserved.

6.9 DAScript

This unit contains the base class for the TUniScript component.

Classes

Name Description

TDAScript
Makes it possible to execute
several SQL statements one
by one.

TDAStatement

This class has attributes and
methods for controlling
single SQL statement of a
script.

TDAStatements Holds a collection of
TDAStatement objects.

Types

Name Description

TAfterStatementExecuteEvent
This type is used for the
TDAScript.AfterExecute
event.

TBeforeStatementExecuteEvent
This type is used for the
TDAScript.BeforeExecute
event.

TOnErrorEvent This type is used for the
TDAScript.OnError event.

Enumerations

Name Description

TErrorAction
Indicates the action to take
when the OnError handler
exits.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components454

© 2024 Devart

6.9.1 Classes

Classes in the DAScript unit.

Classes

Name Description

TDAScript
Makes it possible to execute
several SQL statements one
by one.

TDAStatement

This class has attributes and
methods for controlling
single SQL statement of a
script.

TDAStatements Holds a collection of
TDAStatement objects.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.1 TDAScript Class

Makes it possible to execute several SQL statements one by one.

For a list of all members of this type, see TDAScript members.

Unit

DAScript

Syntax

TDAScript = class(TComponent);

Remarks

Often it is necessary to execute several SQL statements one by one. This can be performed

using a lot of components such as TCustomDASQL descendants. Usually it isn't the best

solution. With only one TDAScript descedant component you can execute several SQL

statements as one. This sequence of statements is called script. To separate single

statements use semicolon (;) or slash (/) and for statements that can contain semicolon, only

slash. Note that slash must be the first character in line.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 455

© 2024 Devart

Errors that occur during execution can be processed in the TDAScript.OnError event handler.

By default, on error TDAScript shows exception and continues execution.

See Also
TCustomDASQL

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.1.1 Members

TDAScript class overview.

Properties

Name Description

Connection
Used to specify the
connection in which the
script will be executed.

DataSet
Refers to a dataset that
holds the result set of query
execution.

Debug
Used to display the script
execution and all its
parameter values.

Delimiter
Used to set the delimiter
string that separates script
statements.

EndLine
Used to get the current
statement last line number in
a script.

EndOffset
Used to get the offset in the
last line of the current
statement.

EndPos Used to get the end position
of the current statement.

Macros
Used to change SQL script
text in design- or run-time
easily.

SQL Used to get or set script text.

StartLine Used to get the current
statement start line number

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components456

© 2024 Devart

in a script.

StartOffset
Used to get the offset in the
first line of the current
statement.

StartPos
Used to get the start position
of the current statement in a
script.

Statements
Contains a list of statements
obtained from the SQL
property.

Methods

Name Description

BreakExec Stops script execution.

ErrorOffset
Used to get the offset of the
statement if the Execute
method raised an exception.

Execute Executes a script.

ExecuteFile Executes SQL statements
contained in a file.

ExecuteNext Executes the next statement
in the script and then stops.

ExecuteStream
Executes SQL statements
contained in a stream
object.

FindMacro Finds a macro with the
specified name.

MacroByName Finds a macro with the
specified name.

Events

Name Description

AfterExecute Occurs after a SQL script
execution.

BeforeExecute

Occurs when taking a
specific action before
executing the current SQL
statement is needed.

OnError Occurs when server raises

Reference 457

© 2024 Devart

an error.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.1.2 Properties

Properties of the TDAScript class.

For a complete list of the TDAScript class members, see the TDAScript Members topic.

Public

Name Description

Connection
Used to specify the
connection in which the
script will be executed.

DataSet
Refers to a dataset that
holds the result set of query
execution.

EndLine
Used to get the current
statement last line number in
a script.

EndOffset
Used to get the offset in the
last line of the current
statement.

EndPos Used to get the end position
of the current statement.

StartLine
Used to get the current
statement start line number
in a script.

StartOffset
Used to get the offset in the
first line of the current
statement.

StartPos
Used to get the start position
of the current statement in a
script.

Statements
Contains a list of statements
obtained from the SQL
property.

Published

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components458

© 2024 Devart

Name Description

Debug
Used to display the script
execution and all its
parameter values.

Delimiter
Used to set the delimiter
string that separates script
statements.

Macros
Used to change SQL script
text in design- or run-time
easily.

SQL Used to get or set script text.

See Also
TDAScript Class

TDAScript Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.1.2.1 Connection Property

Used to specify the connection in which the script will be executed.

Class

TDAScript

Syntax

property Connection: TCustomDAConnection;

Remarks

Use the Connection property to specify the connection in which the script will be executed. If

Connection is not connected, the Execute method calls the Connect method of Connection.

Set at design-time by selecting from the list of provided TCustomDAConnection objects.

At run-time, set the Connection property to reference an existing TCustomDAConnection

object.

See Also

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 459

© 2024 Devart

TCustomDAConnection

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.1.2.2 DataSet Property

Refers to a dataset that holds the result set of query execution.

Class

TDAScript

Syntax

property DataSet: TCustomDADataSet;

Remarks

Set the DataSet property to retrieve the results of the SELECT statements execution inside a

script.

See Also
ExecuteNext

Execute

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.1.2.3 Debug Property

Used to display the script execution and all its parameter values.

Class

TDAScript

Syntax

property Debug: boolean default False;

Remarks

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components460

© 2024 Devart

Set the Debug property to True to display the statement that is being executed and the values

and types of its parameters.

You should add the UniDacVcl unit to the uses clause of any unit in your project to make the

Debug property work.

Note: If TUniSQLMonitor is used in the project and the TUniSQLMonitor.Active property is set

to False, the debug window is not displayed.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.1.2.4 Delimiter Property

Used to set the delimiter string that separates script statements.

Class

TDAScript

Syntax

property Delimiter: string stored IsDelimiterStored;

Remarks

Use the Delimiter property to set the delimiter string that separates script statements. By

default it is semicolon (;). You can use slash (/) to separate statements that can contain

semicolon if the Delimiter property's default value is semicolon. Note that slash must be the

first character in line.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.1.2.5 EndLine Property

Used to get the current statement last line number in a script.

Class

TDAScript

Syntax

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 461

© 2024 Devart

property EndLine: Int64;

Remarks

Use the EndLine property to get the current statement last line number in a script.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.1.2.6 EndOffset Property

Used to get the offset in the last line of the current statement.

Class

TDAScript

Syntax

property EndOffset: Int64;

Remarks

Use the EndOffset property to get the offset in the last line of the current statement.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.1.2.7 EndPos Property

Used to get the end position of the current statement.

Class

TDAScript

Syntax

property EndPos: Int64;

Remarks

Use the EndPos property to get the end position of the current statement (the position of the

last character in the statement) in a script.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components462

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.1.2.8 Macros Property

Used to change SQL script text in design- or run-time easily.

Class

TDAScript

Syntax

property Macros: TMacros stored False;

Remarks

With the help of macros you can easily change SQL script text in design- or run-time. Macros

extend abilities of parameters and allow changing conditions in the WHERE clause or sort

order in the ORDER BY clause. You just insert &MacroName in a SQL query text and change

value of macro by the Macro property editor in design-time or the MacroByName function in

run-time. In time of opening query macro is replaced by its value.

See Also
TMacro

MacroByName

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.1.2.9 SQL Property

Used to get or set script text.

Class

TDAScript

Syntax

property SQL: TStrings;

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 463

© 2024 Devart

Remarks

Use the SQL property to get or set script text.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.1.2.10 StartLine Property

Used to get the current statement start line number in a script.

Class

TDAScript

Syntax

property StartLine: Int64;

Remarks

Use the StartLine property to get the current statement start line number in a script.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.1.2.11 StartOffset Property

Used to get the offset in the first line of the current statement.

Class

TDAScript

Syntax

property StartOffset: Int64;

Remarks

Use the StartOffset property to get the offset in the first line of the current statement.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components464

© 2024 Devart

6.9.1.1.2.12 StartPos Property

Used to get the start position of the current statement in a script.

Class

TDAScript

Syntax

property StartPos: Int64;

Remarks

Use the StartPos property to get the start position of the current statement (the position of the

first statement character) in a script.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.1.2.13 Statements Property

Contains a list of statements obtained from the SQL property.

Class

TDAScript

Syntax

property Statements: TDAStatements;

Remarks

Contains a list of statements that are obtained from the SQL property. Use the Access

Statements property to view SQL statement, set parameters or execute the specified

statement. Statements is a zero-based array of statement records. Index specifies the array

element to access.

For example, consider the following script:

CREATE TABLE A (FIELD1 INTEGER);
INSERT INTO A VALUES(1);
INSERT INTO A VALUES(2);
INSERT INTO A VALUES(3);
CREATE TABLE B (FIELD1 INTEGER);

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 465

© 2024 Devart

INSERT INTO B VALUES(1);
INSERT INTO B VALUES(2);
INSERT INTO B VALUES(3);

Note: The list of statements is created and filled when the value of Statements property is

requested. That's why the first access to the Statements property can take a long time.

Example

You can use the Statements property in the following way:

procedure TForm1.Button1Click(Sender: TObject);
var
 i: integer;
begin
 with Script do
 begin
 for i := 0 to Statements.Count - 1 do
 if Copy(Statements[i].SQL, 1, 6) <> 'CREATE' then
 Statements[i].Execute;
 end;
end;

See Also
TDAStatements

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.1.3 Methods

Methods of the TDAScript class.

For a complete list of the TDAScript class members, see the TDAScript Members topic.

Public

Name Description

BreakExec Stops script execution.

ErrorOffset
Used to get the offset of the
statement if the Execute
method raised an exception.

Execute Executes a script.

ExecuteFile Executes SQL statements
contained in a file.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components466

© 2024 Devart

ExecuteNext Executes the next statement
in the script and then stops.

ExecuteStream
Executes SQL statements
contained in a stream
object.

FindMacro Finds a macro with the
specified name.

MacroByName Finds a macro with the
specified name.

See Also
TDAScript Class

TDAScript Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.1.3.1 BreakExec Method

Stops script execution.

Class

TDAScript

Syntax

procedure BreakExec; virtual;

Remarks

Call the BreakExec method to stop script execution.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.1.3.2 ErrorOffset Method

Used to get the offset of the statement if the Execute method raised an exception.

Class

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 467

© 2024 Devart

TDAScript

Syntax

function ErrorOffset: Int64;

Return Value

offset of an error.

Remarks

Call the ErrorOffset method to get the offset of the statement if the Execute method raised an

exception.

See Also
OnError

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.1.3.3 Execute Method

Executes a script.

Class

TDAScript

Syntax

procedure Execute; virtual;

Remarks

Call the Execute method to execute a script. If server raises an error, the OnError event

occurs.

See Also
ExecuteNext

OnError

ErrorOffset

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components468

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.1.3.4 ExecuteFile Method

Executes SQL statements contained in a file.

Class

TDAScript

Syntax

procedure ExecuteFile(const FileName: string);

Parameters

FileName

Holds the file name.

Remarks

Call the ExecuteFile method to execute SQL statements contained in a file. Script doesn't

load full content into memory. Reading and execution is performed by blocks of 64k size.

Therefore, it is optimal to use it for big files.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.1.3.5 ExecuteNext Method

Executes the next statement in the script and then stops.

Class

TDAScript

Syntax

function ExecuteNext: boolean; virtual;

Return Value

True, if there are any statements left in the script, False otherwise.

Remarks

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 469

© 2024 Devart

Use the ExecuteNext method to execute the next statement in the script statement and stop.

If server raises an error, the OnError event occurs.

See Also
Execute

OnError

ErrorOffset

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.1.3.6 ExecuteStream Method

Executes SQL statements contained in a stream object.

Class

TDAScript

Syntax

procedure ExecuteStream(Stream: TStream);

Parameters

Stream

Holds the stream object from which the statements will be executed.

Remarks

Call the ExecuteStream method to execute SQL statements contained in a stream object.

Reading from the stream and execution is performed by blocks of 64k size.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.1.3.7 FindMacro Method

Finds a macro with the specified name.

Class

TDAScript

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components470

© 2024 Devart

Syntax

function FindMacro(Name: string): TMacro;

Parameters

Name

Holds the name of a macro to search for.

Return Value

TMacro object if a match is found, nil otherwise.

Remarks

Call the FindMacro method to find a macro with the specified name. If a match is found,

FindMacro returns the macro. Otherwise, it returns nil. Use this method instead of a direct

reference to the TMacros.Items property to avoid depending on the order of the items.

See Also
TMacro

Macros

MacroByName

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.1.3.8 MacroByName Method

Finds a macro with the specified name.

Class

TDAScript

Syntax

function MacroByName(Name: string): TMacro;

Parameters

Name

Holds the name of a macro to search for.

Return Value

TMacro object if a match is found.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 471

© 2024 Devart

Remarks

Call the MacroByName method to find a macro with the specified name. If a match is found,

MacroByName returns the macro. Otherwise, an exception is raised. Use this method instead

of a direct reference to the TMacros.Items property to avoid depending on the order of the

items.

To locate a parameter by name without raising an exception if the parameter is not found, use

the FindMacro method.

To set a value to a macro, use the TMacro.Value property.

See Also
TMacro

Macros

FindMacro

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.1.4 Events

Events of the TDAScript class.

For a complete list of the TDAScript class members, see the TDAScript Members topic.

Published

Name Description

AfterExecute Occurs after a SQL script
execution.

BeforeExecute

Occurs when taking a
specific action before
executing the current SQL
statement is needed.

OnError Occurs when server raises
an error.

See Also
TDAScript Class

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components472

© 2024 Devart

TDAScript Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.1.4.1 AfterExecute Event

Occurs after a SQL script execution.

Class

TDAScript

Syntax

property AfterExecute: TAfterStatementExecuteEvent;

Remarks

Occurs after a SQL script has been executed.

See Also
Execute

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.1.4.2 BeforeExecute Event

Occurs when taking a specific action before executing the current SQL statement is needed.

Class

TDAScript

Syntax

property BeforeExecute: TBeforeStatementExecuteEvent;

Remarks

Write the BeforeExecute event handler to take specific action before executing the current

SQL statement. SQL holds text of the current SQL statement. Write SQL to change the

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 473

© 2024 Devart

statement that will be executed. Set Omit to True to skip statement execution.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.1.4.3 OnError Event

Occurs when server raises an error.

Class

TDAScript

Syntax

property OnError: TOnErrorEvent;

Remarks

Occurs when server raises an error.

Action indicates the action to take when the OnError handler exits. On entry into the handler,

Action is always set to eaFail.

See Also
ErrorOffset

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.2 TDAStatement Class

This class has attributes and methods for controlling single SQL statement of a script.

For a list of all members of this type, see TDAStatement members.

Unit

DAScript

Syntax

TDAStatement = class(TCollectionItem);

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components474

© 2024 Devart

Remarks

TDAScript contains SQL statements, represented as TDAStatement objects. The

TDAStatement class has attributes and methods for controlling single SQL statement of a

script.

See Also
TDAScript

TDAStatements

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.2.1 Members

TDAStatement class overview.

Properties

Name Description

EndLine
Used to determine the
number of the last statement
line in a script.

EndOffset Used to get the offset in the
last line of the statement.

EndPos Used to get the end position
of the statement in a script.

Omit Used to avoid execution of a
statement.

Params Contains parasmeters for an
SQL statement.

Script
Used to determine the
TDAScript object the SQL
Statement belongs to.

SQL Used to get or set the text of
an SQL statement.

StartLine
Used to determine the
number of the first statement
line in a script.

StartOffset Used to get the offset in the
first line of a statement.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 475

© 2024 Devart

StartPos Used to get the start position
of the statement in a script.

Methods

Name Description

Execute Executes a statement.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.2.2 Properties

Properties of the TDAStatement class.

For a complete list of the TDAStatement class members, see the TDAStatement Members

topic.

Public

Name Description

EndLine
Used to determine the
number of the last statement
line in a script.

EndOffset Used to get the offset in the
last line of the statement.

EndPos Used to get the end position
of the statement in a script.

Omit Used to avoid execution of a
statement.

Params Contains parasmeters for an
SQL statement.

Script
Used to determine the
TDAScript object the SQL
Statement belongs to.

SQL Used to get or set the text of
an SQL statement.

StartLine
Used to determine the
number of the first statement
line in a script.

StartOffset Used to get the offset in the
first line of a statement.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components476

© 2024 Devart

StartPos Used to get the start position
of the statement in a script.

See Also
TDAStatement Class

TDAStatement Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.2.2.1 EndLine Property

Used to determine the number of the last statement line in a script.

Class

TDAStatement

Syntax

property EndLine: integer;

Remarks

Use the EndLine property to determine the number of the last statement line in a script.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.2.2.2 EndOffset Property

Used to get the offset in the last line of the statement.

Class

TDAStatement

Syntax

property EndOffset: integer;

Remarks

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 477

© 2024 Devart

Use the EndOffset property to get the offset in the last line of the statement.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.2.2.3 EndPos Property

Used to get the end position of the statement in a script.

Class

TDAStatement

Syntax

property EndPos: integer;

Remarks

Use the EndPos property to get the end position of the statement (the position of the last

character in the statement) in a script.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.2.2.4 Omit Property

Used to avoid execution of a statement.

Class

TDAStatement

Syntax

property Omit: boolean;

Remarks

Set the Omit property to True to avoid execution of a statement.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components478

© 2024 Devart

6.9.1.2.2.5 Params Property

Contains parasmeters for an SQL statement.

Class

TDAStatement

Syntax

property Params: TDAParams;

Remarks

Contains parameters for an SQL statement.

Access Params at runtime to view and set parameter names, values, and data types

dynamically. Params is a zero-based array of parameter records. Index specifies the array

element to access.

See Also
TDAParam

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.2.2.6 Script Property

Used to determine the TDAScript object the SQL Statement belongs to.

Class

TDAStatement

Syntax

property Script: TDAScript;

Remarks

Use the Script property to determine the TDAScript object the SQL Statement belongs to.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 479

© 2024 Devart

6.9.1.2.2.7 SQL Property

Used to get or set the text of an SQL statement.

Class

TDAStatement

Syntax

property SQL: string;

Remarks

Use the SQL property to get or set the text of an SQL statement.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.2.2.8 StartLine Property

Used to determine the number of the first statement line in a script.

Class

TDAStatement

Syntax

property StartLine: integer;

Remarks

Use the StartLine property to determine the number of the first statement line in a script.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.2.2.9 StartOffset Property

Used to get the offset in the first line of a statement.

Class

TDAStatement

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components480

© 2024 Devart

Syntax

property StartOffset: integer;

Remarks

Use the StartOffset property to get the offset in the first line of a statement.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.2.2.10 StartPos Property

Used to get the start position of the statement in a script.

Class

TDAStatement

Syntax

property StartPos: integer;

Remarks

Use the StartPos property to get the start position of the statement (the position of the first

statement character) in a script.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.2.3 Methods

Methods of the TDAStatement class.

For a complete list of the TDAStatement class members, see the TDAStatement Members

topic.

Public

Name Description

Execute Executes a statement.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 481

© 2024 Devart

See Also
TDAStatement Class

TDAStatement Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.2.3.1 Execute Method

Executes a statement.

Class

TDAStatement

Syntax

procedure Execute;

Remarks

Use the Execute method to execute a statement.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.3 TDAStatements Class

Holds a collection of TDAStatement objects.

For a list of all members of this type, see TDAStatements members.

Unit

DAScript

Syntax

TDAStatements = class(TCollection);

Remarks

Each TDAStatements holds a collection of TDAStatement objects. TDAStatements maintains

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components482

© 2024 Devart

an index of the statements in its Items array. The Count property contains the number of

statements in the collection. Use TDAStatements class to manipulate script SQL statements.

See Also
TDAScript

TDAStatement

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.3.1 Members

TDAStatements class overview.

Properties

Name Description

Items Used to access separate
script statements.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.3.2 Properties

Properties of the TDAStatements class.

For a complete list of the TDAStatements class members, see the TDAStatements

Members topic.

Public

Name Description

Items Used to access separate
script statements.

See Also
TDAStatements Class

TDAStatements Class Members

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 483

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.1.3.2.1 Items Property(Indexer)

Used to access separate script statements.

Class

TDAStatements

Syntax

property Items[Index: Integer]: TDAStatement; default;

Parameters

Index

Holds the index value.

Remarks

Use the Items property to access individual script statements. The value of the Index

parameter corresponds to the Index property of TDAStatement.

See Also
TDAStatement

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.2 Types

Types in the DAScript unit.

Types

Name Description

TAfterStatementExecuteEvent
This type is used for the
TDAScript.AfterExecute
event.

TBeforeStatementExecuteEvent
This type is used for the
TDAScript.BeforeExecute
event.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components484

© 2024 Devart

TOnErrorEvent This type is used for the
TDAScript.OnError event.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.2.1 TAfterStatementExecuteEvent Procedure Reference

This type is used for the TDAScript.AfterExecute event.

Unit

DAScript

Syntax

TAfterStatementExecuteEvent = procedure (Sender: TObject; SQL:

string) of object;

Parameters

Sender

An object that raised the event.

SQL

Holds the passed SQL statement.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.2.2 TBeforeStatementExecuteEvent Procedure Reference

This type is used for the TDAScript.BeforeExecute event.

Unit

DAScript

Syntax

TBeforeStatementExecuteEvent = procedure (Sender: TObject; var

SQL: string; var Omit: boolean) of object;

Parameters

Sender

An object that raised the event.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 485

© 2024 Devart

SQL

Holds the passed SQL statement.

Omit

True, if the statement execution should be skipped.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.2.3 TOnErrorEvent Procedure Reference

This type is used for the TDAScript.OnError event.

Unit

DAScript

Syntax

TOnErrorEvent = procedure (Sender: TObject; E: Exception; SQL:

string; var Action: TErrorAction) of object;

Parameters

Sender

An object that raised the event.

E

The error code.

SQL

Holds the passed SQL statement.

Action

The action to take when the OnError handler exits.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.3 Enumerations

Enumerations in the DAScript unit.

Enumerations

Name Description

TErrorAction Indicates the action to take
when the OnError handler

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components486

© 2024 Devart

exits.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.9.3.1 TErrorAction Enumeration

Indicates the action to take when the OnError handler exits.

Unit

DAScript

Syntax

TErrorAction = (eaAbort, eaFail, eaException, eaContinue);

Values

Value Meaning

eaAbort Abort execution without displaying an error message.

eaContinue Continue execution.

eaException In Delphi 6 and higher exception is handled by the
Application.HandleException method.

eaFail Abort execution and display an error message.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.10 DASQLMonitor

This unit contains the base class for the TUniSQLMonitor component.

Classes

Name Description

TCustomDASQLMonitor

A base class that introduces
properties and methods to
monitor dynamic SQL
execution in database
applications interactively.

TDBMonitorOptions This class holds options for

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 487

© 2024 Devart

dbMonitor.

Types

Name Description

TDATraceFlags Represents the set of
TDATraceFlag.

TMonitorOptions Represents the set of
TMonitorOption.

TOnSQLEvent
This type is used for the
TCustomDASQLMonitor.On
SQL event.

Enumerations

Name Description

TDATraceFlag

Use TraceFlags to specify
which database operations
the monitor should track in
an application at runtime.

TMonitorOption

Used to define where
information from
SQLMonitor will be
dispalyed.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.10.1 Classes

Classes in the DASQLMonitor unit.

Classes

Name Description

TCustomDASQLMonitor

A base class that introduces
properties and methods to
monitor dynamic SQL
execution in database
applications interactively.

TDBMonitorOptions This class holds options for
dbMonitor.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components488

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.10.1.1 TCustomDASQLMonitor Class

A base class that introduces properties and methods to monitor dynamic SQL execution in

database applications interactively.

For a list of all members of this type, see TCustomDASQLMonitor members.

Unit

DASQLMonitor

Syntax

TCustomDASQLMonitor = class(TComponent);

Remarks

TCustomDASQLMonitor is a base class that introduces properties and methods to monitor

dynamic SQL execution in database applications interactively. TCustomDASQLMonitor

provides two ways of displaying debug information. It monitors either by dialog window or by

Borland's proprietary SQL Monitor. Furthermore to receive debug information use the

TCustomDASQLMonitor.OnSQL event.

In applications use descendants of TCustomDASQLMonitor.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.10.1.1.1 Members

TCustomDASQLMonitor class overview.

Properties

Name Description

Active Used to activate monitoring
of SQL.

DBMonitorOptions Used to set options for
dbMonitor.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 489

© 2024 Devart

Options
Used to include the desired
properties for
TCustomDASQLMonitor.

TraceFlags

Used to specify which
database operations the
monitor should track in an
application at runtime.

Events

Name Description

OnSQL
Occurs when tracing of SQL
activity on database
components is needed.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.10.1.1.2 Properties

Properties of the TCustomDASQLMonitor class.

For a complete list of the TCustomDASQLMonitor class members, see the

TCustomDASQLMonitor Members topic.

Public

Name Description

Active Used to activate monitoring
of SQL.

DBMonitorOptions Used to set options for
dbMonitor.

Options
Used to include the desired
properties for
TCustomDASQLMonitor.

TraceFlags

Used to specify which
database operations the
monitor should track in an
application at runtime.

See Also
TCustomDASQLMonitor Class

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components490

© 2024 Devart

TCustomDASQLMonitor Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.10.1.1.2.1 Active Property

Used to activate monitoring of SQL.

Class

TCustomDASQLMonitor

Syntax

property Active: boolean default True;

Remarks

Set the Active property to True to activate monitoring of SQL.

See Also
OnSQL

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.10.1.1.2.2 DBMonitorOptions Property

Used to set options for dbMonitor.

Class

TCustomDASQLMonitor

Syntax

property DBMonitorOptions: TDBMonitorOptions;

Remarks

Use DBMonitorOptions to set options for dbMonitor.

© 1997-2024
Devart. All Rights

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 491

© 2024 Devart

Reserved.

6.10.1.1.2.3 Options Property

Used to include the desired properties for TCustomDASQLMonitor.

Class

TCustomDASQLMonitor

Syntax

property Options: TMonitorOptions default [moDialog,

moSQLMonitor, moDBMonitor, moCustom];

Remarks

Set Options to include the desired properties for TCustomDASQLMonitor.

See Also
OnSQL

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.10.1.1.2.4 TraceFlags Property

Used to specify which database operations the monitor should track in an application at

runtime.

Class

TCustomDASQLMonitor

Syntax

property TraceFlags: TDATraceFlags default [tfQPrepare,

tfQExecute, tfError, tfConnect, tfTransact, tfParams, tfMisc];

Remarks

Use the TraceFlags property to specify which database operations the monitor should track in

an application at runtime.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components492

© 2024 Devart

See Also
OnSQL

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.10.1.1.3 Events

Events of the TCustomDASQLMonitor class.

For a complete list of the TCustomDASQLMonitor class members, see the

TCustomDASQLMonitor Members topic.

Public

Name Description

OnSQL
Occurs when tracing of SQL
activity on database
components is needed.

See Also
TCustomDASQLMonitor Class

TCustomDASQLMonitor Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.10.1.1.3.1 OnSQL Event

Occurs when tracing of SQL activity on database components is needed.

Class

TCustomDASQLMonitor

Syntax

property OnSQL: TOnSQLEvent;

Remarks

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 493

© 2024 Devart

Write the OnSQL event handler to let an application trace SQL activity on database

components. The Text parameter holds the detected SQL statement. Use the Flag parameter

to make selective processing of SQL in the handler body.

See Also
TraceFlags

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.10.1.2 TDBMonitorOptions Class

This class holds options for dbMonitor.

For a list of all members of this type, see TDBMonitorOptions members.

Unit

DASQLMonitor

Syntax

TDBMonitorOptions = class(TPersistent);

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.10.1.2.1 Members

TDBMonitorOptions class overview.

Properties

Name Description

Host

Used to set the host name or
IP address of the computer
where dbMonitor application
runs.

Port Used to set the port number
for connecting to dbMonitor.

ReconnectTimeout
Used to set the minimum
time that should be spent
before reconnecting to

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components494

© 2024 Devart

dbMonitor is allowed.

SendTimeout
Used to set timeout for
sending events to
dbMonitor.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.10.1.2.2 Properties

Properties of the TDBMonitorOptions class.

For a complete list of the TDBMonitorOptions class members, see the TDBMonitorOptions

Members topic.

Published

Name Description

Host

Used to set the host name or
IP address of the computer
where dbMonitor application
runs.

Port Used to set the port number
for connecting to dbMonitor.

ReconnectTimeout

Used to set the minimum
time that should be spent
before reconnecting to
dbMonitor is allowed.

SendTimeout
Used to set timeout for
sending events to
dbMonitor.

See Also
TDBMonitorOptions Class

TDBMonitorOptions Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 495

© 2024 Devart

6.10.1.2.2.1 Host Property

Used to set the host name or IP address of the computer where dbMonitor application runs.

Class

TDBMonitorOptions

Syntax

property Host: string;

Remarks

Use the Host property to set the host name or IP address of the computer where dbMonitor

application runs.

dbMonitor supports remote monitoring. You can run dbMonitor on a different computer than

monitored application runs. In this case you need to set the Host property to the

corresponding computer name.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.10.1.2.2.2 Port Property

Used to set the port number for connecting to dbMonitor.

Class

TDBMonitorOptions

Syntax

property Port: integer default DBMonitorPort;

Remarks

Use the Port property to set the port number for connecting to dbMonitor.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components496

© 2024 Devart

6.10.1.2.2.3 ReconnectTimeout Property

Used to set the minimum time that should be spent before reconnecting to dbMonitor is

allowed.

Class

TDBMonitorOptions

Syntax

property ReconnectTimeout: integer default

DefaultReconnectTimeout;

Remarks

Use the ReconnectTimeout property to set the minimum time (in milliseconds) that should be

spent before allowing reconnecting to dbMonitor. If an error occurs when the component

sends an event to dbMonitor (dbMonitor is not running), next events are ignored and the

component does not restore the connection until ReconnectTimeout is over.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.10.1.2.2.4 SendTimeout Property

Used to set timeout for sending events to dbMonitor.

Class

TDBMonitorOptions

Syntax

property SendTimeout: integer default DefaultSendTimeout;

Remarks

Use the SendTimeout property to set timeout (in milliseconds) for sending events to

dbMonitor. If dbMonitor does not respond in the specified timeout, event is ignored.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 497

© 2024 Devart

6.10.2 Types

Types in the DASQLMonitor unit.

Types

Name Description

TDATraceFlags Represents the set of
TDATraceFlag.

TMonitorOptions Represents the set of
TMonitorOption.

TOnSQLEvent
This type is used for the
TCustomDASQLMonitor.On
SQL event.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.10.2.1 TDATraceFlags Set

Represents the set of TDATraceFlag.

Unit

DASQLMonitor

Syntax

TDATraceFlags = set of TDATraceFlag;

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.10.2.2 TMonitorOptions Set

Represents the set of TMonitorOption.

Unit

DASQLMonitor

Syntax

TMonitorOptions = set of TMonitorOption;

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components498

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.10.2.3 TOnSQLEvent Procedure Reference

This type is used for the TCustomDASQLMonitor.OnSQL event.

Unit

DASQLMonitor

Syntax

TOnSQLEvent = procedure (Sender: TObject; Text: string; Flag:

TDATraceFlag) of object;

Parameters

Sender

An object that raised the event.

Text

Holds the detected SQL statement.

Flag

Use the Flag parameter to make selective processing of SQL in the handler body.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.10.3 Enumerations

Enumerations in the DASQLMonitor unit.

Enumerations

Name Description

TDATraceFlag

Use TraceFlags to specify
which database operations
the monitor should track in
an application at runtime.

TMonitorOption

Used to define where
information from
SQLMonitor will be
dispalyed.

© 1997-2024 Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 499

© 2024 Devart

Devart. All Rights
Reserved.

6.10.3.1 TDATraceFlag Enumeration

Use TraceFlags to specify which database operations the monitor should track in an

application at runtime.

Unit

DASQLMonitor

Syntax

TDATraceFlag = (tfQPrepare, tfQExecute, tfQFetch, tfError, tfStmt,

tfConnect, tfTransact, tfBlob, tfService, tfMisc, tfParams,

tfObjDestroy, tfPool);

Values

Value Meaning

tfBlob This option is declared for future use.

tfConnect Establishing a connection.

tfError Errors of query execution.

tfMisc This option is declared for future use.

tfObjDestroy Destroying of components.

tfParams Representing parameter values for tfQPrepare and tfQExecute.

tfPool Connection pool operations.

tfQExecute Execution of the queries.

tfQFetch This option is declared for future use.

tfQPrepare Queries preparation.

tfService This option is declared for future use.

tfStmt This option is declared for future use.

tfTransact Processing transactions.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components500

© 2024 Devart

6.10.3.2 TMonitorOption Enumeration

Used to define where information from SQLMonitor will be dispalyed.

Unit

DASQLMonitor

Syntax

TMonitorOption = (moDialog, moSQLMonitor, moDBMonitor, moCustom,

moHandled);

Values

Value Meaning

moCustom

Monitoring of SQL for individual components is allowed. Set
Debug properties in SQL-related components to True to let
TCustomDASQLMonitor instance to monitor their behavior. Has
effect when moDialog is included.

moDBMonitor Debug information is displayed in DBMonitor.

moDialog Debug information is displayed in debug window.

moHandled Component handle is included into the event description string.

moSQLMonitor Debug information is displayed in Borland SQL Monitor.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11 DBAccess

This unit contains base classes for most of the components.

Classes

Name Description

EDAError
A base class for exceptions
that are raised when an error
occurs on the server side.

TCRDataSource

Provides an interface
between a DAC dataset
components and data-aware
controls on a form.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 501

© 2024 Devart

TCustomConnectDialog A base class for the connect
dialog components.

TCustomDAConnection
A base class for
components used to
establish connections.

TCustomDADataSet

Encapsulates general set of
properties, events, and
methods for working with
data accessed through
various database engines.

TCustomDASQL

A base class for
components executing SQL
statements that do not return
result sets.

TCustomDAUpdateSQL

A base class for
components that provide
DML statements for more
flexible control over data
modifications.

TDACondition Represents a condition from
the TDAConditions list.

TDAConditions Holds a collection of
TDACondition objects.

TDAConnectionOptions
This class allows setting up
the behaviour of the
TDAConnection class.

TDAConnectionSSLOptions This class is used to set up
the SSL options.

TDADataSetOptions
This class allows setting up
the behaviour of the
TDADataSet class.

TDAEncryption
Used to specify the options
of the data encryption in a
dataset.

TDAMapRule Class that formes rules for
Data Type Mapping.

TDAMapRules

Used for adding rules for
DataSet fields mapping with
both identifying by field
name and by field type and
Delphi field types.

TDAMetaData
A class for retrieving
metainformation of the
specified database objects

Universal Data Access Components502

© 2024 Devart

in the form of dataset.

TDAParam
A class that forms objects to
represent the values of the
parameters set.

TDAParams

This class is used to
manage a list of TDAParam
objects for an object that
uses field parameters.

TDATransaction
A base class that
implements functionality for
controlling transactions.

TMacro Object that represents the
value of a macro.

TMacros

Controls a list of TMacro
objects for the
TCustomDASQL.Macros or
TCustomDADataSet
components.

TPoolingOptions
This class allows setting up
the behaviour of the
connection pool.

TSmartFetchOptions
Smart fetch options are
used to set up the behavior
of the SmartFetch mode.

Types

Name Description

TAfterExecuteEvent

This type is used for the
TCustomDADataSet.AfterE
xecute and
TCustomDASQL.AfterExecu
te events.

TAfterFetchEvent
This type is used for the
TCustomDADataSet.AfterF
etch event.

TBeforeFetchEvent
This type is used for the
TCustomDADataSet.Before
Fetch event.

TConnectionLostEvent
This type is used for the
TCustomDAConnection.On
ConnectionLost event.

TDAConnectionErrorEvent This type is used for the
TCustomDAConnection.On

Reference 503

© 2024 Devart

Error event.

TDATransactionErrorEvent
This type is used for the
TDATransaction.OnError
event.

TRefreshOptions Represents the set of
TRefreshOption.

TUpdateExecuteEvent

This type is used for the
TCustomDADataSet.AfterU
pdateExecute and
TCustomDADataSet.Before
UpdateExecute events.

Enumerations

Name Description

TLabelSet Sets the languauge of labels
in the connect dialog.

TLockMode Specifies the lock mode.

TRefreshOption Indicates when the editing
record will be refreshed.

TRetryMode
Specifies the application
behavior when connection is
lost.

Variables

Name Description

ChangeCursor

When set to True allows
data access components to
change screen cursor for the
execution time.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1 Classes

Classes in the DBAccess unit.

Classes

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components504

© 2024 Devart

Name Description

EDAError
A base class for exceptions
that are raised when an error
occurs on the server side.

TCRDataSource

Provides an interface
between a DAC dataset
components and data-aware
controls on a form.

TCustomConnectDialog A base class for the connect
dialog components.

TCustomDAConnection
A base class for
components used to
establish connections.

TCustomDADataSet

Encapsulates general set of
properties, events, and
methods for working with
data accessed through
various database engines.

TCustomDASQL

A base class for
components executing SQL
statements that do not return
result sets.

TCustomDAUpdateSQL

A base class for
components that provide
DML statements for more
flexible control over data
modifications.

TDACondition Represents a condition from
the TDAConditions list.

TDAConditions Holds a collection of
TDACondition objects.

TDAConnectionOptions
This class allows setting up
the behaviour of the
TDAConnection class.

TDAConnectionSSLOptions This class is used to set up
the SSL options.

TDADataSetOptions
This class allows setting up
the behaviour of the
TDADataSet class.

TDAEncryption
Used to specify the options
of the data encryption in a
dataset.

TDAMapRule Class that formes rules for
Data Type Mapping.

Reference 505

© 2024 Devart

TDAMapRules

Used for adding rules for
DataSet fields mapping with
both identifying by field
name and by field type and
Delphi field types.

TDAMetaData

A class for retrieving
metainformation of the
specified database objects
in the form of dataset.

TDAParam
A class that forms objects to
represent the values of the
parameters set.

TDAParams

This class is used to
manage a list of TDAParam
objects for an object that
uses field parameters.

TDATransaction
A base class that
implements functionality for
controlling transactions.

TMacro Object that represents the
value of a macro.

TMacros

Controls a list of TMacro
objects for the
TCustomDASQL.Macros or
TCustomDADataSet
components.

TPoolingOptions
This class allows setting up
the behaviour of the
connection pool.

TSmartFetchOptions
Smart fetch options are
used to set up the behavior
of the SmartFetch mode.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.1 EDAError Class

A base class for exceptions that are raised when an error occurs on the server side.

For a list of all members of this type, see EDAError members.

Unit

DBAccess

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components506

© 2024 Devart

Syntax

EDAError = class(EDatabaseError);

Remarks

EDAError is a base class for exceptions that are raised when an error occurs on the server

side.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.1.1 Members

EDAError class overview.

Properties

Name Description

Component Contains the component that
caused the error.

ErrorCode Determines the error code
returned by the server.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.1.2 Properties

Properties of the EDAError class.

For a complete list of the EDAError class members, see the EDAError Members topic.

Public

Name Description

Component Contains the component that
caused the error.

ErrorCode Determines the error code
returned by the server.

See Also

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 507

© 2024 Devart

EDAError Class

EDAError Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.1.2.1 Component Property

Contains the component that caused the error.

Class

EDAError

Syntax

property Component: TObject;

Remarks

The Component property contains the component that caused the error.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.1.2.2 ErrorCode Property

Determines the error code returned by the server.

Class

EDAError

Syntax

property ErrorCode: integer;

Remarks

Use the ErrorCode property to determine the error code returned by server. This value is

always positive.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components508

© 2024 Devart

6.11.1.2 TCRDataSource Class

Provides an interface between a DAC dataset components and data-aware controls on a

form.

For a list of all members of this type, see TCRDataSource members.

Unit

DBAccess

Syntax

TCRDataSource = class(TDataSource);

Remarks

TCRDataSource provides an interface between a DAC dataset components and data-aware

controls on a form.

TCRDataSource inherits its functionality directly from the TDataSource component.

At design time assign individual data-aware components' DataSource properties from their

drop-down listboxes.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.2.1 Members

TCRDataSource class overview.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.3 TCustomConnectDialog Class

A base class for the connect dialog components.

For a list of all members of this type, see TCustomConnectDialog members.

Unit

DBAccess

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 509

© 2024 Devart

Syntax

TCustomConnectDialog = class(TComponent);

Remarks

TCustomConnectDialog is a base class for the connect dialog components. It provides

functionality to show a dialog box where user can edit username, password and server name

before connecting to a database. You can customize captions of buttons and labels by their

properties.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.3.1 Members

TCustomConnectDialog class overview.

Properties

Name Description

CancelButton Used to specify the label for
the Cancel button.

Caption Used to set the caption of
dialog box.

ConnectButton Used to specify the label for
the Connect button.

DialogClass

Used to specify the class of
the form that will be
displayed to enter login
information.

LabelSet Used to set the language of
buttons and labels captions.

PasswordLabel Used to specify a prompt for
password edit.

Retries
Used to indicate the number
of retries of failed
connections.

SavePassword
Used for the password to be
displayed in ConnectDialog
in asterisks.

ServerLabel Used to specify a prompt for
the server name edit.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components510

© 2024 Devart

StoreLogInfo

Used to specify whether the
login information should be
kept in system registry after
a connection was
established.

UsernameLabel Used to specify a prompt for
username edit.

Methods

Name Description

Execute

Displays the connect dialog
and calls the connection's
Connect method when user
clicks the Connect button.

GetServerList Retrieves a list of available
server names.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.3.2 Properties

Properties of the TCustomConnectDialog class.

For a complete list of the TCustomConnectDialog class members, see the

TCustomConnectDialog Members topic.

Public

Name Description

CancelButton Used to specify the label for
the Cancel button.

Caption Used to set the caption of
dialog box.

ConnectButton Used to specify the label for
the Connect button.

DialogClass

Used to specify the class of
the form that will be
displayed to enter login
information.

LabelSet Used to set the language of
buttons and labels captions.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 511

© 2024 Devart

PasswordLabel Used to specify a prompt for
password edit.

Retries
Used to indicate the number
of retries of failed
connections.

SavePassword
Used for the password to be
displayed in ConnectDialog
in asterisks.

ServerLabel Used to specify a prompt for
the server name edit.

StoreLogInfo

Used to specify whether the
login information should be
kept in system registry after
a connection was
established.

UsernameLabel Used to specify a prompt for
username edit.

See Also
TCustomConnectDialog Class

TCustomConnectDialog Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.3.2.1 CancelButton Property

Used to specify the label for the Cancel button.

Class

TCustomConnectDialog

Syntax

property CancelButton: string;

Remarks

Use the CancelButton property to specify the label for the Cancel button.

© 1997-2024
Devart. All Rights

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components512

© 2024 Devart

Reserved.

6.11.1.3.2.2 Caption Property

Used to set the caption of dialog box.

Class

TCustomConnectDialog

Syntax

property Caption: string;

Remarks

Use the Caption property to set the caption of dialog box.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.3.2.3 ConnectButton Property

Used to specify the label for the Connect button.

Class

TCustomConnectDialog

Syntax

property ConnectButton: string;

Remarks

Use the ConnectButton property to specify the label for the Connect button.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.3.2.4 DialogClass Property

Used to specify the class of the form that will be displayed to enter login information.

Class

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 513

© 2024 Devart

TCustomConnectDialog

Syntax

property DialogClass: string;

Remarks

Use the DialogClass property to specify the class of the form that will be displayed to enter

login information. When this property is blank, TCustomConnectDialog uses the default form -

TConnectForm. You can write your own login form to enter login information and assign its

class name to the DialogClass property. Each login form must have ConnectDialog:

TCustomConnectDialog published property to access connection information. For details see

the implementation of the connect form which sources are in the Lib subdirectory of the

UniDAC installation directory.

See Also
GetServerList

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.3.2.5 LabelSet Property

Used to set the language of buttons and labels captions.

Class

TCustomConnectDialog

Syntax

property LabelSet: TLabelSet default lsEnglish;

Remarks

Use the LabelSet property to set the language of labels and buttons captions.

The default value is lsEnglish.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components514

© 2024 Devart

6.11.1.3.2.6 Passw ordLabel Property

Used to specify a prompt for password edit.

Class

TCustomConnectDialog

Syntax

property PasswordLabel: string;

Remarks

Use the PasswordLabel property to specify a prompt for password edit.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.3.2.7 Retries Property

Used to indicate the number of retries of failed connections.

Class

TCustomConnectDialog

Syntax

property Retries: word default 3;

Remarks

Use the Retries property to determine the number of retries of failed connections.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.3.2.8 SavePassw ord Property

Used for the password to be displayed in ConnectDialog in asterisks.

Class

TCustomConnectDialog

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 515

© 2024 Devart

Syntax

property SavePassword: boolean default False;

Remarks

If True, and the Password property of the connection instance is assigned, the password in

ConnectDialog is displayed in asterisks.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.3.2.9 ServerLabel Property

Used to specify a prompt for the server name edit.

Class

TCustomConnectDialog

Syntax

property ServerLabel: string;

Remarks

Use the ServerLabel property to specify a prompt for the server name edit.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.3.2.10 StoreLogInfo Property

Used to specify whether the login information should be kept in system registry after a

connection was established.

Class

TCustomConnectDialog

Syntax

property StoreLogInfo: boolean default True;

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components516

© 2024 Devart

Remarks

Use the StoreLogInfo property to specify whether to keep login information in system registry

after a connection was established using provided username, password and servername.

Set this property to True to store login information.

The default value is True.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.3.2.11 UsernameLabel Property

Used to specify a prompt for username edit.

Class

TCustomConnectDialog

Syntax

property UsernameLabel: string;

Remarks

Use the UsernameLabel property to specify a prompt for username edit.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.3.3 Methods

Methods of the TCustomConnectDialog class.

For a complete list of the TCustomConnectDialog class members, see the

TCustomConnectDialog Members topic.

Public

Name Description

Execute
Displays the connect dialog
and calls the connection's
Connect method when user

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 517

© 2024 Devart

clicks the Connect button.

GetServerList Retrieves a list of available
server names.

See Also
TCustomConnectDialog Class

TCustomConnectDialog Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.3.3.1 Execute Method

Displays the connect dialog and calls the connection's Connect method when user clicks the

Connect button.

Class

TCustomConnectDialog

Syntax

function Execute: boolean; virtual;

Return Value

True, if connected.

Remarks

Displays the connect dialog and calls the connection's Connect method when user clicks the

Connect button. Returns True if connected. If user clicks Cancel, Execute returns False.

In the case of failed connection Execute offers to connect repeat Retries times.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.3.3.2 GetServerList Method

Retrieves a list of available server names.

Class

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components518

© 2024 Devart

TCustomConnectDialog

Syntax

procedure GetServerList(List: TStrings); virtual;

Parameters

List

Holds a list of available server names.

Remarks

Call the GetServerList method to retrieve a list of available server names. It is particularly

relevant for writing custom login form.

See Also
DialogClass

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.4 TCustomDAConnection Class

A base class for components used to establish connections.

For a list of all members of this type, see TCustomDAConnection members.

Unit

DBAccess

Syntax

TCustomDAConnection = class(TCustomConnection);

Remarks

TCustomDAConnection is a base class for components that establish connection with

database, provide customised login support, and perform transaction control.

Do not create instances of TCustomDAConnection. To add a component that represents a

connection to a source of data, use descendants of the TCustomDAConnection class.

© 1997-2024 Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 519

© 2024 Devart

Devart. All Rights
Reserved.

6.11.1.4.1 Members

TCustomDAConnection class overview.

Properties

Name Description

ConnectDialog
Allows to link a
TCustomConnectDialog
component.

ConnectString

Used to specify the
connection information, such
as: UserName, Password,
Server, etc.

ConvertEOL
Allows customizing line
breaks in string fields and
parameters.

InTransaction Indicates whether the
transaction is active.

LoginPrompt

Specifies whether a login
dialog appears immediately
before opening a new
connection.

Options Specifies the connection
behavior.

Password Serves to supply a
password for login.

Pooling Enables or disables using
connection pool.

PoolingOptions Specifies the behaviour of
connection pool.

Server Serves to supply the server
name for login.

Username Used to supply a user name
for login.

Methods

Name Description

ApplyUpdates Overloaded. Applies

Universal Data Access Components520

© 2024 Devart

changes in datasets.
Commit Commits current transaction.

Connect Establishes a connection to
the server.

CreateSQL Creates a component for
queries execution.

Disconnect Performs disconnect.

ExecProc

Allows to execute stored
procedure or function
providing its name and
parameters.

ExecProcEx Allows to execute a stored
procedure or function.

ExecSQL Executes a SQL statement
with parameters.

ExecSQLEx

Executes any SQL
statement outside the
TQuery or TSQL
components.

GetDatabaseNames Returns a database list from
the server.

GetKeyFieldNames Provides a list of available
key field names.

GetStoredProcNames Returns a list of stored
procedures from the server.

GetTableNames Provides a list of available
tables names.

MonitorMessage

Sends a specified message
through the
TCustomDASQLMonitor
component.

Ping Used to check state of
connection to the server.

RemoveFromPool
Marks the connection that
should not be returned to the
pool after disconnect.

Rollback
Discards all current data
changes and ends
transaction.

StartTransaction Begins a new user
transaction.

Reference 521

© 2024 Devart

Events

Name Description

OnConnectionLost This event occurs when
connection was lost.

OnError
This event occurs when an
error has arisen in the
connection.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.4.2 Properties

Properties of the TCustomDAConnection class.

For a complete list of the TCustomDAConnection class members, see the

TCustomDAConnection Members topic.

Public

Name Description

ConnectDialog
Allows to link a
TCustomConnectDialog
component.

ConnectString

Used to specify the
connection information, such
as: UserName, Password,
Server, etc.

ConvertEOL
Allows customizing line
breaks in string fields and
parameters.

InTransaction Indicates whether the
transaction is active.

LoginPrompt

Specifies whether a login
dialog appears immediately
before opening a new
connection.

Options Specifies the connection
behavior.

Password Serves to supply a
password for login.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components522

© 2024 Devart

Pooling Enables or disables using
connection pool.

PoolingOptions Specifies the behaviour of
connection pool.

Server Serves to supply the server
name for login.

Username Used to supply a user name
for login.

See Also
TCustomDAConnection Class

TCustomDAConnection Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.4.2.1 ConnectDialog Property

Allows to link a TCustomConnectDialog component.

Class

TCustomDAConnection

Syntax

property ConnectDialog: TCustomConnectDialog;

Remarks

Use the ConnectDialog property to assign to connection a TCustomConnectDialog

component.

See Also
TCustomConnectDialog

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 523

© 2024 Devart

6.11.1.4.2.2 ConnectString Property

Used to specify the connection information, such as: UserName, Password, Server, etc.

Class

TCustomDAConnection

Syntax

property ConnectString: string stored False;

Remarks

UniDAC recognizes an ODBC-like syntax in provider string property values. Within the string,

elements are delimited by using a semicolon. Each element consists of a keyword, an equal

sign character, and the value passed on initialization. For example:

Server=London1;User ID=nancyd

See Also
Password

Username

Server

Connect

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.4.2.3 ConvertEOL Property

Allows customizing line breaks in string fields and parameters.

Class

TCustomDAConnection

Syntax

property ConvertEOL: boolean default False;

Remarks

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components524

© 2024 Devart

Affects the line break behavior in string fields and parameters. When fetching strings

(including the TEXT fields) with ConvertEOL = True, dataset converts their line breaks from

the LF to CRLF form. And when posting strings to server with ConvertEOL turned on, their

line breaks are converted from CRLF to LF form. By default, strings are not converted.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.4.2.4 InTransaction Property

Indicates whether the transaction is active.

Class

TCustomDAConnection

Syntax

property InTransaction: boolean;

Remarks

Examine the InTransaction property at runtime to determine whether user transaction is

currently in progress. In other words InTransaction is set to True when user explicitly calls

StartTransaction. Calling Commit or Rollback sets InTransaction to False. The value of the

InTransaction property cannot be changed directly.

See Also
StartTransaction

Commit

Rollback

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.4.2.5 LoginPrompt Property

Specifies whether a login dialog appears immediately before opening a new connection.

Class

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 525

© 2024 Devart

TCustomDAConnection

Syntax

property LoginPrompt default DefValLoginPrompt;

Remarks

Specifies whether a login dialog appears immediately before opening a new connection. If

ConnectDialog is not specified, the default connect dialog will be shown. The connect dialog

will appear only if the UniDacVcl unit appears to the uses clause.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.4.2.6 Options Property

Specifies the connection behavior.

Class

TCustomDAConnection

Syntax

property Options: TDAConnectionOptions;

Remarks

Set the properties of Options to specify the behaviour of the connection.

Descriptions of all options are in the table below.

Option Name Description

AllowImplicitConnect Specifies whether to allow or not implicit
connection opening.

DefaultSortType

Used to determine the default type of local
sorting for string fields. It is used when a
sort type is not specified explicitly after the
field name in the
TMemDataSet.IndexFieldNames property
of a dataset.

DisconnectedMode
Used to open a connection only when
needed for performing a server call and

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components526

© 2024 Devart

closes after performing the operation.

KeepDesignConnected
Used to prevent an application from
establishing a connection at the time of
startup.

LocalFailover
If True, the OnConnectionLost event occurs
and a failover operation can be performed
after connection breaks.

See Also
Disconnected Mode

Working in an Unstable Network

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.4.2.7 Passw ord Property

Serves to supply a password for login.

Class

TCustomDAConnection

Syntax

property Password: string stored False;

Remarks

Use the Password property to supply a password to handle server's request for a login.

Warning: Storing hard-coded user name and password entries as property values or in code

for the OnLogin event handler can compromise server security.

See Also
Username

Server

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 527

© 2024 Devart

6.11.1.4.2.8 Pooling Property

Enables or disables using connection pool.

Class

TCustomDAConnection

Syntax

property Pooling: boolean default DefValPooling;

Remarks

Normally, when TCustomDAConnection establishes connection with the server it takes

server memory and time resources for allocating new server connection. For example,

pooling can be very useful when using disconnect mode. If an application has wide user

activity that forces many connect/disconnect operations, it may spend a lot of time on

creating connection and sending requests to the server. TCustomDAConnection has

software pool which stores open connections with identical parameters.

Connection pool uses separate thread that validates the pool every 30 seconds. Pool

validation consists of checking each connection in the pool. If a connection is broken due to a

network problem or another reason, it is deleted from the pool. The validation procedure

removes also connections that are not used for a long time even if they are valid from the

pool.

Set Pooling to True to enable pooling. Specify correct values for PoolingOptions. Two

connections belong to the same pool if they have identical values for the parameters:

MinPoolSize, MaxPoolSize, Validate, ConnectionLifeTime.

Note: Using Pooling := True can cause errors with working with temporary tables.

See Also
Username

Password

PoolingOptions

Using Connection Pooling

© 1997-2024 Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components528

© 2024 Devart

Devart. All Rights
Reserved.

6.11.1.4.2.9 PoolingOptions Property

Specifies the behaviour of connection pool.

Class

TCustomDAConnection

Syntax

property PoolingOptions: TPoolingOptions;

Remarks

Set the properties of PoolingOptions to specify the behaviour of connection pool.

Descriptions of all options are in the table below.

Option Name Description

ConnectionLifetime
Used to specify the maximum time during
which an open connection can be used by
connection pool.

MaxPoolSize
Used to specify the maximum number of
connections that can be opened in
connection pool.

MinPoolSize
Used to specify the minimum number of
connections that can be opened in the
connection pool.

PoolId Used to specify an ID for a connection pool.

Validate
Used for a connection to be validated when
it is returned from the pool.

See Also
Pooling

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 529

© 2024 Devart

6.11.1.4.2.10 Server Property

Serves to supply the server name for login.

Class

TCustomDAConnection

Syntax

property Server: string;

Remarks

Use the Server property to supply server name to handle server's request for a login.

See Also
Username

Password

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.4.2.11 Username Property

Used to supply a user name for login.

Class

TCustomDAConnection

Syntax

property Username: string;

Remarks

Use the Username property to supply a user name to handle server's request for login. If this

property is not set, UniDAC tries to connect with the user name.

Warning: Storing hard-coded user name and password entries as property values or in code

for the OnLogin event handler can compromise server security.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components530

© 2024 Devart

See Also
Password

Server

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.4.3 Methods

Methods of the TCustomDAConnection class.

For a complete list of the TCustomDAConnection class members, see the

TCustomDAConnection Members topic.

Public

Name Description

ApplyUpdates Overloaded. Applies
changes in datasets.

Commit Commits current transaction.

Connect Establishes a connection to
the server.

CreateSQL Creates a component for
queries execution.

Disconnect Performs disconnect.

ExecProc

Allows to execute stored
procedure or function
providing its name and
parameters.

ExecProcEx Allows to execute a stored
procedure or function.

ExecSQL Executes a SQL statement
with parameters.

ExecSQLEx

Executes any SQL
statement outside the
TQuery or TSQL
components.

GetDatabaseNames Returns a database list from
the server.

GetKeyFieldNames Provides a list of available
key field names.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 531

© 2024 Devart

GetStoredProcNames Returns a list of stored
procedures from the server.

GetTableNames Provides a list of available
tables names.

MonitorMessage

Sends a specified message
through the
TCustomDASQLMonitor
component.

Ping Used to check state of
connection to the server.

RemoveFromPool
Marks the connection that
should not be returned to the
pool after disconnect.

Rollback
Discards all current data
changes and ends
transaction.

StartTransaction Begins a new user
transaction.

See Also
TCustomDAConnection Class

TCustomDAConnection Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.4.3.1 ApplyUpdates Method

Applies changes in datasets.

Class

TCustomDAConnection

Overload List

Name Description

ApplyUpdates Applies changes from all active datasets.

ApplyUpdates(const DataSets: array of
TCustomDADataSet)

Applies changes from the specified
datasets.

© 1997-2024 Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components532

© 2024 Devart

Devart. All Rights
Reserved.

Applies changes from all active datasets.

Class

TCustomDAConnection

Syntax

procedure ApplyUpdates; overload; virtual;

Remarks

Call the ApplyUpdates method to write all pending cached updates from all active datasets

attached to this connection to a database or from specific datasets. The ApplyUpdates

method passes cached data to the database for storage, takes care of committing or rolling

back transactions, and clearing the cache when the operation is successful.

Using ApplyUpdates for connection is a preferred method of updating datasets rather than

calling each individual dataset's ApplyUpdates method.

See Also
TMemDataSet.CachedUpdates

TMemDataSet.ApplyUpdates

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

Applies changes from the specified datasets.

Class

TCustomDAConnection

Syntax

procedure ApplyUpdates(const DataSets: array of

TCustomDADataSet); overload; virtual;

Parameters

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 533

© 2024 Devart

DataSets

A list of datasets changes in which are to be applied.

Remarks

Call the ApplyUpdates method to write all pending cached updates from the specified

datasets. The ApplyUpdates method passes cached data to the database for storage, takes

care of committing or rolling back transactions and clearing the cache when operation is

successful.

Using ApplyUpdates for connection is a preferred method of updating datasets rather than

calling each individual dataset's ApplyUpdates method.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.4.3.2 Commit Method

Commits current transaction.

Class

TCustomDAConnection

Syntax

procedure Commit; virtual;

Remarks

Call the Commit method to commit current transaction. On commit server writes

permanently all pending data updates associated with the current transaction to the database

and then ends the transaction. The current transaction is the last transaction started by

calling StartTransaction.

See Also
Rollback

StartTransaction

TCustomUniDataSet.SpecificOptions

© 1997-2024
Devart. All Rights

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components534

© 2024 Devart

Reserved.

6.11.1.4.3.3 Connect Method

Establishes a connection to the server.

Class

TCustomDAConnection

Syntax

procedure Connect; overload;procedure Connect(const

ConnectString: string); overload;

Remarks

Call the Connect method to establish a connection to the server. Connect sets the Connected

property to True. If LoginPrompt is True, Connect prompts user for login information as

required by the server, or otherwise tries to establish a connection using values provided in

the Username, Password, and Server properties.

See Also
Disconnect

Username

Password

Server

ConnectDialog

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.4.3.4 CreateSQL Method

Creates a component for queries execution.

Class

TCustomDAConnection

Syntax

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 535

© 2024 Devart

function CreateSQL: TCustomDASQL; virtual;

Return Value

A new instance of the class.

Remarks

Call the CreateSQL to return a new instance of the TCustomDASQL class and associates it

with this connection object. In the descendant classes this method should be overridden to

create an appropriate descendant of the TCustomDASQL component.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.4.3.5 Disconnect Method

Performs disconnect.

Class

TCustomDAConnection

Syntax

procedure Disconnect;

Remarks

Call the Disconnect method to drop a connection to database. Before the connection

component is deactivated, all associated datasets are closed. Calling Disconnect is similar to

setting the Connected property to False.

In most cases, closing a connection frees system resources allocated to the connection.

If user transaction is active, e.g. the InTransaction flag is set, calling to Disconnect the current

user transaction.

Note: If a previously active connection is closed and then reopened, any associated datasets

must be individually reopened; reopening the connection does not automatically reopen

associated datasets.

See Also

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components536

© 2024 Devart

Connect

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.4.3.6 ExecProc Method

Allows to execute stored procedure or function providing its name and parameters.

Class

TCustomDAConnection

Syntax

function ExecProc(const Name: string; const Params: array of

variant): variant; virtual;

Parameters

Name

Holds the name of the stored procedure or function.

Params

Holds the parameters of the stored procedure or function.

Return Value

the result of the stored procedure.

Remarks

Allows to execute stored procedure or function providing its name and parameters.

Use the following Name value syntax for executing specific overloaded routine:

"StoredProcName:1" or "StoredProcName:5". The first example executes the first overloaded

stored procedure, while the second example executes the fifth overloaded procedure.

Assign parameters' values to the Params array in exactly the same order and number as they

appear in the stored procedure declaration. Out parameters of the procedure can be

accessed with the ParamByName procedure.

If the value of an input parameter was not included to the Params array, parameter default

value is taken. Only parameters at the end of the list can be unincluded to the Params array. If

the parameter has no default value, the NULL value is sent.

Note: Stored functions unlike stored procedures return result values that are obtained

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 537

© 2024 Devart

internally through the RESULT parameter. You will no longer have to provide anonymous

value in the Params array to describe the result of the function. The stored function result is

obtained from the Params[0] indexed property or with the ParamByName('RESULT') method

call.

For further examples of parameter usage see ExecSQL, ExecSQLEx.

Example

For example, having stored function declaration presented in Example 1), you may execute it

and retrieve its result with commands presented in Example 2):

Example 1)
CREATE procedure MY_SUM (
 A INTEGER,
 B INTEGER)
RETURNS (
 RESULT INTEGER)
as
begin
 Result = a + b;
end;
Example 2)
Label1.Caption:= MyUniConnection1.ExecProc('My_Sum', [10, 20]);
Label2.Caption:= MyUniConnection1.ParamByName('Result').AsString;

See Also
ExecProcEx

ExecSQL

ExecSQLEx

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.4.3.7 ExecProcEx Method

Allows to execute a stored procedure or function.

Class

TCustomDAConnection

Syntax

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components538

© 2024 Devart

function ExecProcEx(const Name: string; const Params: array of

variant): variant; virtual;

Parameters

Name

Holds the stored procedure name.

Params

Holds an array of pairs of parameters' names and values.

Return Value

the result of the stored procedure.

Remarks

Allows to execute a stored procedure or function. Provide the stored procedure name and its

parameters to the call of ExecProcEx.

Use the following Name value syntax for executing specific overloaded routine:

"StoredProcName:1" or "StoredProcName:5". The first example executes the first overloaded

stored procedure, while the second example executes the fifth overloaded procedure.

Assign pairs of parameters' names and values to a Params array so that every name comes

before its corresponding value when an array is being indexed.

Out parameters of the procedure can be accessed with the ParamByName procedure. If the

value for an input parameter was not included to the Params array, the parameter default

value is taken. If the parameter has no default value, the NULL value is sent.

Note: Stored functions unlike stored procedures return result values that are obtained

internally through the RESULT parameter. You will no longer have to provide anonymous

value in the Params array to describe the result of the function. Stored function result is

obtained from the Params[0] indexed property or with the ParamByName('RESULT') method

call.

For an example of parameters usage see ExecSQLEx.

Example

If you have some stored procedure accepting four parameters, and you want to provide

values only for the first and fourth parameters, you should call ExecProcEx in the following

way:

Connection.ExecProcEx('Some_Stored_Procedure', ['Param_Name1', 'Param_Value1', 'Param_Name4', 'Param_Value4']);

Reference 539

© 2024 Devart

See Also
ExecSQL

ExecSQLEx

ExecProc

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.4.3.8 ExecSQL Method

Executes a SQL statement with parameters.

Class

TCustomDAConnection

Syntax

function ExecSQL(const Text: string): variant;

overload;function ExecSQL(const Text: string; const Params:

array of variant): variant; overload; virtual;

Parameters

Text

a SQL statement to be executed.

Params

Array of parameter values arranged in the same order as they appear in SQL statement.

Return Value

Out parameter with the name Result will hold the result of function having data type dtString.
Otherwise returns Null.

Remarks

Use the ExecSQL method to execute any SQL statement outside the TCustomDADataSet or

TCustomDASQL components. Supply the Params array with the values of parameters

arranged in the same order as they appear in a SQL statement which itself is passed to the

Text string parameter.

See Also
ExecSQLEx

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components540

© 2024 Devart

ExecProc

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.4.3.9 ExecSQLEx Method

Executes any SQL statement outside the TQuery or TSQL components.

Class

TCustomDAConnection

Syntax

function ExecSQLEx(const Text: string; const Params: array of

variant): variant; virtual;

Parameters

Text

a SQL statement to be executed.

Params

Array of parameter values arranged in the same order as they appear in SQL statement.

Return Value

Out parameter with the name Result will hold the result of a function having data type
dtString. Otherwise returns Null.

Remarks

Call the ExecSQLEx method to execute any SQL statement outside the TQuery or TSQL

components. Supply the Params array with values arranged in pairs of parameter name and

its value. This way each parameter name in the array is found on even index values whereas

parameter value is on odd index value but right after its parameter name. The parameter pairs

must be arranged according to their occurrence in a SQL statement which itself is passed in

the Text string parameter.

The Params array must contain all IN and OUT parameters defined in the SQL statement.

For OUT parameters provide any values of valid types so that they are explicitly defined

before call to the ExecSQLEx method.

Out parameter with the name Result will hold the result of a function having data type dtString.

If neither of the parameters in the Text statement is named Result, ExecSQLEx will return

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 541

© 2024 Devart

Null.

To get the values of OUT parameters use the ParamByName function.

Example

UniConnection.ExecSQLEx('begin :A:= :B + :C; end;',
 ['A', 0, 'B', 5, 'C', 3]);
A:= UniConnection.ParamByName('A').AsInteger;

See Also
ExecSQL

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.4.3.10 GetDatabaseNames Method

Returns a database list from the server.

Class

TCustomDAConnection

Syntax

procedure GetDatabaseNames(List: TStrings); virtual;

Parameters

List

A TStrings descendant that will be filled with database names.

Remarks

Populates a string list with the names of databases.

Note: Any contents already in the target string list object are eliminated and overwritten by

data produced by GetDatabaseNames.

See Also
GetTableNames

GetStoredProcNames

© 1997-2024 Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components542

© 2024 Devart

Devart. All Rights
Reserved.

6.11.1.4.3.11 GetKeyFieldNames Method

Provides a list of available key field names.

Class

TCustomDAConnection

Syntax

procedure GetKeyFieldNames(const TableName: string; List:

TStrings); virtual;

Parameters

TableName

Holds the table name

List

The list of available key field names

Return Value

Key field name

Remarks

Call the GetKeyFieldNames method to get the names of available key fields. Populates a

string list with the names of key fields in tables.

See Also
GetTableNames

GetStoredProcNames

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.4.3.12 GetStoredProcNames Method

Returns a list of stored procedures from the server.

Class

TCustomDAConnection

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 543

© 2024 Devart

Syntax

procedure GetStoredProcNames(List: TStrings; AllProcs: boolean =

False); virtual;

Parameters

List

A TStrings descendant that will be filled with the names of stored procedures in the
database.

AllProcs

True, if stored procedures from all schemas or including system procudures (depending on
the server) are returned. False otherwise.

Remarks

Call the GetStoredProcNames method to get the names of available stored procedures and

functions. GetStoredProcNames populates a string list with the names of stored procs in the

database. If AllProcs = True, the procedure returns to the List parameter the names of the

stored procedures that belong to all schemas; otherwise, List will contain the names of

functions that belong to the current schema.

Note: Any contents already in the target string list object are eliminated and overwritten by

data produced by GetStoredProcNames.

See Also
GetDatabaseNames

GetTableNames

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.4.3.13 GetTableNames Method

Provides a list of available tables names.

Class

TCustomDAConnection

Syntax

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components544

© 2024 Devart

procedure GetTableNames(List: TStrings; AllTables: boolean =

False; OnlyTables: boolean = False); virtual;

Parameters

List

A TStrings descendant that will be filled with table names.

AllTables

True, if procedure returns all table names including the names of system tables to the List
parameter.

OnlyTables

Remarks

Call the GetTableNames method to get the names of available tables. Populates a string list

with the names of tables in the database. If AllTables = True, procedure returns all table

names including the names of system tables to the List parameter, otherwise List will not

contain the names of system tables. If AllTables = True, the procedure returns to the List

parameter the names of the tables that belong to all schemas; otherwise, List will contain the

names of the tables that belong to the current schema.

Note: Any contents already in the target string list object are eliminated and overwritten by the

data produced by GetTableNames.

See Also
GetDatabaseNames

GetStoredProcNames

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.4.3.14 MonitorMessage Method

Sends a specified message through the TCustomDASQLMonitor component.

Class

TCustomDAConnection

Syntax

procedure MonitorMessage(const Msg: string);

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 545

© 2024 Devart

Parameters

Msg

Message text that will be sent.

Remarks

Call the MonitorMessage method to output specified message via the

TCustomDASQLMonitor component.

See Also
TCustomDASQLMonitor

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.4.3.15 Ping Method

Used to check state of connection to the server.

Class

TCustomDAConnection

Syntax

procedure Ping;

Remarks

The method is used for checking server connection state.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.4.3.16 RemoveFromPool Method

Marks the connection that should not be returned to the pool after disconnect.

Class

TCustomDAConnection

Syntax

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components546

© 2024 Devart

procedure RemoveFromPool;

Remarks

Call the RemoveFromPool method to mark the connection that should be deleted after

disconnect instead of returning to the connection pool.

See Also
Pooling

PoolingOptions

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.4.3.17 Rollback Method

Discards all current data changes and ends transaction.

Class

TCustomDAConnection

Syntax

procedure Rollback; virtual;

Remarks

Call the Rollback method to discard all updates, insertions, and deletions of data associated

with the current transaction to the database server and then end the transaction. The current

transaction is the last transaction started by calling StartTransaction.

See Also
Commit

StartTransaction

TCustomUniDataSet.SpecificOptions

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 547

© 2024 Devart

6.11.1.4.3.18 StartTransaction Method

Begins a new user transaction.

Class

TCustomDAConnection

Syntax

procedure StartTransaction; virtual;

Remarks

Call the StartTransaction method to begin a new user transaction against the database

server. Before calling StartTransaction, an application should check the status of the

InTransaction property. If InTransaction is True, indicating that a transaction is already in

progress, a subsequent call to StartTransaction without first calling Commit or Rollback to

end the current transaction raises EDatabaseError. Calling StartTransaction when

connection is closed also raises EDatabaseError.

Updates, insertions, and deletions that take place after a call to StartTransaction are held by

the server until an application calls Commit to save the changes, or Rollback to cancel them.

See Also
Commit

Rollback

InTransaction

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.4.4 Events

Events of the TCustomDAConnection class.

For a complete list of the TCustomDAConnection class members, see the

TCustomDAConnection Members topic.

Public

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components548

© 2024 Devart

Name Description

OnConnectionLost This event occurs when
connection was lost.

OnError
This event occurs when an
error has arisen in the
connection.

See Also
TCustomDAConnection Class

TCustomDAConnection Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.4.4.1 OnConnectionLost Event

This event occurs when connection was lost.

Class

TCustomDAConnection

Syntax

property OnConnectionLost: TConnectionLostEvent;

Remarks

Write the OnConnectionLost event handler to process fatal errors and perform failover.

Note: To use the OnConnectionLost event handler, you should explicitly add the MemData

unit to the 'uses' list and set the TCustomDAConnection.Options.LocalFailover property to

True.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.4.4.2 OnError Event

This event occurs when an error has arisen in the connection.

Class

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 549

© 2024 Devart

TCustomDAConnection

Syntax

property OnError: TDAConnectionErrorEvent;

Remarks

Write the OnError event handler to respond to errors that arise with connection. Check the E

parameter to get the error code. Set the Fail parameter to False to prevent an error dialog

from being displayed and to raise the EAbort exception to cancel current operation. The

default value of Fail is True.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5 TCustomDADataSet Class

Encapsulates general set of properties, events, and methods for working with data accessed

through various database engines.

For a list of all members of this type, see TCustomDADataSet members.

Unit

DBAccess

Syntax

TCustomDADataSet = class(TMemDataSet);

Remarks

TCustomDADataSet encapsulates general set of properties, events, and methods for working

with data accessed through various database engines. All database-specific features are

supported by descendants of TCustomDADataSet.

Applications should not use TCustomDADataSet objects directly.

Inheritance Hierarchy

TMemDataSet

 TCustomDADataSet

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components550

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.1 Members

TCustomDADataSet class overview.

Properties

Name Description

BaseSQL

Used to return SQL text
without any changes
performed by AddWhere,
SetOrderBy, and FilterSQL.

CachedUpdates (inherited from TMemDataSet)
Used to enable or disable
the use of cached updates
for a dataset.

Conditions Used to add WHERE
conditions to a query

Connection
Used to specify a
connection object to use to
connect to a data store.

DataTypeMap Used to set data type
mapping rules

Debug

Used to display the
statement that is being
executed and the values and
types of its parameters.

DetailFields

Used to specify the fields
that correspond to the
foreign key fields from
MasterFields when building
master/detail relationship.

Disconnected
Used to keep dataset
opened after connection is
closed.

FetchRows

Used to define the number
of rows to be transferred
across the network at the
same time.

FilterSQL

Used to change the WHERE
clause of SELECT
statement and reopen a
query.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 551

© 2024 Devart

FinalSQL

Used to return SQL text with
all changes performed by
AddWhere, SetOrderBy,
and FilterSQL, and with
expanded macros.

IndexFieldNames (inherited from TMemDataSet)
Used to get or set the list of
fields on which the recordset
is sorted.

IsQuery Used to check whether SQL
statement returns rows.

KeyExclusive (inherited from TMemDataSet)
Specifies the upper and
lower boundaries for a
range.

KeyFields

Used to build SQL
statements for the
SQLDelete, SQLInsert, and
SQLUpdate properties if
they were empty before
updating the database.

LocalConstraints (inherited from TMemDataSet)

Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet)
Used to prevent implicit
update of rows on database
server.

MacroCount
Used to get the number of
macros associated with the
Macros property.

Macros Makes it possible to change
SQL queries easily.

MasterFields

Used to specify the names
of one or more fields that are
used as foreign keys for
dataset when establishing
detail/master relationship
between it and the dataset
specified in MasterSource.

MasterSource

Used to specify the data
source component which
binds current dataset to the
master one.

Options Used to specify the
behaviour of

Universal Data Access Components552

© 2024 Devart

TCustomDADataSet object.

ParamCheck

Used to specify whether
parameters for the Params
property are generated
automatically after the SQL
property was changed.

ParamCount
Used to indicate how many
parameters are there in the
Params property.

Params
Used to view and set
parameter names, values,
and data types dynamically.

Prepared (inherited from TMemDataSet)
Determines whether a query
is prepared for execution or
not.

Ranged (inherited from TMemDataSet) Indicates whether a range is
applied to a dataset.

ReadOnly
Used to prevent users from
updating, inserting, or
deleting data in the dataset.

RefreshOptions Used to indicate when the
editing record is refreshed.

RowsAffected

Used to indicate the number
of rows which were inserted,
updated, or deleted during
the last query operation.

SQL

Used to provide a SQL
statement that a query
component executes when
its Open method is called.

SQLDelete

Used to specify a SQL
statement that will be used
when applying a deletion to
a record.

SQLInsert

Used to specify the SQL
statement that will be used
when applying an insertion
to a dataset.

SQLLock
Used to specify a SQL
statement that will be used
to perform a record lock.

SQLRecCount
Used to specify the SQL
statement that is used to get
the record count when

Reference 553

© 2024 Devart

opening a dataset.

SQLRefresh

Used to specify a SQL
statement that will be used
to refresh current record by
calling the
TCustomDADataSet.Refres
hRecord procedure.

SQLUpdate

Used to specify a SQL
statement that will be used
when applying an update to
a dataset.

UniDirectional

Used if an application does
not need bidirectional
access to records in the
result set.

UpdateRecordTypes (inherited from TMemDataSet)
Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

Methods

Name Description

AddWhere

Adds condition to the
WHERE clause of SELECT
statement in the SQL
property.

ApplyRange (inherited from TMemDataSet) Applies a range to the
dataset.

ApplyUpdates (inherited from TMemDataSet)
Overloaded. Writes
dataset's pending cached
updates to a database.

BreakExec Breaks execution of the SQL
statement on the server.

CancelRange (inherited from TMemDataSet)
Removes any ranges
currently in effect for a
dataset.

CancelUpdates (inherited from TMemDataSet)
Clears all pending cached
updates from cache and
restores dataset in its prior
state.

Universal Data Access Components554

© 2024 Devart

CommitUpdates (inherited from TMemDataSet) Clears the cached updates
buffer.

CreateBlobStream

Used to obtain a stream for
reading data from or writing
data to a BLOB field,
specified by the Field
parameter.

DeferredPost (inherited from TMemDataSet) Makes permanent changes
to the database server.

DeleteWhere

Removes WHERE clause
from the SQL property and
assigns the BaseSQL
property.

EditRangeEnd (inherited from TMemDataSet)
Enables changing the
ending value for an existing
range.

EditRangeStart (inherited from TMemDataSet)
Enables changing the
starting value for an existing
range.

Execute
Overloaded. Executes a
SQL statement on the
server.

Executing
Indicates whether SQL
statement is still being
executed.

Fetched
Used to find out whether
TCustomDADataSet has
fetched all rows.

Fetching
Used to learn whether
TCustomDADataSet is still
fetching rows.

FetchingAll
Used to learn whether
TCustomDADataSet is
fetching all rows to the end.

FindKey
Searches for a record which
contains specified field
values.

FindMacro Finds a macro with the
specified name.

FindNearest

Moves the cursor to a
specific record or to the first
record in the dataset that
matches or is greater than
the values specified in the

Reference 555

© 2024 Devart

KeyValues parameter.

FindParam
Determines if a parameter
with the specified name
exists in a dataset.

GetBlob (inherited from TMemDataSet)

Overloaded. Retrieves
TBlob object for a field or
current record when only its
name or the field itself is
known.

GetDataType
Returns internal field types
defined in the MemData and
accompanying modules.

GetFieldObject Returns a multireference
shared object from field.

GetFieldPrecision Retrieves the precision of a
number field.

GetFieldScale Retrieves the scale of a
number field.

GetKeyFieldNames Provides a list of available
key field names.

GetOrderBy
Retrieves an ORDER BY
clause from a SQL
statement.

GotoCurrent

Sets the current record in
this dataset similar to the
current record in another
dataset.

Locate (inherited from TMemDataSet)
Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

LocateEx (inherited from TMemDataSet)

Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

Lock Locks the current record.

MacroByName Finds a macro with the
specified name.

ParamByName

Sets or uses parameter
information for a specific
parameter based on its
name.

Universal Data Access Components556

© 2024 Devart

Prepare Allocates, opens, and
parses cursor for a query.

RefreshRecord Actualizes field values for
the current record.

RestoreSQL
Restores the SQL property
modified by AddWhere and
SetOrderBy.

RestoreUpdates (inherited from TMemDataSet)
Marks all records in the
cache of updates as
unapplied.

RevertRecord (inherited from TMemDataSet)
Cancels changes made to
the current record when
cached updates are
enabled.

SaveSQL Saves the SQL property
value to BaseSQL.

SaveToXML (inherited from TMemDataSet)

Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

SetOrderBy Builds an ORDER BY clause
of a SELECT statement.

SetRange (inherited from TMemDataSet)
Sets the starting and ending
values of a range, and
applies it.

SetRangeEnd (inherited from TMemDataSet)

Indicates that subsequent
assignments to field values
specify the end of the range
of rows to include in the
dataset.

SetRangeStart (inherited from TMemDataSet)

Indicates that subsequent
assignments to field values
specify the start of the range
of rows to include in the
dataset.

SQLSaved
Determines if the SQL
property value was saved to
the BaseSQL property.

UnLock Releases a record lock.

UnPrepare (inherited from TMemDataSet)
Frees the resources
allocated for a previously
prepared query on the
server and client sides.

Reference 557

© 2024 Devart

UpdateResult (inherited from TMemDataSet)

Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are
enabled.

UpdateStatus (inherited from TMemDataSet)
Indicates the current update
status for the dataset when
cached updates are
enabled.

Events

Name Description

AfterExecute
Occurs after a component
has executed a query to
database.

AfterFetch Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute
Occurs after executing
insert, delete, update, lock
and refresh operations.

BeforeFetch
Occurs before dataset is
going to fetch block of
records from the server.

BeforeUpdateExecute
Occurs before executing
insert, delete, update, lock,
and refresh operations.

OnUpdateError (inherited from TMemDataSet)

Occurs when an exception is
generated while cached
updates are applied to a
database.

OnUpdateRecord (inherited from TMemDataSet)
Occurs when a single
update component can not
handle the updates.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.2 Properties

Properties of the TCustomDADataSet class.

For a complete list of the TCustomDADataSet class members, see the TCustomDADataSet

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components558

© 2024 Devart

Members topic.

Public

Name Description

BaseSQL

Used to return SQL text
without any changes
performed by AddWhere,
SetOrderBy, and FilterSQL.

CachedUpdates (inherited from TMemDataSet)
Used to enable or disable
the use of cached updates
for a dataset.

Conditions Used to add WHERE
conditions to a query

Connection
Used to specify a
connection object to use to
connect to a data store.

DataTypeMap Used to set data type
mapping rules

Debug

Used to display the
statement that is being
executed and the values and
types of its parameters.

DetailFields

Used to specify the fields
that correspond to the
foreign key fields from
MasterFields when building
master/detail relationship.

Disconnected
Used to keep dataset
opened after connection is
closed.

FetchRows

Used to define the number
of rows to be transferred
across the network at the
same time.

FilterSQL

Used to change the WHERE
clause of SELECT
statement and reopen a
query.

FinalSQL

Used to return SQL text with
all changes performed by
AddWhere, SetOrderBy,
and FilterSQL, and with
expanded macros.

Reference 559

© 2024 Devart

IndexFieldNames (inherited from TMemDataSet)
Used to get or set the list of
fields on which the recordset
is sorted.

IsQuery Used to check whether SQL
statement returns rows.

KeyExclusive (inherited from TMemDataSet)
Specifies the upper and
lower boundaries for a
range.

KeyFields

Used to build SQL
statements for the
SQLDelete, SQLInsert, and
SQLUpdate properties if
they were empty before
updating the database.

LocalConstraints (inherited from TMemDataSet)

Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet)
Used to prevent implicit
update of rows on database
server.

MacroCount
Used to get the number of
macros associated with the
Macros property.

Macros Makes it possible to change
SQL queries easily.

MasterFields

Used to specify the names
of one or more fields that are
used as foreign keys for
dataset when establishing
detail/master relationship
between it and the dataset
specified in MasterSource.

MasterSource

Used to specify the data
source component which
binds current dataset to the
master one.

Options
Used to specify the
behaviour of
TCustomDADataSet object.

ParamCheck

Used to specify whether
parameters for the Params
property are generated
automatically after the SQL

Universal Data Access Components560

© 2024 Devart

property was changed.

ParamCount
Used to indicate how many
parameters are there in the
Params property.

Params
Used to view and set
parameter names, values,
and data types dynamically.

Prepared (inherited from TMemDataSet)
Determines whether a query
is prepared for execution or
not.

Ranged (inherited from TMemDataSet) Indicates whether a range is
applied to a dataset.

ReadOnly
Used to prevent users from
updating, inserting, or
deleting data in the dataset.

RefreshOptions Used to indicate when the
editing record is refreshed.

RowsAffected

Used to indicate the number
of rows which were inserted,
updated, or deleted during
the last query operation.

SQL

Used to provide a SQL
statement that a query
component executes when
its Open method is called.

SQLDelete

Used to specify a SQL
statement that will be used
when applying a deletion to
a record.

SQLInsert

Used to specify the SQL
statement that will be used
when applying an insertion
to a dataset.

SQLLock
Used to specify a SQL
statement that will be used
to perform a record lock.

SQLRecCount

Used to specify the SQL
statement that is used to get
the record count when
opening a dataset.

SQLRefresh

Used to specify a SQL
statement that will be used
to refresh current record by
calling the

Reference 561

© 2024 Devart

TCustomDADataSet.Refres
hRecord procedure.

SQLUpdate

Used to specify a SQL
statement that will be used
when applying an update to
a dataset.

UniDirectional

Used if an application does
not need bidirectional
access to records in the
result set.

UpdateRecordTypes (inherited from TMemDataSet)
Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

See Also
TCustomDADataSet Class

TCustomDADataSet Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.2.1 BaseSQL Property

Used to return SQL text without any changes performed by AddWhere, SetOrderBy, and

FilterSQL.

Class

TCustomDADataSet

Syntax

property BaseSQL: string;

Remarks

Use the BaseSQL property to return SQL text without any changes performed by AddWhere,

SetOrderBy, and FilterSQL, only macros are expanded. SQL text with all these changes can

be returned by FinalSQL.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components562

© 2024 Devart

See Also
FinalSQL

AddWhere

SaveSQL

SQLSaved

RestoreSQL

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.2.2 Conditions Property

Used to add WHERE conditions to a query

Class

TCustomDADataSet

Syntax

property Conditions: TDAConditions stored False;

See Also
TDAConditions

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.2.3 Connection Property

Used to specify a connection object to use to connect to a data store.

Class

TCustomDADataSet

Syntax

property Connection: TCustomDAConnection;

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 563

© 2024 Devart

Remarks

Use the Connection property to specify a connection object that will be used to connect to a

data store.

Set at design-time by selecting from the list of provided TCustomDAConnection or its

descendant class objects.

At runtime, link an instance of a TCustomDAConnection descendant to the Connection

property.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.2.4 DataTypeMap Property

Used to set data type mapping rules

Class

TCustomDADataSet

Syntax

property DataTypeMap: TDAMapRules stored IsMapRulesStored;

See Also
TDAMapRules

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.2.5 Debug Property

Used to display the statement that is being executed and the values and types of its

parameters.

Class

TCustomDADataSet

Syntax

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components564

© 2024 Devart

property Debug: boolean default False;

Remarks

Set the Debug property to True to display the statement that is being executed and the values

and types of its parameters.

You should add the UniDacVcl unit to the uses clause of any unit in your project to make the

Debug property work.

Note: If TUniSQLMonitor is used in the project and the TUniSQLMonitor.Active property is set

to False, the debug window is not displayed.

See Also
TCustomDASQL.Debug

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.2.6 DetailFields Property

Used to specify the fields that correspond to the foreign key fields from MasterFields when

building master/detail relationship.

Class

TCustomDADataSet

Syntax

property DetailFields: string;

Remarks

Use the DetailFields property to specify the fields that correspond to the foreign key fields

from MasterFields when building master/detail relationship. DetailFields is a string containing

one or more field names in the detail table. Separate field names with semicolons.

Use Field Link Designer to set the value in design time.

See Also
MasterFields

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 565

© 2024 Devart

MasterSource

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.2.7 Disconnected Property

Used to keep dataset opened after connection is closed.

Class

TCustomDADataSet

Syntax

property Disconnected: boolean;

Remarks

Set the Disconnected property to True to keep dataset opened after connection is closed.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.2.8 FetchRow s Property

Used to define the number of rows to be transferred across the network at the same time.

Class

TCustomDADataSet

Syntax

property FetchRows: integer default 25;

Remarks

The number of rows that will be transferred across the network at the same time. This

property can have a great impact on performance. So it is preferable to choose the optimal

value of the FetchRows property for each SQL statement and software/hardware

configuration experimentally.

The default value is 25.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components566

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.2.9 FilterSQL Property

Used to change the WHERE clause of SELECT statement and reopen a query.

Class

TCustomDADataSet

Syntax

property FilterSQL: string;

Remarks

The FilterSQL property is similar to the Filter property, but it changes the WHERE clause of

SELECT statement and reopens query. Syntax is the same to the WHERE clause.

Note: the FilterSQL property adds a value to the WHERE condition as is. If you expect this

value to be enclosed in brackets, you should bracket it explicitly.

Example

Query1.FilterSQL := 'Dept >= 20 and DName LIKE ''M%''';

See Also
AddWhere

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.2.10 FinalSQL Property

Used to return SQL text with all changes performed by AddWhere, SetOrderBy, and

FilterSQL, and with expanded macros.

Class

TCustomDADataSet

Syntax

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 567

© 2024 Devart

property FinalSQL: string;

Remarks

Use FinalSQL to return SQL text with all changes performed by AddWhere, SetOrderBy, and

FilterSQL, and with expanded macros. This is the exact statement that will be passed on to

the database server.

See Also
FinalSQL

AddWhere

SaveSQL

SQLSaved

RestoreSQL

BaseSQL

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.2.11 IsQuery Property

Used to check whether SQL statement returns rows.

Class

TCustomDADataSet

Syntax

property IsQuery: boolean;

Remarks

After the TCustomDADataSet component is prepared, the IsQuery property returns True if

SQL statement is a SELECT query.

Use the IsQuery property to check whether the SQL statement returns rows or not.

IsQuery is a read-only property. Reading IsQuery on unprepared dataset raises an exception.

© 1997-2024 Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components568

© 2024 Devart

Devart. All Rights
Reserved.

6.11.1.5.2.12 KeyFields Property

Used to build SQL statements for the SQLDelete, SQLInsert, and SQLUpdate properties if

they were empty before updating the database.

Class

TCustomDADataSet

Syntax

property KeyFields: string;

Remarks

TCustomDADataset uses the KeyFields property to build SQL statements for the SQLDelete,

SQLInsert, and SQLUpdate properties if they were empty before updating the database. For

this feature KeyFields may hold a list of semicolon-delimited field names. If KeyFields is not

defined before opening a dataset, TCustomDADataset requests metadata from a server,

database or dataset depending on the provider.

Note: For InterBase provider, though keys may be created across a number of table fields,

sequence is generated only for the first field found in the KeyFields property.

See Also
SQLDelete

SQLInsert

SQLRefresh

SQLUpdate

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.2.13 MacroCount Property

Used to get the number of macros associated with the Macros property.

Class

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 569

© 2024 Devart

TCustomDADataSet

Syntax

property MacroCount: word;

Remarks

Use the MacroCount property to get the number of macros associated with the Macros

property.

See Also
Macros

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.2.14 Macros Property

Makes it possible to change SQL queries easily.

Class

TCustomDADataSet

Syntax

property Macros: TMacros stored False;

Remarks

With the help of macros you can easily change SQL query text at design- or runtime. Marcos

extend abilities of parameters and allow to change conditions in a WHERE clause or sort

order in an ORDER BY clause. You just insert &MacroName in the SQL query text and

change value of macro in the Macro property editor at design time or call the MacroByName

function at run time. At the time of opening the query macro is replaced by its value.

Example

UniQuery.SQL.Text := 'SELECT * FROM Dept ORDER BY &Order';
UniQuery.MacroByName('Order').Value:= 'DeptNo';
UniQuery.Open;

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components570

© 2024 Devart

See Also
TMacro

MacroByName

Params

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.2.15 MasterFields Property

Used to specify the names of one or more fields that are used as foreign keys for dataset

when establishing detail/master relationship between it and the dataset specified in

MasterSource.

Class

TCustomDADataSet

Syntax

property MasterFields: string;

Remarks

Use the MasterFields property after setting the MasterSource property to specify the names of

one or more fields that are used as foreign keys for this dataset when establishing detail/

master relationship between it and the dataset specified in MasterSource.

MasterFields is a string containing one or more field names in the master table. Separate field

names with semicolons.

Each time the current record in the master table changes, the new values in these fields are

used to select corresponding records in this table for display.

Use Field Link Designer to set the values at design time after setting the MasterSource

property.

See Also
DetailFields

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 571

© 2024 Devart

MasterSource

Master/Detail Relationships

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.2.16 MasterSource Property

Used to specify the data source component which binds current dataset to the master one.

Class

TCustomDADataSet

Syntax

property MasterSource: TDataSource;

Remarks

The MasterSource property specifies the data source component which binds current dataset

to the master one.

TCustomDADataset uses MasterSource to extract foreign key fields values from the master

dataset when building master/detail relationship between two datasets. MasterSource must

point to another dataset; it cannot point to this dataset component.

When MasterSource is not nil dataset fills parameter values with corresponding field values

from the current record of the master dataset.

Note: Do not set the DataSource property when building master/detail relationships. Although

it points to the same object as the MasterSource property, it may lead to undesirable results.

See Also
MasterFields

DetailFields

Master/Detail Relationships

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components572

© 2024 Devart

6.11.1.5.2.17 Options Property

Used to specify the behaviour of TCustomDADataSet object.

Class

TCustomDADataSet

Syntax

property Options: TDADataSetOptions;

Remarks

Set the properties of Options to specify the behaviour of a TCustomDADataSet object.

Descriptions of all options are in the table below.

Option Name Description

AutoPrepare Used to execute automatic Prepare on the
query execution.

CacheCalcFields
Used to enable caching of the
TField.Calculated and TField.Lookup
fields.

CompressBlobMode Used to store values of the BLOB fields in
compressed form.

DefaultValues
Used to request default values/expressions
from the server and assign them to the
DefaultExpression property.

DetailDelay
Used to get or set a delay in milliseconds
before refreshing detail dataset while
navigating master dataset.

FieldsOrigin
Used for TCustomDADataSet to fill the
Origin property of the TField objects by
appropriate value when opening a dataset.

FlatBuffers Used to control how a dataset treats data
of the ftString and ftVarBytes fields.

InsertAllSetFields Used to include all set dataset fields in the
generated INSERT statement

LocalMasterDetail

Used for TCustomDADataSet to use local
filtering to establish master/detail
relationship for detail dataset and does not
refer to the server.

LongStrings
Used to represent string fields with the
length that is greater than 255 as

Reference 573

© 2024 Devart

TStringField.

MasterFieldsNullable

Allows to use NULL values in the fields by
which the relation is built, when generating
the query for the Detail tables (when this
option is enabled, the performance can get
worse).

NumberRange
Used to set the MaxValue and MinValue
properties of TIntegerField and TFloatField
to appropriate values.

QueryRecCount

Used for TCustomDADataSet to perform
additional query to get the record count for
this SELECT, so the RecordCount property
reflects the actual number of records.

QuoteNames
Used for TCustomDADataSet to quote all
database object names in autogenerated
SQL statements such as update SQL.

RemoveOnRefresh Used for a dataset to locally remove a
record that can not be found on the server.

RequiredFields
Used for TCustomDADataSet to set the
Required property of the TField objects for
the NOT NULL fields.

ReturnParams Used to return the new value of fields to
dataset after insert or update.

SetFieldsReadOnly

Used for a dataset to set the ReadOnly
property to True for all fields that do not
belong to UpdatingTable or can not be
updated.

StrictUpdate
Used for TCustomDADataSet to raise an
exception when the number of updated or
deleted records is not equal 1.

TrimFixedChar Specifies whether to discard all trailing
spaces in the string fields of a dataset.

UpdateAllFields
Used to include all dataset fields in the
generated UPDATE and INSERT
statements.

UpdateBatchSize

Used to get or set a value that enables or
disables batch processing support, and
specifies the number of commands that
can be executed in a batch.

See Also
Master/Detail Relationships

TMemDataSet.CachedUpdates

Universal Data Access Components574

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.2.18 ParamCheck Property

Used to specify whether parameters for the Params property are generated automatically

after the SQL property was changed.

Class

TCustomDADataSet

Syntax

property ParamCheck: boolean default True;

Remarks

Use the ParamCheck property to specify whether parameters for the Params property are

generated automatically after the SQL property was changed.

Set ParamCheck to True to let dataset automatically generate the Params property for the

dataset based on a SQL statement.

Setting ParamCheck to False can be used if the dataset component passes to a server the

DDL statements that contain, for example, declarations of stored procedures which

themselves will accept parameterized values. The default value is True.

See Also
Params

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.2.19 ParamCount Property

Used to indicate how many parameters are there in the Params property.

Class

TCustomDADataSet

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 575

© 2024 Devart

Syntax

property ParamCount: word;

Remarks

Use the ParamCount property to determine how many parameters are there in the Params

property.

See Also
Params

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.2.20 Params Property

Used to view and set parameter names, values, and data types dynamically.

Class

TCustomDADataSet

Syntax

property Params: TDAParams stored False;

Remarks

Contains the parameters for a query's SQL statement.

Access Params at runtime to view and set parameter names, values, and data types

dynamically (at design time use the Parameters editor to set the parameter information).

Params is a zero-based array of parameter records. Index specifies the array element to

access.

An easier way to set and retrieve parameter values when the name of each parameter is

known is to call ParamByName.

See Also
ParamByName

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components576

© 2024 Devart

Macros

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.2.21 ReadOnly Property

Used to prevent users from updating, inserting, or deleting data in the dataset.

Class

TCustomDADataSet

Syntax

property ReadOnly: boolean default False;

Remarks

Use the ReadOnly property to prevent users from updating, inserting, or deleting data in the

dataset. By default, ReadOnly is False, meaning that users can potentially alter data stored in

the dataset.

To guarantee that users cannot modify or add data to a dataset, set ReadOnly to True.

When ReadOnly is True, the dataset's CanModify property is False.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.2.22 RefreshOptions Property

Used to indicate when the editing record is refreshed.

Class

TCustomDADataSet

Syntax

property RefreshOptions: TRefreshOptions default [];

Remarks

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 577

© 2024 Devart

Use the RefreshOptions property to determine when the editing record is refreshed.

Refresh is performed by the RefreshRecord method.

It queries the current record and replaces one in the dataset. Refresh record is useful when

the table has triggers or the table fields have default values. Use roBeforeEdit to get actual

data before editing.

The default value is [].

See Also
RefreshRecord

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.2.23 Row sAffected Property

Used to indicate the number of rows which were inserted, updated, or deleted during the last

query operation.

Class

TCustomDADataSet

Syntax

property RowsAffected: integer;

Remarks

Check RowsAffected to determine how many rows were inserted, updated, or deleted during

the last query operation. If RowsAffected is -1, the query has not inserted, updated, or deleted

any rows.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.2.24 SQL Property

Used to provide a SQL statement that a query component executes when its Open method is

called.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components578

© 2024 Devart

Class

TCustomDADataSet

Syntax

property SQL: TStrings;

Remarks

Use the SQL property to provide a SQL statement that a query component executes when its

Open method is called. At the design time the SQL property can be edited by invoking the

String List editor in Object Inspector.

When SQL is changed, TCustomDADataSet calls Close and UnPrepare.

See Also
SQLInsert

SQLUpdate

SQLDelete

SQLRefresh

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.2.25 SQLDelete Property

Used to specify a SQL statement that will be used when applying a deletion to a record.

Class

TCustomDADataSet

Syntax

property SQLDelete: TStrings;

Remarks

Use the SQLDelete property to specify the SQL statement that will be used when applying a

deletion to a record. Statements can be parameterized queries.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 579

© 2024 Devart

To create a SQLDelete statement at design-time, use the query statements editor.

Example

DELETE FROM Orders
 WHERE
 OrderID = :Old_OrderID

See Also
SQL

SQLInsert

SQLUpdate

SQLRefresh

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.2.26 SQLInsert Property

Used to specify the SQL statement that will be used when applying an insertion to a dataset.

Class

TCustomDADataSet

Syntax

property SQLInsert: TStrings;

Remarks

Use the SQLInsert property to specify the SQL statement that will be used when applying an

insertion to a dataset. Statements can be parameterized queries. Names of the parameters

should be the same as field names. Parameters prefixed with OLD_ allow using current

values of fields prior to the actual operation.

Use ReturnParam to return OUT parameters back to dataset.

To create a SQLInsert statement at design-time, use the query statements editor.

See Also

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components580

© 2024 Devart

SQL

SQLUpdate

SQLDelete

SQLRefresh

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.2.27 SQLLock Property

Used to specify a SQL statement that will be used to perform a record lock.

Class

TCustomDADataSet

Syntax

property SQLLock: TStrings;

Remarks

Use the SQLLock property to specify a SQL statement that will be used to perform a record

lock. Statements can be parameterized queries. Names of the parameters should be the

same as field names. The parameters prefixed with OLD_ allow to use current values of

fields prior to the actual operation.

To create a SQLLock statement at design-time, the use query statement editor.

See Also
SQL

SQLInsert

SQLUpdate

SQLDelete

SQLRefresh

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 581

© 2024 Devart

6.11.1.5.2.28 SQLRecCount Property

Used to specify the SQL statement that is used to get the record count when opening a

dataset.

Class

TCustomDADataSet

Syntax

property SQLRecCount: TStrings;

Remarks

Use the SQLRecCount property to specify the SQL statement that is used to get the record

count when opening a dataset. The SQL statement is used if the

TDADataSetOptions.QueryRecCount property is True, and the TCustomDADataSet.FetchAll

property is False. Is not used if the FetchAll property is True.

To create a SQLRecCount statement at design-time, use the query statements editor.

See Also
SQLInsert

SQLUpdate

SQLDelete

SQLRefresh

TDADataSetOptions

FetchingAll

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.2.29 SQLRefresh Property

Used to specify a SQL statement that will be used to refresh current record by calling the

RefreshRecord procedure.

Class

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components582

© 2024 Devart

TCustomDADataSet

Syntax

property SQLRefresh: TStrings;

Remarks

Use the SQLRefresh property to specify a SQL statement that will be used to refresh current

record by calling the RefreshRecord procedure.

Different behavior is observed when the SQLRefresh property is assigned with a single

WHERE clause that holds frequently altered search condition. In this case the WHERE

clause from SQLRefresh is combined with the same clause of the SELECT statement in a

SQL property and this final query is then sent to the database server.

To create a SQLRefresh statement at design-time, use the query statements editor.

Example

SELECT Shipname FROM Orders
 WHERE
 OrderID = :OrderID

See Also
RefreshRecord

SQL

SQLInsert

SQLUpdate

SQLDelete

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.2.30 SQLUpdate Property

Used to specify a SQL statement that will be used when applying an update to a dataset.

Class

TCustomDADataSet

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 583

© 2024 Devart

Syntax

property SQLUpdate: TStrings;

Remarks

Use the SQLUpdate property to specify a SQL statement that will be used when applying an

update to a dataset. Statements can be parameterized queries. Names of the parameters

should be the same as field names. The parameters prefixed with OLD_ allow to use current

values of fields prior to the actual operation.

Use ReturnParam to return OUT parameters back to the dataset.

To create a SQLUpdate statement at design-time, use the query statement editor.

Example

UPDATE Orders
 set
 ShipName = :ShipName
 WHERE
 OrderID = :Old_OrderID

See Also
SQL

SQLInsert

SQLDelete

SQLRefresh

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.2.31 UniDirectional Property

Used if an application does not need bidirectional access to records in the result set.

Class

TCustomDADataSet

Syntax

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components584

© 2024 Devart

property UniDirectional: boolean default False;

Remarks

Traditionally SQL cursors are unidirectional. They can travel only forward through a dataset.

TCustomDADataset, however, permits bidirectional travelling by caching records. If an

application does not need bidirectional access to the records in the result set, set

UniDirectional to True. When UniDirectional is True, an application requires less memory and

performance is improved. However, UniDirectional datasets cannot be modified. In

FetchAll=False mode data is fetched on demand. When UniDirectional is set to True, data is

fetched on demand as well, but obtained rows are not cached except for the current row. In

case if the Unidirectional property is True, the FetchAll property will be automatically set to

False. And if the FetchAll property is True, the Unidirectional property will be automatically set

to False. The default value of UniDirectional is False, enabling forward and backward

navigation.

Note: Pay attention to the specificity of using the FetchAll property=False

See Also
TCustomUniDataSet.SpecificOptions

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.3 Methods

Methods of the TCustomDADataSet class.

For a complete list of the TCustomDADataSet class members, see the TCustomDADataSet

Members topic.

Public

Name Description

AddWhere

Adds condition to the
WHERE clause of SELECT
statement in the SQL
property.

ApplyRange (inherited from TMemDataSet) Applies a range to the
dataset.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 585

© 2024 Devart

ApplyUpdates (inherited from TMemDataSet)
Overloaded. Writes
dataset's pending cached
updates to a database.

BreakExec Breaks execution of the SQL
statement on the server.

CancelRange (inherited from TMemDataSet)
Removes any ranges
currently in effect for a
dataset.

CancelUpdates (inherited from TMemDataSet)
Clears all pending cached
updates from cache and
restores dataset in its prior
state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates
buffer.

CreateBlobStream

Used to obtain a stream for
reading data from or writing
data to a BLOB field,
specified by the Field
parameter.

DeferredPost (inherited from TMemDataSet) Makes permanent changes
to the database server.

DeleteWhere

Removes WHERE clause
from the SQL property and
assigns the BaseSQL
property.

EditRangeEnd (inherited from TMemDataSet)
Enables changing the
ending value for an existing
range.

EditRangeStart (inherited from TMemDataSet)
Enables changing the
starting value for an existing
range.

Execute
Overloaded. Executes a
SQL statement on the
server.

Executing
Indicates whether SQL
statement is still being
executed.

Fetched
Used to find out whether
TCustomDADataSet has
fetched all rows.

Fetching
Used to learn whether
TCustomDADataSet is still
fetching rows.

FetchingAll Used to learn whether

Universal Data Access Components586

© 2024 Devart

TCustomDADataSet is
fetching all rows to the end.

FindKey
Searches for a record which
contains specified field
values.

FindMacro Finds a macro with the
specified name.

FindNearest

Moves the cursor to a
specific record or to the first
record in the dataset that
matches or is greater than
the values specified in the
KeyValues parameter.

FindParam
Determines if a parameter
with the specified name
exists in a dataset.

GetBlob (inherited from TMemDataSet)

Overloaded. Retrieves
TBlob object for a field or
current record when only its
name or the field itself is
known.

GetDataType
Returns internal field types
defined in the MemData and
accompanying modules.

GetFieldObject Returns a multireference
shared object from field.

GetFieldPrecision Retrieves the precision of a
number field.

GetFieldScale Retrieves the scale of a
number field.

GetKeyFieldNames Provides a list of available
key field names.

GetOrderBy
Retrieves an ORDER BY
clause from a SQL
statement.

GotoCurrent

Sets the current record in
this dataset similar to the
current record in another
dataset.

Locate (inherited from TMemDataSet)
Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

Reference 587

© 2024 Devart

LocateEx (inherited from TMemDataSet)

Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

Lock Locks the current record.

MacroByName Finds a macro with the
specified name.

ParamByName

Sets or uses parameter
information for a specific
parameter based on its
name.

Prepare Allocates, opens, and
parses cursor for a query.

RefreshRecord Actualizes field values for
the current record.

RestoreSQL
Restores the SQL property
modified by AddWhere and
SetOrderBy.

RestoreUpdates (inherited from TMemDataSet)
Marks all records in the
cache of updates as
unapplied.

RevertRecord (inherited from TMemDataSet)
Cancels changes made to
the current record when
cached updates are
enabled.

SaveSQL Saves the SQL property
value to BaseSQL.

SaveToXML (inherited from TMemDataSet)

Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

SetOrderBy Builds an ORDER BY clause
of a SELECT statement.

SetRange (inherited from TMemDataSet)
Sets the starting and ending
values of a range, and
applies it.

SetRangeEnd (inherited from TMemDataSet)

Indicates that subsequent
assignments to field values
specify the end of the range
of rows to include in the
dataset.

Universal Data Access Components588

© 2024 Devart

SetRangeStart (inherited from TMemDataSet)

Indicates that subsequent
assignments to field values
specify the start of the range
of rows to include in the
dataset.

SQLSaved
Determines if the SQL
property value was saved to
the BaseSQL property.

UnLock Releases a record lock.

UnPrepare (inherited from TMemDataSet)
Frees the resources
allocated for a previously
prepared query on the
server and client sides.

UpdateResult (inherited from TMemDataSet)

Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are
enabled.

UpdateStatus (inherited from TMemDataSet)
Indicates the current update
status for the dataset when
cached updates are
enabled.

See Also
TCustomDADataSet Class

TCustomDADataSet Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.3.1 AddWhere Method

Adds condition to the WHERE clause of SELECT statement in the SQL property.

Class

TCustomDADataSet

Syntax

procedure AddWhere(const Condition: string);

Parameters

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 589

© 2024 Devart

Condition

Holds the condition that will be added to the WHERE clause.

Remarks

Call the AddWhere method to add a condition to the WHERE clause of SELECT statement in

the SQL property.

If SELECT has no WHERE clause, AddWhere creates it.

Note: the AddWhere method is implicitly called by RefreshRecord. The AddWhere method

works for the SELECT statements only.

Note: the AddWhere method adds a value to the WHERE condition as is. If you expect this

value to be enclosed in brackets, you should bracket it explicitly.

See Also
DeleteWhere

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.3.2 BreakExec Method

Breaks execution of the SQL statement on the server.

Class

TCustomDADataSet

Syntax

procedure BreakExec; virtual;

Remarks

Call the BreakExec method to break execution of the SQL statement on the server. It makes

sense to only call BreakExec from another thread.

See Also
TCustomDADataSet.Execute

TCustomDASQL.BreakExec

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components590

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.3.3 CreateBlobStream Method

Used to obtain a stream for reading data from or writing data to a BLOB field, specified by the

Field parameter.

Class

TCustomDADataSet

Syntax

function CreateBlobStream(Field: TField; Mode: TBlobStreamMode):

TStream; override;

Parameters

Field

Holds the BLOB field for reading data from or writing data to from a stream.

Mode

Holds the stream mode, for which the stream will be used.

Return Value

The BLOB Stream.

Remarks

Call the CreateBlobStream method to obtain a stream for reading data from or writing data to

a BLOB field, specified by the Field parameter. It must be a TBlobField component. You can

specify whether the stream will be used for reading, writing, or updating the contents of the

field with the Mode parameter.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.3.4 DeleteWhere Method

Removes WHERE clause from the SQL property and assigns the BaseSQL property.

Class

TCustomDADataSet

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 591

© 2024 Devart

Syntax

procedure DeleteWhere;

Remarks

Call the DeleteWhere method to remove WHERE clause from the the SQL property and

assign BaseSQL.

See Also
AddWhere

BaseSQL

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.3.5 Execute Method

Executes a SQL statement on the server.

Class

TCustomDADataSet

Overload List

Name Description

Execute Executes a SQL statement on the server.

Execute(Iters: integer; Offset: integer) Used to perform Batch operations .

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

Executes a SQL statement on the server.

Class

TCustomDADataSet

Syntax

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components592

© 2024 Devart

procedure Execute; overload; virtual;

Remarks

Call the Execute method to execute an SQL statement on the server. If SQL statement is a

SELECT query, Execute calls the Open method.

Execute implicitly prepares SQL statement by calling the TCustomDADataSet.Prepare

method if the TCustomDADataSet.Options option is set to True and the statement has not

been prepared yet. To speed up the performance in case of multiple Execute calls, an

application should call Prepare before calling the Execute method for the first time.

See Also
TCustomDADataSet.AfterExecute

TCustomDADataSet.Executing

TCustomDADataSet.Prepare

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

Used to perform Batch operations .

Class

TCustomDADataSet

Syntax

procedure Execute(Iters: integer; Offset: integer = 0); overload;

virtual;

Parameters

Iters

Specifies the number of inserted rows.

Offset

Points the array element, which the Batch operation starts from. 0 by default.

Remarks

The Execute method executes the specified batch SQL query. See the Batch operations

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 593

© 2024 Devart

article for samples.

See Also
Batch operations

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.3.6 Executing Method

Indicates whether SQL statement is still being executed.

Class

TCustomDADataSet

Syntax

function Executing: boolean;

Return Value

True, if SQL statement is still being executed.

Remarks

Check Executing to learn whether TCustomDADataSet is still executing SQL statement.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.3.7 Fetched Method

Used to find out whether TCustomDADataSet has fetched all rows.

Class

TCustomDADataSet

Syntax

function Fetched: boolean; virtual;

Return Value

True, if all rows have been fetched.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components594

© 2024 Devart

Remarks

Call the Fetched method to find out whether TCustomDADataSet has fetched all rows.

See Also
Fetching

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.3.8 Fetching Method

Used to learn whether TCustomDADataSet is still fetching rows.

Class

TCustomDADataSet

Syntax

function Fetching: boolean;

Return Value

True, if TCustomDADataSet is still fetching rows.

Remarks

Check Fetching to learn whether TCustomDADataSet is still fetching rows. Use the Fetching

method if NonBlocking is True.

See Also
Executing

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.3.9 FetchingAll Method

Used to learn whether TCustomDADataSet is fetching all rows to the end.

Class

TCustomDADataSet

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 595

© 2024 Devart

Syntax

function FetchingAll: boolean;

Return Value

True, if TCustomDADataSet is fetching all rows to the end.

Remarks

Check FetchingAll to learn whether TCustomDADataSet is fetching all rows to the end.

See Also
Executing

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.3.10 FindKey Method

Searches for a record which contains specified field values.

Class

TCustomDADataSet

Syntax

function FindKey(const KeyValues: array of System.TVarRec):

Boolean;

Parameters

KeyValues

Holds a key.

Remarks

Call the FindKey method to search for a specific record in a dataset. KeyValues holds a

comma-delimited array of field values, that is called a key.

This function is provided for BDE compatibility only. It is recommended to use functions

TMemDataSet.Locate and TMemDataSet.LocateEx for the record search.

© 1997-2024
Devart. All Rights

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components596

© 2024 Devart

Reserved.

6.11.1.5.3.11 FindMacro Method

Finds a macro with the specified name.

Class

TCustomDADataSet

Syntax

function FindMacro(const Value: string): TMacro;

Parameters

Value

Holds the name of a macro to search for.

Return Value

TMacro object if a match is found, nil otherwise.

Remarks

Call the FindMacro method to find a macro with the specified name. If a match is found,

FindMacro returns the macro. Otherwise, it returns nil. Use this method instead of a direct

reference to the TMacros.Items property to avoid depending on the order of the items.

See Also
TMacro

Macros

MacroByName

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.3.12 FindNearest Method

Moves the cursor to a specific record or to the first record in the dataset that matches or is

greater than the values specified in the KeyValues parameter.

Class

TCustomDADataSet

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 597

© 2024 Devart

Syntax

procedure FindNearest(const KeyValues: array of System.TVarRec);

Parameters

KeyValues

Holds the values of the record key fields to which the cursor should be moved.

Remarks

Call the FindNearest method to move the cursor to a specific record or to the first record in

the dataset that matches or is greater than the values specified in the KeyValues parameter. If

there are no records that match or exceed the specified criteria, the cursor will not move.

This function is provided for BDE compatibility only. It is recommended to use functions

TMemDataSet.Locate and TMemDataSet.LocateEx for the record search.

See Also
TMemDataSet.Locate

TMemDataSet.LocateEx

FindKey

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.3.13 FindParam Method

Determines if a parameter with the specified name exists in a dataset.

Class

TCustomDADataSet

Syntax

function FindParam(const Value: string): TDAParam;

Parameters

Value

Holds the name of the param for which to search.

Return Value

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components598

© 2024 Devart

the TDAParam object for the specified Name. Otherwise it returns nil.

Remarks

Call the FindParam method to determine if a specified param component exists in a dataset.

Name is the name of the param for which to search. If FindParam finds a param with a

matching name, it returns a TDAParam object for the specified Name. Otherwise it returns

nil.

See Also
Params

ParamByName

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.3.14 GetDataType Method

Returns internal field types defined in the MemData and accompanying modules.

Class

TCustomDADataSet

Syntax

function GetDataType(const FieldName: string): integer; virtual;

Parameters

FieldName

Holds the name of the field.

Return Value

internal field types defined in MemData and accompanying modules.

Remarks

Call the GetDataType method to return internal field types defined in the MemData and

accompanying modules. Internal field data types extend the TFieldType type of VCL by

specific database server data types. For example, ftString, ftFile, ftObject.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 599

© 2024 Devart

6.11.1.5.3.15 GetFieldObject Method

Returns a multireference shared object from field.

Class

TCustomDADataSet

Syntax

function GetFieldObject(Field: TField): TSharedObject;

overload;function GetFieldObject(Field: TField; RecBuf:

TRecordBuffer): TSharedObject; overload;function

GetFieldObject(FieldDesc: TFieldDesc): TSharedObject;

overload;function GetFieldObject(FieldDesc: TFieldDesc; RecBuf:

TRecordBuffer): TSharedObject; overload;function

GetFieldObject(const FieldName: string): TSharedObject; overload;

Parameters

FieldName

Holds the field name.

Return Value

multireference shared object.

Remarks

Call the GetFieldObject method to return a multireference shared object from field. If field

does not hold one of the TSharedObject descendants, GetFieldObject raises an exception.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.3.16 GetFieldPrecision Method

Retrieves the precision of a number field.

Class

TCustomDADataSet

Syntax

function GetFieldPrecision(const FieldName: string): integer;

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components600

© 2024 Devart

Parameters

FieldName

Holds the existing field name.

Return Value

precision of number field.

Remarks

Call the GetFieldPrecision method to retrieve the precision of a number field. FieldName is the

name of an existing field.

See Also
GetFieldScale

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.3.17 GetFieldScale Method

Retrieves the scale of a number field.

Class

TCustomDADataSet

Syntax

function GetFieldScale(const FieldName: string): integer;

Parameters

FieldName

Holds the existing field name.

Return Value

the scale of the number field.

Remarks

Call the GetFieldScale method to retrieve the scale of a number field. FieldName is the name

of an existing field.

See Also
GetFieldPrecision

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 601

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.3.18 GetKeyFieldNames Method

Provides a list of available key field names.

Class

TCustomDADataSet

Syntax

procedure GetKeyFieldNames(List: TStrings);

Parameters

List

The list of available key field names

Return Value

Key field name

Remarks

Call the GetKeyFieldNames method to get the names of available key fields. Populates a

string list with the names of key fields in tables.

See Also
TCustomDAConnection.GetTableNames

TCustomDAConnection.GetStoredProcNames

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.3.19 GetOrderBy Method

Retrieves an ORDER BY clause from a SQL statement.

Class

TCustomDADataSet

Syntax

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components602

© 2024 Devart

function GetOrderBy: string;

Return Value

an ORDER BY clause from the SQL statement.

Remarks

Call the GetOrderBy method to retrieve an ORDER BY clause from a SQL statement.

Note: GetOrderBy and SetOrderBy methods serve to process only quite simple queries and

don't support, for example, subqueries.

See Also
SetOrderBy

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.3.20 GotoCurrent Method

Sets the current record in this dataset similar to the current record in another dataset.

Class

TCustomDADataSet

Syntax

procedure GotoCurrent(DataSet: TCustomDADataSet);

Parameters

DataSet

Holds the TCustomDADataSet descendant to synchronize the record position with.

Remarks

Call the GotoCurrent method to set the current record in this dataset similar to the current

record in another dataset. The key fields in both these DataSets must be coincident.

See Also
TMemDataSet.Locate

TMemDataSet.LocateEx

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 603

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.3.21 Lock Method

Locks the current record.

Class

TCustomDADataSet

Syntax

procedure Lock; virtual;

Remarks

Call the Lock method to lock the current record by executing the statement that is defined in

the SQLLock property.

The Lock method sets the savepoint with the name LOCK_ + <component_name>.

See Also
UnLock

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.3.22 MacroByName Method

Finds a macro with the specified name.

Class

TCustomDADataSet

Syntax

function MacroByName(const Value: string): TMacro;

Parameters

Value

Holds the name of a macro to search for.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components604

© 2024 Devart

Return Value

TMacro object if a match is found.

Remarks

Call the MacroByName method to find a macro with the specified name. If a match is found,

MacroByName returns the macro. Otherwise, an exception is raised. Use this method instead

of a direct reference to the TMacros.Items property to avoid depending on the order of the

items.

To locate a parameter by name without raising an exception if the parameter is not found, use

the FindMacro method.

To set a value to a macro, use the TMacro.Value property.

Example

UniQuery.SQL:= 'SELECT * FROM Scott.Dept ORDER BY &Order';
UniQuery.MacroByName('Order').Value:= 'DeptNo';
UniQuery.Open;

See Also
TMacro

Macros

FindMacro

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.3.23 ParamByName Method

Sets or uses parameter information for a specific parameter based on its name.

Class

TCustomDADataSet

Syntax

function ParamByName(const Value: string): TDAParam;

Parameters

Value

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 605

© 2024 Devart

Holds the name of the parameter for which to retrieve information.

Return Value

a TDAParam object.

Remarks

Call the ParamByName method to set or use parameter information for a specific parameter

based on its name. Name is the name of the parameter for which to retrieve information.

ParamByName is used to set a parameter's value at runtime and returns a TDAParam

object.

Example

The following statement retrieves the current value of a parameter called "Contact" into an

edit box:

Edit1.Text := Query1.ParamsByName('Contact').AsString;

See Also
Params

FindParam

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.3.24 Prepare Method

Allocates, opens, and parses cursor for a query.

Class

TCustomDADataSet

Syntax

procedure Prepare; override;

Remarks

Call the Prepare method to allocate, open, and parse cursor for a query. Calling Prepare

before executing a query improves application performance.

The UnPrepare method unprepares a query.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components606

© 2024 Devart

Note: When you change the text of a query at runtime, the query is automatically closed and

unprepared.

See Also
TMemDataSet.Prepared

TMemDataSet.UnPrepare

Options

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.3.25 RefreshRecord Method

Actualizes field values for the current record.

Class

TCustomDADataSet

Syntax

procedure RefreshRecord;

Remarks

Call the RefreshRecord method to actualize field values for the current record.

RefreshRecord performs query to database and refetches new field values from the returned

cursor.

See Also
RefreshOptions

SQLRefresh

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 607

© 2024 Devart

6.11.1.5.3.26 RestoreSQL Method

Restores the SQL property modified by AddWhere and SetOrderBy.

Class

TCustomDADataSet

Syntax

procedure RestoreSQL;

Remarks

Call the RestoreSQL method to restore the SQL property modified by AddWhere and

SetOrderBy.

See Also
AddWhere

SetOrderBy

SaveSQL

SQLSaved

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.3.27 SaveSQL Method

Saves the SQL property value to BaseSQL.

Class

TCustomDADataSet

Syntax

procedure SaveSQL;

Remarks

Call the SaveSQL method to save the SQL property value to the BaseSQL property.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components608

© 2024 Devart

See Also
SQLSaved

RestoreSQL

BaseSQL

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.3.28 SetOrderBy Method

Builds an ORDER BY clause of a SELECT statement.

Class

TCustomDADataSet

Syntax

procedure SetOrderBy(const Fields: string);

Parameters

Fields

Holds the names of the fields which will be added to the ORDER BY clause.

Remarks

Call the SetOrderBy method to build an ORDER BY clause of a SELECT statement. The

fields are identified by the comma-delimited field names.

Note: The GetOrderBy and SetOrderBy methods serve to process only quite simple queries

and don't support, for example, subqueries.

Example

Query1.SetOrderBy('DeptNo;DName');

See Also
GetOrderBy

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 609

© 2024 Devart

6.11.1.5.3.29 SQLSaved Method

Determines if the SQL property value was saved to the BaseSQL property.

Class

TCustomDADataSet

Syntax

function SQLSaved: boolean;

Return Value

True, if the SQL property value was saved to the BaseSQL property.

Remarks

Call the SQLSaved method to know whether the SQL property value was saved to the

BaseSQL property.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.3.30 UnLock Method

Releases a record lock.

Class

TCustomDADataSet

Syntax

procedure UnLock;

Remarks

Call the Unlock method to release the record lock made by the Lock method before.

Unlock is performed by rolling back to the savepoint set by the Lock method.

See Also
Lock

© 1997-2024 Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components610

© 2024 Devart

Devart. All Rights
Reserved.

6.11.1.5.4 Events

Events of the TCustomDADataSet class.

For a complete list of the TCustomDADataSet class members, see the TCustomDADataSet

Members topic.

Public

Name Description

AfterExecute
Occurs after a component
has executed a query to
database.

AfterFetch Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute
Occurs after executing
insert, delete, update, lock
and refresh operations.

BeforeFetch
Occurs before dataset is
going to fetch block of
records from the server.

BeforeUpdateExecute
Occurs before executing
insert, delete, update, lock,
and refresh operations.

OnUpdateError (inherited from TMemDataSet)

Occurs when an exception is
generated while cached
updates are applied to a
database.

OnUpdateRecord (inherited from TMemDataSet)
Occurs when a single
update component can not
handle the updates.

See Also
TCustomDADataSet Class

TCustomDADataSet Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 611

© 2024 Devart

6.11.1.5.4.1 AfterExecute Event

Occurs after a component has executed a query to database.

Class

TCustomDADataSet

Syntax

property AfterExecute: TAfterExecuteEvent;

Remarks

Occurs after a component has executed a query to database.

See Also
TCustomDADataSet.Execute

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.4.2 AfterFetch Event

Occurs after dataset finishes fetching data from server.

Class

TCustomDADataSet

Syntax

property AfterFetch: TAfterFetchEvent;

Remarks

The AfterFetch event occurs after dataset finishes fetching data from server.

See Also
BeforeFetch

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components612

© 2024 Devart

6.11.1.5.4.3 AfterUpdateExecute Event

Occurs after executing insert, delete, update, lock and refresh operations.

Class

TCustomDADataSet

Syntax

property AfterUpdateExecute: TUpdateExecuteEvent;

Remarks

Occurs after executing insert, delete, update, lock, and refresh operations. You can use

AfterUpdateExecute to set the parameters of corresponding statements.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.5.4.4 BeforeFetch Event

Occurs before dataset is going to fetch block of records from the server.

Class

TCustomDADataSet

Syntax

property BeforeFetch: TBeforeFetchEvent;

Remarks

The BeforeFetch event occurs every time before dataset is going to fetch a block of records

from the server. Set Cancel to True to abort current fetch operation.

See Also
AfterFetch

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 613

© 2024 Devart

6.11.1.5.4.5 BeforeUpdateExecute Event

Occurs before executing insert, delete, update, lock, and refresh operations.

Class

TCustomDADataSet

Syntax

property BeforeUpdateExecute: TUpdateExecuteEvent;

Remarks

Occurs before executing insert, delete, update, lock, and refresh operations. You can use

BeforeUpdateExecute to set the parameters of corresponding statements.

See Also
AfterUpdateExecute

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.6 TCustomDASQL Class

A base class for components executing SQL statements that do not return result sets.

For a list of all members of this type, see TCustomDASQL members.

Unit

DBAccess

Syntax

TCustomDASQL = class(TComponent);

Remarks

TCustomDASQL is a base class that defines functionality for descendant classes which

access database using SQL statements. Applications never use TCustomDASQL objects

directly. Instead they use descendants of TCustomDASQL.

Use TCustomDASQL when client application must execute SQL statement or call stored

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components614

© 2024 Devart

procedure on the database server. The SQL statement should not retrieve rows from the

database.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.6.1 Members

TCustomDASQL class overview.

Properties

Name Description

ChangeCursor

Enables or disables
changing screen cursor
when executing commands
in the NonBlocking mode.

Connection
Used to specify a
connection object to use to
connect to a data store.

Debug

Used to display the
statement that is being
executed and the values and
types of its parameters.

FinalSQL
Used to return a SQL
statement with expanded
macros.

MacroCount
Used to get the number of
macros associated with the
Macros property.

Macros Makes it possible to change
SQL queries easily.

ParamCheck

Used to specify whether
parameters for the Params
property are implicitly
generated when the SQL
property is being changed.

ParamCount
Indicates the number of
parameters in the Params
property.

Params Used to contain parameters
for a SQL statement.

ParamValues Used to get or set the values
of individual field

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 615

© 2024 Devart

parameters that are
identified by name.

Prepared
Used to indicate whether a
query is prepared for
execution.

RowsAffected

Used to indicate the number
of rows which were inserted,
updated, or deleted during
the last query operation.

SQL

Used to provide a SQL
statement that a
TCustomDASQL
component executes when
the Execute method is
called.

Methods

Name Description

BreakExec Breaks execution of an SQL
satatement on the server.

Execute
Overloaded. Executes a
SQL statement on the
server.

Executing
Checks whether
TCustomDASQL still
executes a SQL statement.

FindMacro Finds a macro with the
specified name.

FindParam Finds a parameter with the
specified name.

MacroByName Finds a macro with the
specified name.

ParamByName Finds a parameter with the
specified name.

Prepare Allocates, opens, and
parses cursor for a query.

UnPrepare

Frees the resources
allocated for a previously
prepared query on the
server and client sides.

WaitExecuting Waits until TCustomDASQL
executes a SQL statement.

Universal Data Access Components616

© 2024 Devart

Events

Name Description

AfterExecute
Occurs after a SQL
statement has been
executed.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.6.2 Properties

Properties of the TCustomDASQL class.

For a complete list of the TCustomDASQL class members, see the TCustomDASQL

Members topic.

Public

Name Description

ChangeCursor

Enables or disables
changing screen cursor
when executing commands
in the NonBlocking mode.

Connection
Used to specify a
connection object to use to
connect to a data store.

Debug

Used to display the
statement that is being
executed and the values and
types of its parameters.

FinalSQL
Used to return a SQL
statement with expanded
macros.

MacroCount
Used to get the number of
macros associated with the
Macros property.

Macros Makes it possible to change
SQL queries easily.

ParamCheck

Used to specify whether
parameters for the Params
property are implicitly
generated when the SQL

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 617

© 2024 Devart

property is being changed.

ParamCount
Indicates the number of
parameters in the Params
property.

Params Used to contain parameters
for a SQL statement.

ParamValues

Used to get or set the values
of individual field
parameters that are
identified by name.

Prepared
Used to indicate whether a
query is prepared for
execution.

RowsAffected

Used to indicate the number
of rows which were inserted,
updated, or deleted during
the last query operation.

SQL

Used to provide a SQL
statement that a
TCustomDASQL
component executes when
the Execute method is
called.

See Also
TCustomDASQL Class

TCustomDASQL Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.6.2.1 ChangeCursor Property

Enables or disables changing screen cursor when executing commands in the NonBlocking

mode.

Class

TCustomDASQL

Syntax

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components618

© 2024 Devart

property ChangeCursor: boolean;

Remarks

Set the ChangeCursor property to False to prevent the screen cursor from changing to

crSQLArrow when executing commands in the NonBlocking mode. The default value is True.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.6.2.2 Connection Property

Used to specify a connection object to use to connect to a data store.

Class

TCustomDASQL

Syntax

property Connection: TCustomDAConnection;

Remarks

Use the Connection property to specify a connection object that will be used to connect to a

data store.

Set at design-time by selecting from the list of provided TCustomDAConnection or its

descendant class objects.

At runtime, link an instance of a TCustomDAConnection descendant to the Connection

property.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.6.2.3 Debug Property

Used to display the statement that is being executed and the values and types of its

parameters.

Class

TCustomDASQL

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 619

© 2024 Devart

Syntax

property Debug: boolean default False;

Remarks

Set the Debug property to True to display the statement that is being executed and the values

and types of its parameters.

You should add the UniDacVcl unit to the uses clause of any unit in your project to make the

Debug property work.

Note: If TUniSQLMonitor is used in the project and the TUniSQLMonitor.Active property is set

to False, the debug window is not displayed.

See Also
TCustomDADataSet.Debug

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.6.2.4 FinalSQL Property

Used to return a SQL statement with expanded macros.

Class

TCustomDASQL

Syntax

property FinalSQL: string;

Remarks

Read the FinalSQL property to return a SQL statement with expanded macros. This is the

exact statement that will be passed on to the database server.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components620

© 2024 Devart

6.11.1.6.2.5 MacroCount Property

Used to get the number of macros associated with the Macros property.

Class

TCustomDASQL

Syntax

property MacroCount: word;

Remarks

Use the MacroCount property to get the number of macros associated with the Macros

property.

See Also
Macros

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.6.2.6 Macros Property

Makes it possible to change SQL queries easily.

Class

TCustomDASQL

Syntax

property Macros: TMacros stored False;

Remarks

With the help of macros you can easily change SQL query text at design- or runtime. Marcos

extend abilities of parameters and allow to change conditions in a WHERE clause or sort

order in an ORDER BY clause. You just insert &MacroName in the SQL query text and

change value of macro in the Macro property editor at design time or call the MacroByName

function at run time. At the time of opening the query macro is replaced by its value.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 621

© 2024 Devart

See Also
TMacro

MacroByName

Params

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.6.2.7 ParamCheck Property

Used to specify whether parameters for the Params property are implicitly generated when

the SQL property is being changed.

Class

TCustomDASQL

Syntax

property ParamCheck: boolean default True;

Remarks

Use the ParamCheck property to specify whether parameters for the Params property are

implicitly generated when the SQL property is being changed.

Set ParamCheck to True to let TCustomDASQL generate the Params property for the

dataset based on a SQL statement automatically.

Setting ParamCheck to False can be used if the dataset component passes to a server the

DDL statements that contain, for example, declarations of the stored procedures that will

accept parameterized values themselves. The default value is True.

See Also
Params

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components622

© 2024 Devart

6.11.1.6.2.8 ParamCount Property

Indicates the number of parameters in the Params property.

Class

TCustomDASQL

Syntax

property ParamCount: word;

Remarks

Use the ParamCount property to determine how many parameters are there in the Params

property.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.6.2.9 Params Property

Used to contain parameters for a SQL statement.

Class

TCustomDASQL

Syntax

property Params: TDAParams stored False;

Remarks

Access the Params property at runtime to view and set parameter names, values, and data

types dynamically (at design-time use the Parameters editor to set parameter properties).

Params is a zero-based array of parameter records. Index specifies the array element to

access. An easier way to set and retrieve parameter values when the name of each

parameter is known is to call ParamByName.

Example

Setting parameters at runtime:

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 623

© 2024 Devart

procedure TForm1.Button1Click(Sender: TObject);
begin
with UniSQL do
 begin
 SQL.Clear;
 SQL.Add('INSERT INTO Temp_Table(Id, Name)');
 SQL.Add('VALUES (:id, :Name)');
 ParamByName('Id').AsInteger := 55;
 Params[1].AsString := ' Green';
 Execute;
 end;
end;

See Also
TDAParam

FindParam

Macros

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.6.2.10 ParamValues Property(Indexer)

Used to get or set the values of individual field parameters that are identified by name.

Class

TCustomDASQL

Syntax

property ParamValues[const ParamName: string]: Variant; default;

Parameters

ParamName

Holds parameter names separated by semicolon.

Remarks

Use the ParamValues property to get or set the values of individual field parameters that are

identified by name.

Setting ParamValues sets the Value property for each parameter listed in the ParamName

string. Specify the values as Variants.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components624

© 2024 Devart

Getting ParamValues retrieves an array of variants, each of which represents the value of one

of the named parameters.

Note: The Params array is generated implicitly if ParamCheck property is set to True. If

ParamName includes a name that does not match any of the parameters in Items, an

exception is raised.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.6.2.11 Prepared Property

Used to indicate whether a query is prepared for execution.

Class

TCustomDASQL

Syntax

property Prepared: boolean;

Remarks

Check the Prepared property to determine if a query is already prepared for execution. True

means that the query has already been prepared. As a rule prepared queries are executed

faster, but the preparation itself also takes some time. One of the proper cases for using

preparation is parametrized queries that are executed several times.

See Also
Prepare

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.6.2.12 Row sAffected Property

Used to indicate the number of rows which were inserted, updated, or deleted during the last

query operation.

Class

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 625

© 2024 Devart

TCustomDASQL

Syntax

property RowsAffected: integer;

Remarks

Check RowsAffected to determine how many rows were inserted, updated, or deleted during

the last query operation. If RowsAffected is -1, the query has not inserted, updated, or deleted

any rows.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.6.2.13 SQL Property

Used to provide a SQL statement that a TCustomDASQL component executes when the

Execute method is called.

Class

TCustomDASQL

Syntax

property SQL: TStrings;

Remarks

Use the SQL property to provide a SQL statement that a TCustomDASQL component

executes when the Execute method is called. At design time the SQL property can be edited

by invoking the String List editor in Object Inspector.

See Also
FinalSQL

TCustomDASQL.Execute

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components626

© 2024 Devart

6.11.1.6.3 Methods

Methods of the TCustomDASQL class.

For a complete list of the TCustomDASQL class members, see the TCustomDASQL

Members topic.

Public

Name Description

BreakExec Breaks execution of an SQL
satatement on the server.

Execute
Overloaded. Executes a
SQL statement on the
server.

Executing
Checks whether
TCustomDASQL still
executes a SQL statement.

FindMacro Finds a macro with the
specified name.

FindParam Finds a parameter with the
specified name.

MacroByName Finds a macro with the
specified name.

ParamByName Finds a parameter with the
specified name.

Prepare Allocates, opens, and
parses cursor for a query.

UnPrepare

Frees the resources
allocated for a previously
prepared query on the
server and client sides.

WaitExecuting Waits until TCustomDASQL
executes a SQL statement.

See Also
TCustomDASQL Class

TCustomDASQL Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 627

© 2024 Devart

6.11.1.6.3.1 BreakExec Method

Breaks execution of an SQL satatement on the server.

Class

TCustomDASQL

Syntax

procedure BreakExec;

Remarks

Call the BreakExec method to break execution of an SQL statement on the server. It makes

sense to call BreakExec only from another thread. Useful when NonBlocking is True.

See Also
TCustomDASQL.Execute

TCustomDADataSet.BreakExec

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.6.3.2 Execute Method

Executes a SQL statement on the server.

Class

TCustomDASQL

Overload List

Name Description

Execute Executes a SQL statement on the server.

Execute(Iters: integer; Offset: integer) Used to perform Batch operations .

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components628

© 2024 Devart

Executes a SQL statement on the server.

Class

TCustomDASQL

Syntax

procedure Execute; overload; virtual;

Remarks

Call the Execute method to execute a SQL statement on the server. If the SQL statement has

OUT parameters, use the TCustomDASQL.ParamByName method or the

TCustomDASQL.Params property to get their values. Iters argument specifies the number of

times this statement is executed for the DML array operations.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

Used to perform Batch operations .

Class

TCustomDASQL

Syntax

procedure Execute(Iters: integer; Offset: integer = 0); overload;

virtual;

Parameters

Iters

Specifies the number of inserted rows.

Offset

Points the array element, which the Batch operation starts from. 0 by default.

Remarks

The Execute method executes the specified batch SQL query. See the Batch operations

article for samples.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 629

© 2024 Devart

See Also
Batch operations

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.6.3.3 Executing Method

Checks whether TCustomDASQL still executes a SQL statement.

Class

TCustomDASQL

Syntax

function Executing: boolean;

Return Value

True, if a SQL statement is still being executed by TCustomDASQL.

Remarks

Check Executing to find out whether TCustomDASQL still executes a SQL statement.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.6.3.4 FindMacro Method

Finds a macro with the specified name.

Class

TCustomDASQL

Syntax

function FindMacro(const Value: string): TMacro;

Parameters

Value

Holds the name of a macro to search for.

Return Value

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components630

© 2024 Devart

TMacro object if a match is found, nil otherwise.

Remarks

Call the FindMacro method to find a macro with the specified name. If a match is found,

FindMacro returns the macro. Otherwise, it returns nil. Use this method instead of a direct

reference to the TMacros.Items property to avoid depending on the order of the items.

See Also
TMacro

Macros

MacroByName

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.6.3.5 FindParam Method

Finds a parameter with the specified name.

Class

TCustomDASQL

Syntax

function FindParam(const Value: string): TDAParam;

Parameters

Value

Holds the parameter name to search for.

Return Value

a TDAParm object, if a parameter with the specified name has been found. If it has not,
returns nil.

Remarks

Call the FindParam method to find a parameter with the specified name in a dataset.

See Also
ParamByName

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 631

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.6.3.6 MacroByName Method

Finds a macro with the specified name.

Class

TCustomDASQL

Syntax

function MacroByName(const Value: string): TMacro;

Parameters

Value

Holds the name of a macro to search for.

Return Value

TMacro object if a match is found.

Remarks

Call the MacroByName method to find a macro with the specified name. If a match is found,

MacroByName returns the macro. Otherwise, an exception is raised. Use this method instead

of a direct reference to the TMacros.Items property to avoid depending on the order of the

items.

To locate a parameter by name without raising an exception if the parameter is not found, use

the FindMacro method.

To set a value to a macro, use the TMacro.Value property.

See Also
TMacro

Macros

FindMacro

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components632

© 2024 Devart

6.11.1.6.3.7 ParamByName Method

Finds a parameter with the specified name.

Class

TCustomDASQL

Syntax

function ParamByName(const Value: string): TDAParam;

Parameters

Value

Holds the name of the parameter to search for.

Return Value

a TDAParam object, if a match was found. Otherwise, an exception is raised.

Remarks

Use the ParamByName method to find a parameter with the specified name. If no parameter

with the specified name found, an exception is raised.

Example

UniSQL.Execute;
Edit1.Text := UniSQL.ParamsByName('Contact').AsString;

See Also
FindParam

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.6.3.8 Prepare Method

Allocates, opens, and parses cursor for a query.

Class

TCustomDASQL

Syntax

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 633

© 2024 Devart

procedure Prepare; virtual;

Remarks

Call the Prepare method to allocate, open, and parse cursor for a query. Calling Prepare

before executing a query improves application performance.

The UnPrepare method unprepares a query.

Note: When you change the text of a query at runtime, the query is automatically closed and

unprepared.

See Also
Prepared

UnPrepare

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.6.3.9 UnPrepare Method

Frees the resources allocated for a previously prepared query on the server and client sides.

Class

TCustomDASQL

Syntax

procedure UnPrepare; virtual;

Remarks

Call the UnPrepare method to free resources allocated for a previously prepared query on the

server and client sides.

See Also
Prepare

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components634

© 2024 Devart

6.11.1.6.3.10 WaitExecuting Method

Waits until TCustomDASQL executes a SQL statement.

Class

TCustomDASQL

Syntax

function WaitExecuting(TimeOut: integer = 0): boolean;

Parameters

TimeOut

Holds the time in seconds to wait while TCustomDASQL executes the SQL statement. Zero
means infinite time.

Return Value

True, if the execution of a SQL statement was completed in the preset time.

Remarks

Call the WaitExecuting method to wait until TCustomDASQL executes a SQL statement.

See Also
Executing

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.6.4 Events

Events of the TCustomDASQL class.

For a complete list of the TCustomDASQL class members, see the TCustomDASQL

Members topic.

Public

Name Description

AfterExecute
Occurs after a SQL
statement has been
executed.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 635

© 2024 Devart

See Also
TCustomDASQL Class

TCustomDASQL Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.6.4.1 AfterExecute Event

Occurs after a SQL statement has been executed.

Class

TCustomDASQL

Syntax

property AfterExecute: TAfterExecuteEvent;

Remarks

Occurs after a SQL statement has been executed. This event may be used for descendant

components which use multithreaded environment.

See Also
TCustomDASQL.Execute

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.7 TCustomDAUpdateSQL Class

A base class for components that provide DML statements for more flexible control over data

modifications.

For a list of all members of this type, see TCustomDAUpdateSQL members.

Unit

DBAccess

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components636

© 2024 Devart

Syntax

TCustomDAUpdateSQL = class(TComponent);

Remarks

TCustomDAUpdateSQL is a base class for components that provide DML statements for

more flexible control over data modifications. Besides providing BDE compatibility, this

component allows to associate a separate component for each update command.

See Also
TCustomUniDataSet.UpdateObject

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.7.1 Members

TCustomDAUpdateSQL class overview.

Properties

Name Description

DataSet
Used to hold a reference to
the TCustomDADataSet
object that is being updated.

DeleteObject
Provides ability to perform
advanced adjustment of the
delete operations.

DeleteSQL Used when deleting a
record.

InsertObject
Provides ability to perform
advanced adjustment of
insert operations.

InsertSQL Used when inserting a
record.

LockObject
Provides ability to perform
advanced adjustment of lock
operations.

LockSQL Used to lock the current
record.

ModifyObject Provides ability to perform

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 637

© 2024 Devart

advanced adjustment of
modify operations.

ModifySQL Used when updating a
record.

RefreshObject
Provides ability to perform
advanced adjustment of
refresh operations.

RefreshSQL

Used to specify an SQL
statement that will be used
for refreshing the current
record by
TCustomDADataSet.Refres
hRecord procedure.

SQL

Used to return a SQL
statement for one of the
ModifySQL, InsertSQL, or
DeleteSQL properties.

Methods

Name Description

Apply
Sets parameters for a SQL
statement and executes it to
update a record.

ExecSQL Executes a SQL statement.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.7.2 Properties

Properties of the TCustomDAUpdateSQL class.

For a complete list of the TCustomDAUpdateSQL class members, see the

TCustomDAUpdateSQL Members topic.

Public

Name Description

DataSet
Used to hold a reference to
the TCustomDADataSet
object that is being updated.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components638

© 2024 Devart

SQL

Used to return a SQL
statement for one of the
ModifySQL, InsertSQL, or
DeleteSQL properties.

Published

Name Description

DeleteObject
Provides ability to perform
advanced adjustment of the
delete operations.

DeleteSQL Used when deleting a
record.

InsertObject
Provides ability to perform
advanced adjustment of
insert operations.

InsertSQL Used when inserting a
record.

LockObject
Provides ability to perform
advanced adjustment of lock
operations.

LockSQL Used to lock the current
record.

ModifyObject
Provides ability to perform
advanced adjustment of
modify operations.

ModifySQL Used when updating a
record.

RefreshObject
Provides ability to perform
advanced adjustment of
refresh operations.

RefreshSQL

Used to specify an SQL
statement that will be used
for refreshing the current
record by
TCustomDADataSet.Refres
hRecord procedure.

See Also
TCustomDAUpdateSQL Class

TCustomDAUpdateSQL Class Members

Reference 639

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.7.2.1 DataSet Property

Used to hold a reference to the TCustomDADataSet object that is being updated.

Class

TCustomDAUpdateSQL

Syntax

property DataSet: TCustomDADataSet;

Remarks

The DataSet property holds a reference to the TCustomDADataSet object that is being

updated. Generally it is not used directly.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.7.2.2 DeleteObject Property

Provides ability to perform advanced adjustment of the delete operations.

Class

TCustomDAUpdateSQL

Syntax

property DeleteObject: TComponent;

Remarks

Assign SQL component or a TCustomUniDataSet descendant to this property to perform

advanced adjustment of the delete operations. In some cases this can give some additional

performance. Use the same principle to set the SQL property of an object as for setting the

DeleteSQL property.

See Also

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components640

© 2024 Devart

DeleteSQL

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.7.2.3 DeleteSQL Property

Used when deleting a record.

Class

TCustomDAUpdateSQL

Syntax

property DeleteSQL: TStrings;

Remarks

Set the DeleteSQL property to a DELETE statement to use when deleting a record.

Statements can be parameterized queries with parameter names corresponding to the

dataset field names.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.7.2.4 InsertObject Property

Provides ability to perform advanced adjustment of insert operations.

Class

TCustomDAUpdateSQL

Syntax

property InsertObject: TComponent;

Remarks

Assign SQL component or TCustomUniDataSet descendant to this property to perform

advanced adjustment of insert operations. In some cases this can give some additional

performance. Set the SQL property of the object in the same way as used for the InsertSQL

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 641

© 2024 Devart

property.

See Also
InsertSQL

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.7.2.5 InsertSQL Property

Used when inserting a record.

Class

TCustomDAUpdateSQL

Syntax

property InsertSQL: TStrings;

Remarks

Set the InsertSQL property to an INSERT INTO statement to use when inserting a record.

Statements can be parameterized queries with parameter names corresponding to the

dataset field names.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.7.2.6 LockObject Property

Provides ability to perform advanced adjustment of lock operations.

Class

TCustomDAUpdateSQL

Syntax

property LockObject: TComponent;

Remarks

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components642

© 2024 Devart

Assign a SQL component or TCustomUniDataSet descendant to this property to perform

advanced adjustment of lock operations. In some cases that can give some additional

performance. Set the SQL property of an object in the same way as used for the LockSQL

property.

See Also
LockSQL

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.7.2.7 LockSQL Property

Used to lock the current record.

Class

TCustomDAUpdateSQL

Syntax

property LockSQL: TStrings;

Remarks

Use the LockSQL property to lock the current record. Statements can be parameterized

queries with parameter names corresponding to the dataset field names.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.7.2.8 ModifyObject Property

Provides ability to perform advanced adjustment of modify operations.

Class

TCustomDAUpdateSQL

Syntax

property ModifyObject: TComponent;

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 643

© 2024 Devart

Remarks

Assign a SQL component or TCustomUniDataSet descendant to this property to perform

advanced adjustment of modify operations. In some cases this can give some additional

performance. Set the SQL property of the object in the same way as used for the ModifySQL

property.

See Also
ModifySQL

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.7.2.9 ModifySQL Property

Used when updating a record.

Class

TCustomDAUpdateSQL

Syntax

property ModifySQL: TStrings;

Remarks

Set ModifySQL to an UPDATE statement to use when updating a record. Statements can be

parameterized queries with parameter names corresponding to the dataset field names.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.7.2.10 RefreshObject Property

Provides ability to perform advanced adjustment of refresh operations.

Class

TCustomDAUpdateSQL

Syntax

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components644

© 2024 Devart

property RefreshObject: TComponent;

Remarks

Assign a SQL component or TCustomUniDataSet descendant to this property to perform

advanced adjustment of refresh operations. In some cases that can give some additional

performance. Set the SQL property of the object in the same way as used for the

RefreshSQL property.

See Also
RefreshSQL

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.7.2.11 RefreshSQL Property

Used to specify an SQL statement that will be used for refreshing the current record by

TCustomDADataSet.RefreshRecord procedure.

Class

TCustomDAUpdateSQL

Syntax

property RefreshSQL: TStrings;

Remarks

Use the RefreshSQL property to specify a SQL statement that will be used for refreshing the

current record by the TCustomDADataSet.RefreshRecord procedure.

You can assign to SQLRefresh a WHERE clause only. In such a case it is added to SELECT

defined by the SQL property by TCustomDADataSet.AddWhere.

To create a RefreshSQL statement at design time, use the query statements editor.

See Also
TCustomDADataSet.RefreshRecord

© 1997-2024 Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 645

© 2024 Devart

Devart. All Rights
Reserved.

6.11.1.7.2.12 SQL Property(Indexer)

Used to return a SQL statement for one of the ModifySQL, InsertSQL, or DeleteSQL

properties.

Class

TCustomDAUpdateSQL

Syntax

property SQL[UpdateKind: TUpdateKind]: TStrings;

Parameters

UpdateKind

Specifies which of update SQL statements to return.

Remarks

Returns a SQL statement for one of the ModifySQL, InsertSQL, or DeleteSQL properties,

depending on the value of the UpdateKind index.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.7.3 Methods

Methods of the TCustomDAUpdateSQL class.

For a complete list of the TCustomDAUpdateSQL class members, see the

TCustomDAUpdateSQL Members topic.

Public

Name Description

Apply
Sets parameters for a SQL
statement and executes it to
update a record.

ExecSQL Executes a SQL statement.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components646

© 2024 Devart

See Also
TCustomDAUpdateSQL Class

TCustomDAUpdateSQL Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.7.3.1 Apply Method

Sets parameters for a SQL statement and executes it to update a record.

Class

TCustomDAUpdateSQL

Syntax

procedure Apply(UpdateKind: TUpdateKind); virtual;

Parameters

UpdateKind

Specifies which of update SQL statements to execute.

Remarks

Call the Apply method to set parameters for a SQL statement and execute it to update a

record. UpdateKind indicates which SQL statement to bind and execute.

Apply is primarily intended for manually executing update statements from an

OnUpdateRecord event handler.

Note: If a SQL statement does not contain parameters, it is more efficient to call ExecSQL

instead of Apply.

See Also
ExecSQL

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 647

© 2024 Devart

6.11.1.7.3.2 ExecSQL Method

Executes a SQL statement.

Class

TCustomDAUpdateSQL

Syntax

procedure ExecSQL(UpdateKind: TUpdateKind);

Parameters

UpdateKind

Specifies the kind of update statement to be executed.

Remarks

Call the ExecSQL method to execute a SQL statement, necessary for updating the records

belonging to a read-only result set when cached updates is enabled. UpdateKind specifies the

statement to execute.

ExecSQL is primarily intended for manually executing update statements from the

OnUpdateRecord event handler.

Note: To both bind parameters and execute a statement, call Apply.

See Also
Apply

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.8 TDACondition Class

Represents a condition from the TDAConditions list.

For a list of all members of this type, see TDACondition members.

Unit

DBAccess

Syntax

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components648

© 2024 Devart

TDACondition = class(TCollectionItem);

Remarks

Manipulate conditions using TDAConditions.

See Also
TDAConditions

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.8.1 Members

TDACondition class overview.

Properties

Name Description

Enabled Indicates whether the
condition is enabled or not

Name The name of the condition

Value The value of the condition

Methods

Name Description

Disable Disables the condition

Enable Enables the condition

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.8.2 Properties

Properties of the TDACondition class.

For a complete list of the TDACondition class members, see the TDACondition Members

topic.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 649

© 2024 Devart

Published

Name Description

Enabled Indicates whether the
condition is enabled or not

Name The name of the condition

Value The value of the condition

See Also
TDACondition Class

TDACondition Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.8.2.1 Enabled Property

Indicates whether the condition is enabled or not

Class

TDACondition

Syntax

property Enabled: Boolean default True;

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.8.2.2 Name Property

The name of the condition

Class

TDACondition

Syntax

property Name: string;

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components650

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.8.2.3 Value Property

The value of the condition

Class

TDACondition

Syntax

property Value: string;

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.8.3 Methods

Methods of the TDACondition class.

For a complete list of the TDACondition class members, see the TDACondition Members

topic.

Public

Name Description

Disable Disables the condition

Enable Enables the condition

See Also
TDACondition Class

TDACondition Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 651

© 2024 Devart

6.11.1.8.3.1 Disable Method

Disables the condition

Class

TDACondition

Syntax

procedure Disable;

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.8.3.2 Enable Method

Enables the condition

Class

TDACondition

Syntax

procedure Enable;

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.9 TDAConditions Class

Holds a collection of TDACondition objects.

For a list of all members of this type, see TDAConditions members.

Unit

DBAccess

Syntax

TDAConditions = class(TCollection);

Remarks

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components652

© 2024 Devart

The given example code

UniTable1.Conditions.Add('1','JOB="MANAGER"');
UniTable1.Conditions.Add('2','SAL>2500');
UniTable1.Conditions.Enable;
UniTable1.Open;

will return the following SQL:

SELECT * FROM EMP
WHERE (JOB="MANAGER")
and
(SAL<2500)

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.9.1 Members

TDAConditions class overview.

Properties

Name Description

Condition Used to iterate through all
the conditions.

Enabled Indicates whether the
condition is enabled

Items Used to iterate through all
conditions.

Text

The property returns
condition names and values
as
CONDITION_NAME=COND
ITION

WhereSQL
Returns the SQL WHERE
condition added in the
Conditions property.

Methods

Name Description

Add
Overloaded. Adds a
condition to the WHERE
clause of the query.

Delete Deletes the condition

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 653

© 2024 Devart

Disable Disables the condition

Enable Enables the condition

Find

Search for TDACondition
(the condition) by its name. If
found, the TDACondition
object is returned, otherwise
- nil.

Get

Retrieving a TDACondition
object by its name. If found,
the TDACondition object is
returned, otherwise - an
exception is raised.

IndexOf

Retrieving condition index by
its name. If found, this
condition index is returned,
otherwise - the method
returns -1.

Remove Removes the condition

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.9.2 Properties

Properties of the TDAConditions class.

For a complete list of the TDAConditions class members, see the TDAConditions Members

topic.

Public

Name Description

Condition Used to iterate through all
the conditions.

Enabled Indicates whether the
condition is enabled

Items Used to iterate through all
conditions.

Text

The property returns
condition names and values
as
CONDITION_NAME=COND

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components654

© 2024 Devart

ITION

WhereSQL
Returns the SQL WHERE
condition added in the
Conditions property.

See Also
TDAConditions Class

TDAConditions Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.9.2.1 Condition Property(Indexer)

Used to iterate through all the conditions.

Class

TDAConditions

Syntax

property Condition[Index: Integer]: TDACondition;

Parameters

Index

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.9.2.2 Enabled Property

Indicates whether the condition is enabled

Class

TDAConditions

Syntax

property Enabled: Boolean;

© 1997-2024 Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 655

© 2024 Devart

Devart. All Rights
Reserved.

6.11.1.9.2.3 Items Property(Indexer)

Used to iterate through all conditions.

Class

TDAConditions

Syntax

property Items[Index: Integer]: TDACondition; default;

Parameters

Index

Holds an index in the range 0..Count - 1.

Remarks

Use the Items property to iterate through all conditions. Index identifies the index in the range

0..Count - 1. Items can reference a particular condition by its index, but the Condition property

is preferred in order to avoid depending on the order of the conditions.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.9.2.4 Text Property

The property returns condition names and values as CONDITION_NAME=CONDITION

Class

TDAConditions

Syntax

property Text: string;

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components656

© 2024 Devart

6.11.1.9.2.5 WhereSQL Property

Returns the SQL WHERE condition added in the Conditions property.

Class

TDAConditions

Syntax

property WhereSQL: string;

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.9.3 Methods

Methods of the TDAConditions class.

For a complete list of the TDAConditions class members, see the TDAConditions Members

topic.

Public

Name Description

Add
Overloaded. Adds a
condition to the WHERE
clause of the query.

Delete Deletes the condition

Disable Disables the condition

Enable Enables the condition

Find

Search for TDACondition
(the condition) by its name. If
found, the TDACondition
object is returned, otherwise
- nil.

Get

Retrieving a TDACondition
object by its name. If found,
the TDACondition object is
returned, otherwise - an
exception is raised.

IndexOf Retrieving condition index by
its name. If found, this

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 657

© 2024 Devart

condition index is returned,
otherwise - the method
returns -1.

Remove Removes the condition

See Also
TDAConditions Class

TDAConditions Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.9.3.1 Add Method

Adds a condition to the WHERE clause of the query.

Class

TDAConditions

Overload List

Name Description

Add(const Value: string; Enabled:
Boolean)

Adds a condition to the WHERE clause of
the query.

Add(const Name: string; const Value:
string; Enabled: Boolean)

Adds a condition to the WHERE clause of
the query.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

Adds a condition to the WHERE clause of the query.

Class

TDAConditions

Syntax

function Add(const Value: string; Enabled: Boolean = True):

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components658

© 2024 Devart

TDACondition; overload;

Parameters

Value

The value of the condition

Enabled

Indicates that the condition is enabled

Remarks

If you want then to access the condition, you should use Add and its name in the Name

parameter.

The given example code will return the following SQL:

SELECT * FROM EMP
WHERE (JOB="MANAGER")
and
(SAL<2500)

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

Adds a condition to the WHERE clause of the query.

Class

TDAConditions

Syntax

function Add(const Name: string; const Value: string; Enabled:

Boolean = True): TDACondition; overload;

Parameters

Name

Sets the name of the condition

Value

The value of the condition

Enabled

Indicates that the condition is enabled

Remarks

The given example code will return the following SQL:

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 659

© 2024 Devart

SELECT * FROM EMP
WHERE (JOB="MANAGER")
and
(SAL<2500)

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.9.3.2 Delete Method

Deletes the condition

Class

TDAConditions

Syntax

procedure Delete(Index: integer);

Parameters

Index

Index of the condition

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.9.3.3 Disable Method

Disables the condition

Class

TDAConditions

Syntax

procedure Disable;

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components660

© 2024 Devart

6.11.1.9.3.4 Enable Method

Enables the condition

Class

TDAConditions

Syntax

procedure Enable;

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.9.3.5 Find Method

Search for TDACondition (the condition) by its name. If found, the TDACondition object is

returned, otherwise - nil.

Class

TDAConditions

Syntax

function Find(const Name: string): TDACondition;

Parameters

Name

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.9.3.6 Get Method

Retrieving a TDACondition object by its name. If found, the TDACondition object is returned,

otherwise - an exception is raised.

Class

TDAConditions

Syntax

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 661

© 2024 Devart

function Get(const Name: string): TDACondition;

Parameters

Name

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.9.3.7 IndexOf Method

Retrieving condition index by its name. If found, this condition index is returned, otherwise -

the method returns -1.

Class

TDAConditions

Syntax

function IndexOf(const Name: string): Integer;

Parameters

Name

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.9.3.8 Remove Method

Removes the condition

Class

TDAConditions

Syntax

procedure Remove(const Name: string);

Parameters

Name

Specifies the name of the removed condition

© 1997-2024
Devart. All Rights

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components662

© 2024 Devart

Reserved.

6.11.1.10 TDAConnectionOptions Class

This class allows setting up the behaviour of the TDAConnection class.

For a list of all members of this type, see TDAConnectionOptions members.

Unit

DBAccess

Syntax

TDAConnectionOptions = class(TPersistent);

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.10.1 Members

TDAConnectionOptions class overview.

Properties

Name Description

AllowImplicitConnect
Specifies whether to allow or
not implicit connection
opening.

DefaultSortType

Used to determine the
default type of local sorting
for string fields. It is used
when a sort type is not
specified explicitly after the
field name in the
TMemDataSet.IndexFieldNa
mes property of a dataset.

DisconnectedMode

Used to open a connection
only when needed for
performing a server call and
closes after performing the
operation.

KeepDesignConnected
Used to prevent an
application from establishing
a connection at the time of

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 663

© 2024 Devart

startup.

LocalFailover

If True, the
TCustomDAConnection.On
ConnectionLost event
occurs and a failover
operation can be performed
after connection breaks.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.10.2 Properties

Properties of the TDAConnectionOptions class.

For a complete list of the TDAConnectionOptions class members, see the

TDAConnectionOptions Members topic.

Public

Name Description

DefaultSortType

Used to determine the
default type of local sorting
for string fields. It is used
when a sort type is not
specified explicitly after the
field name in the
TMemDataSet.IndexFieldNa
mes property of a dataset.

DisconnectedMode

Used to open a connection
only when needed for
performing a server call and
closes after performing the
operation.

KeepDesignConnected

Used to prevent an
application from establishing
a connection at the time of
startup.

LocalFailover

If True, the
TCustomDAConnection.On
ConnectionLost event
occurs and a failover
operation can be performed
after connection breaks.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components664

© 2024 Devart

Published

Name Description

AllowImplicitConnect
Specifies whether to allow or
not implicit connection
opening.

See Also
TDAConnectionOptions Class

TDAConnectionOptions Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.10.2.1 Allow ImplicitConnect Property

Specifies whether to allow or not implicit connection opening.

Class

TDAConnectionOptions

Syntax

property AllowImplicitConnect: boolean default True;

Remarks

Use the AllowImplicitConnect property to specify whether allow or not implicit connection

opening.

If a closed connection has AllowImplicitConnect set to True and a dataset that uses the

connection is opened, the connection is opened implicitly to allow opening the dataset.

If a closed connection has AllowImplicitConnect set to False and a dataset that uses the

connection is opened, an exception is raised.

The default value is True.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 665

© 2024 Devart

6.11.1.10.2.2 DefaultSortType Property

Used to determine the default type of local sorting for string fields. It is used when a sort type

is not specified explicitly after the field name in the TMemDataSet.IndexFieldNames property

of a dataset.

Class

TDAConnectionOptions

Syntax

property DefaultSortType: TSortType default stCaseSensitive;

Remarks

Use the DefaultSortType property to determine the default type of local sorting for string fields.

It is used when a sort type is not specified explicitly after the field name in the

TMemDataSet.IndexFieldNames property of a dataset.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.10.2.3 DisconnectedMode Property

Used to open a connection only when needed for performing a server call and closes after

performing the operation.

Class

TDAConnectionOptions

Syntax

property DisconnectedMode: boolean default False;

Remarks

If True, connection opens only when needed for performing a server call and closes after

performing the operation. Datasets remain opened when connection closes. May be useful to

save server resources and operate in unstable or expensive network. Drawback of using

disconnect mode is that each connection establishing requires some time for authorization. If

connection is often closed and opened it can slow down the application work. See the

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components666

© 2024 Devart

Disconnected Mode topic for more information.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.10.2.4 KeepDesignConnected Property

Used to prevent an application from establishing a connection at the time of startup.

Class

TDAConnectionOptions

Syntax

property KeepDesignConnected: boolean default True;

Remarks

At the time of startup prevents application from establishing a connection even if the

Connected property was set to True at design-time. Set KeepDesignConnected to False to

initialize the connected property to False, even if it was True at design-time.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.10.2.5 LocalFailover Property

If True, the TCustomDAConnection.OnConnectionLost event occurs and a failover operation

can be performed after connection breaks.

Class

TDAConnectionOptions

Syntax

property LocalFailover: boolean default False;

Remarks

If True, the TCustomDAConnection.OnConnectionLost event occurs and a failover operation

can be performed after connection breaks. Read the Working in an Unstable Network topic for

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 667

© 2024 Devart

more information about using failover.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.11 TDAConnectionSSLOptions Class

This class is used to set up the SSL options.

For a list of all members of this type, see TDAConnectionSSLOptions members.

Unit

DBAccess

Syntax

TDAConnectionSSLOptions = class(TPersistent);

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.11.1 Members

TDAConnectionSSLOptions class overview.

Properties

Name Description

CACert Holds the path to the
certificate authority file.

Cert Holds the path to the client
certificate.

CipherList Holds the list of allowed SSL
ciphers.

Key Holds the path to the private
client key.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components668

© 2024 Devart

6.11.1.11.2 Properties

Properties of the TDAConnectionSSLOptions class.

For a complete list of the TDAConnectionSSLOptions class members, see the

TDAConnectionSSLOptions Members topic.

Published

Name Description

CACert Holds the path to the
certificate authority file.

Cert Holds the path to the client
certificate.

CipherList Holds the list of allowed SSL
ciphers.

Key Holds the path to the private
client key.

See Also
TDAConnectionSSLOptions Class

TDAConnectionSSLOptions Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.11.2.1 CACert Property

Holds the path to the certificate authority file.

Class

TDAConnectionSSLOptions

Syntax

property CACert: string;

Remarks

Use the CACert property to specify the path to the certificate authority file.

© 1997-2024 Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 669

© 2024 Devart

Devart. All Rights
Reserved.

6.11.1.11.2.2 Cert Property

Holds the path to the client certificate.

Class

TDAConnectionSSLOptions

Syntax

property Cert: string;

Remarks

Use the Cert property to specify the path to the client certificate.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.11.2.3 CipherList Property

Holds the list of allowed SSL ciphers.

Class

TDAConnectionSSLOptions

Syntax

property CipherList: string;

Remarks

Use the CipherList property to specify the list of allowed SSL ciphers.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components670

© 2024 Devart

6.11.1.11.2.4 Key Property

Holds the path to the private client key.

Class

TDAConnectionSSLOptions

Syntax

property Key: string;

Remarks

Use the Key property to specify the path to the private client key.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.12 TDADataSetOptions Class

This class allows setting up the behaviour of the TDADataSet class.

For a list of all members of this type, see TDADataSetOptions members.

Unit

DBAccess

Syntax

TDADataSetOptions = class(TPersistent);

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.12.1 Members

TDADataSetOptions class overview.

Properties

Name Description

AutoPrepare Used to execute automatic
TCustomDADataSet.Prepar

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 671

© 2024 Devart

e on the query execution.

CacheCalcFields
Used to enable caching of
the TField.Calculated and
TField.Lookup fields.

CompressBlobMode
Used to store values of the
BLOB fields in compressed
form.

DefaultValues

Used to request default
values/expressions from the
server and assign them to
the DefaultExpression
property.

DetailDelay

Used to get or set a delay in
milliseconds before
refreshing detail dataset
while navigating master
dataset.

FieldsOrigin

Used for
TCustomDADataSet to fill
the Origin property of the
TField objects by
appropriate value when
opening a dataset.

FlatBuffers

Used to control how a
dataset treats data of the
ftString and ftVarBytes
fields.

InsertAllSetFields

Used to include all set
dataset fields in the
generated INSERT
statement

LocalMasterDetail

Used for
TCustomDADataSet to use
local filtering to establish
master/detail relationship for
detail dataset and does not
refer to the server.

LongStrings

Used to represent string
fields with the length that is
greater than 255 as
TStringField.

MasterFieldsNullable

Allows to use NULL values
in the fields by which the
relation is built, when
generating the query for the

Universal Data Access Components672

© 2024 Devart

Detail tables (when this
option is enabled, the
performance can get worse).

NumberRange

Used to set the MaxValue
and MinValue properties of
TIntegerField and
TFloatField to appropriate
values.

QueryRecCount

Used for
TCustomDADataSet to
perform additional query to
get the record count for this
SELECT, so the
RecordCount property
reflects the actual number of
records.

QuoteNames

Used for
TCustomDADataSet to
quote all database object
names in autogenerated
SQL statements such as
update SQL.

RemoveOnRefresh
Used for a dataset to locally
remove a record that can not
be found on the server.

RequiredFields

Used for
TCustomDADataSet to set
the Required property of the
TField objects for the NOT
NULL fields.

ReturnParams
Used to return the new value
of fields to dataset after
insert or update.

SetFieldsReadOnly

Used for a dataset to set the
ReadOnly property to True
for all fields that do not
belong to UpdatingTable or
can not be updated.

StrictUpdate

Used for
TCustomDADataSet to
raise an exception when the
number of updated or
deleted records is not equal
1.

Reference 673

© 2024 Devart

TrimFixedChar
Specifies whether to discard
all trailing spaces in the
string fields of a dataset.

UpdateAllFields

Used to include all dataset
fields in the generated
UPDATE and INSERT
statements.

UpdateBatchSize

Used to get or set a value
that enables or disables
batch processing support,
and specifies the number of
commands that can be
executed in a batch.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.12.2 Properties

Properties of the TDADataSetOptions class.

For a complete list of the TDADataSetOptions class members, see the TDADataSetOptions

Members topic.

Public

Name Description

AutoPrepare
Used to execute automatic
TCustomDADataSet.Prepar
e on the query execution.

CacheCalcFields
Used to enable caching of
the TField.Calculated and
TField.Lookup fields.

CompressBlobMode
Used to store values of the
BLOB fields in compressed
form.

DefaultValues

Used to request default
values/expressions from the
server and assign them to
the DefaultExpression
property.

DetailDelay
Used to get or set a delay in
milliseconds before
refreshing detail dataset

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components674

© 2024 Devart

while navigating master
dataset.

FieldsOrigin

Used for
TCustomDADataSet to fill
the Origin property of the
TField objects by
appropriate value when
opening a dataset.

FlatBuffers

Used to control how a
dataset treats data of the
ftString and ftVarBytes
fields.

InsertAllSetFields

Used to include all set
dataset fields in the
generated INSERT
statement

LocalMasterDetail

Used for
TCustomDADataSet to use
local filtering to establish
master/detail relationship for
detail dataset and does not
refer to the server.

LongStrings

Used to represent string
fields with the length that is
greater than 255 as
TStringField.

MasterFieldsNullable

Allows to use NULL values
in the fields by which the
relation is built, when
generating the query for the
Detail tables (when this
option is enabled, the
performance can get worse).

NumberRange

Used to set the MaxValue
and MinValue properties of
TIntegerField and
TFloatField to appropriate
values.

QueryRecCount

Used for
TCustomDADataSet to
perform additional query to
get the record count for this
SELECT, so the
RecordCount property
reflects the actual number of

Reference 675

© 2024 Devart

records.

QuoteNames

Used for
TCustomDADataSet to
quote all database object
names in autogenerated
SQL statements such as
update SQL.

RemoveOnRefresh
Used for a dataset to locally
remove a record that can not
be found on the server.

RequiredFields

Used for
TCustomDADataSet to set
the Required property of the
TField objects for the NOT
NULL fields.

ReturnParams
Used to return the new value
of fields to dataset after
insert or update.

SetFieldsReadOnly

Used for a dataset to set the
ReadOnly property to True
for all fields that do not
belong to UpdatingTable or
can not be updated.

StrictUpdate

Used for
TCustomDADataSet to
raise an exception when the
number of updated or
deleted records is not equal
1.

TrimFixedChar
Specifies whether to discard
all trailing spaces in the
string fields of a dataset.

UpdateAllFields

Used to include all dataset
fields in the generated
UPDATE and INSERT
statements.

UpdateBatchSize

Used to get or set a value
that enables or disables
batch processing support,
and specifies the number of
commands that can be
executed in a batch.

See Also

Universal Data Access Components676

© 2024 Devart

TDADataSetOptions Class

TDADataSetOptions Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.12.2.1 AutoPrepare Property

Used to execute automatic TCustomDADataSet.Prepare on the query execution.

Class

TDADataSetOptions

Syntax

property AutoPrepare: boolean default False;

Remarks

Use the AutoPrepare property to execute automatic TCustomDADataSet.Prepare on the

query execution. Makes sense for cases when a query will be executed several times, for

example, in Master/Detail relationships.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.12.2.2 CacheCalcFields Property

Used to enable caching of the TField.Calculated and TField.Lookup fields.

Class

TDADataSetOptions

Syntax

property CacheCalcFields: boolean default False;

Remarks

Use the CacheCalcFields property to enable caching of the TField.Calculated and

TField.Lookup fields. It can be useful for reducing CPU usage for calculated fields. Using

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 677

© 2024 Devart

caching of calculated and lookup fields increases memory usage on the client side.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.12.2.3 CompressBlobMode Property

Used to store values of the BLOB fields in compressed form.

Class

TDADataSetOptions

Syntax

property CompressBlobMode: TCompressBlobMode default cbNone;

Remarks

Use the CompressBlobMode property to store values of the BLOB fields in compressed form.

Add the MemData unit to uses list to use this option. Compression rate greatly depends on

stored data, for example, usually graphic data compresses badly unlike text.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.12.2.4 DefaultValues Property

Used to request default values/expressions from the server and assign them to the

DefaultExpression property.

Class

TDADataSetOptions

Syntax

property DefaultValues: boolean default False;

Remarks

If True, the default values/expressions are requested from the server and assigned to the

DefaultExpression property of TField objects replacing already existent values.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components678

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.12.2.5 DetailDelay Property

Used to get or set a delay in milliseconds before refreshing detail dataset while navigating

master dataset.

Class

TDADataSetOptions

Syntax

property DetailDelay: integer default 0;

Remarks

Use the DetailDelay property to get or set a delay in milliseconds before refreshing detail

dataset while navigating master dataset. If DetailDelay is 0 (the default value) then refreshing

of detail dataset occurs immediately. The DetailDelay option should be used for detail dataset.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.12.2.6 FieldsOrigin Property

Used for TCustomDADataSet to fill the Origin property of the TField objects by appropriate

value when opening a dataset.

Class

TDADataSetOptions

Syntax

property FieldsOrigin: boolean;

Remarks

If True, TCustomDADataSet fills the Origin property of the TField objects by appropriate value

when opening a dataset.

© 1997-2024 Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 679

© 2024 Devart

Devart. All Rights
Reserved.

6.11.1.12.2.7 FlatBuffers Property

Used to control how a dataset treats data of the ftString and ftVarBytes fields.

Class

TDADataSetOptions

Syntax

property FlatBuffers: boolean default False;

Remarks

Use the FlatBuffers property to control how a dataset treats data of the ftString and ftVarBytes

fields. When set to True, all data fetched from the server is stored in record pdata without

unused tails.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.12.2.8 InsertAllSetFields Property

Used to include all set dataset fields in the generated INSERT statement

Class

TDADataSetOptions

Syntax

property InsertAllSetFields: boolean default False;

Remarks

If True, all set dataset fields, including those set to NULL explicitly, will be included in the

generated INSERT statements. Otherwise, only set fields containing not NULL values will be

included to the generated INSERT statement.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components680

© 2024 Devart

6.11.1.12.2.9 LocalMasterDetail Property

Used for TCustomDADataSet to use local filtering to establish master/detail relationship for

detail dataset and does not refer to the server.

Class

TDADataSetOptions

Syntax

property LocalMasterDetail: boolean default False;

Remarks

If True, for detail dataset in master-detail relationship TCustomDADataSet uses local filtering

for establishing master/detail relationship and does not refer to the server. Otherwise detail

dataset performs query each time a record is selected in master dataset. This option is useful

for reducing server calls number, server resources economy. It can be useful for slow

connection. The TMemDataSet.CachedUpdates mode can be used for detail dataset only

when this option is set to true. Setting the LocalMasterDetail option to True is not

recommended when detail table contains too many rows, because when it is set to False,

only records that correspond to the current record in master dataset are fetched.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.12.2.10 LongStrings Property

Used to represent string fields with the length that is greater than 255 as TStringField.

Class

TDADataSetOptions

Syntax

property LongStrings: boolean default True;

Remarks

Use the LongStrings property to represent string fields with the length that is greater than 255

as TStringField, not as TMemoField.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 681

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.12.2.11 MasterFieldsNullable Property

Allows to use NULL values in the fields by which the relation is built, when generating the

query for the Detail tables (when this option is enabled, the performance can get worse).

Class

TDADataSetOptions

Syntax

property MasterFieldsNullable: boolean default False;

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.12.2.12 NumberRange Property

Used to set the MaxValue and MinValue properties of TIntegerField and TFloatField to

appropriate values.

Class

TDADataSetOptions

Syntax

property NumberRange: boolean default False;

Remarks

Use the NumberRange property to set the MaxValue and MinValue properties of TIntegerField

and TFloatField to appropriate values.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.12.2.13 QueryRecCount Property

Used for TCustomDADataSet to perform additional query to get the record count for this

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components682

© 2024 Devart

SELECT, so the RecordCount property reflects the actual number of records.

Class

TDADataSetOptions

Syntax

property QueryRecCount: boolean default False;

Remarks

If True, and the FetchAll property is False, TCustomDADataSet performs additional query to

get the record count for this SELECT, so the RecordCount property reflects the actual

number of records. Does not have any effect if the FetchAll property is True.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.12.2.14 QuoteNames Property

Used for TCustomDADataSet to quote all database object names in autogenerated SQL

statements such as update SQL.

Class

TDADataSetOptions

Syntax

property QuoteNames: boolean default False;

Remarks

If True, TCustomDADataSet quotes all database object names in autogenerated SQL

statements such as update SQL.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 683

© 2024 Devart

6.11.1.12.2.15 RemoveOnRefresh Property

Used for a dataset to locally remove a record that can not be found on the server.

Class

TDADataSetOptions

Syntax

property RemoveOnRefresh: boolean default True;

Remarks

When the RefreshRecord procedure can't find necessary record on the server and

RemoveOnRefresh is set to True, dataset removes the record locally. Usually

RefreshRecord can't find necessary record when someone else dropped the record or

changed the key value of it.

This option makes sense only if the StrictUpdate option is set to False. If the StrictUpdate

option is True, error will be generated regardless of the RemoveOnRefresh option value.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.12.2.16 RequiredFields Property

Used for TCustomDADataSet to set the Required property of the TField objects for the NOT

NULL fields.

Class

TDADataSetOptions

Syntax

property RequiredFields: boolean default True;

Remarks

If True, TCustomDADataSet sets the Required property of the TField objects for the NOT

NULL fields. It is useful when table has a trigger which updates the NOT NULL fields.

© 1997-2024 Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components684

© 2024 Devart

Devart. All Rights
Reserved.

6.11.1.12.2.17 ReturnParams Property

Used to return the new value of fields to dataset after insert or update.

Class

TDADataSetOptions

Syntax

property ReturnParams: boolean default False;

Remarks

Use the ReturnParams property to return the new value of fields to dataset after insert or

update. The actual value of field after insert or update may be different from the value stored

in the local memory if the table has a trigger. When ReturnParams is True, OUT parameters

of the SQLInsert and SQLUpdate statements is assigned to the corresponding fields.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.12.2.18 SetFieldsReadOnly Property

Used for a dataset to set the ReadOnly property to True for all fields that do not belong to

UpdatingTable or can not be updated.

Class

TDADataSetOptions

Syntax

property SetFieldsReadOnly: boolean default True;

Remarks

If True, dataset sets the ReadOnly property to True for all fields that do not belong to

UpdatingTable or can not be updated. Set this option for datasets that use automatic

generation of the update SQL statements only.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 685

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.12.2.19 StrictUpdate Property

Used for TCustomDADataSet to raise an exception when the number of updated or deleted

records is not equal 1.

Class

TDADataSetOptions

Syntax

property StrictUpdate: boolean default True;

Remarks

If True, TCustomDADataSet raises an exception when the number of updated or deleted

records is not equal 1. Setting this option also causes the exception if the RefreshRecord

procedure returns more than one record. The exception does not occur when you execute

SQL query, that doesn't return resultset.

Note: There can be problems if this option is set to True and triggers for UPDATE, DELETE,

REFRESH commands that are defined for the table. So it is recommended to disable (set to

False) this option with triggers.

TrimFixedChar specifies whether to discard all trailing spaces in the string fields of a dataset.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.12.2.20 TrimFixedChar Property

Specifies whether to discard all trailing spaces in the string fields of a dataset.

Class

TDADataSetOptions

Syntax

property TrimFixedChar: boolean default True;

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components686

© 2024 Devart

Remarks

Specifies whether to discard all trailing spaces in the string fields of a dataset.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.12.2.21 UpdateAllFields Property

Used to include all dataset fields in the generated UPDATE and INSERT statements.

Class

TDADataSetOptions

Syntax

property UpdateAllFields: boolean default False;

Remarks

If True, all dataset fields will be included in the generated UPDATE and INSERT statements.

Unspecified fields will have NULL value in the INSERT statements. Otherwise, only updated

fields will be included to the generated update statements.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.12.2.22 UpdateBatchSize Property

Used to get or set a value that enables or disables batch processing support, and specifies

the number of commands that can be executed in a batch.

Class

TDADataSetOptions

Syntax

property UpdateBatchSize: Integer default 1;

Remarks

Use the UpdateBatchSize property to get or set a value that enables or disables batch

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 687

© 2024 Devart

processing support, and specifies the number of commands that can be executed in a batch.

Takes effect only when updating dataset in the TMemDataSet.CachedUpdates mode. The

default value is 1.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.13 TDAEncryption Class

Used to specify the options of the data encryption in a dataset.

For a list of all members of this type, see TDAEncryption members.

Unit

DBAccess

Syntax

TDAEncryption = class(TPersistent);

Remarks

Set the properties of Encryption to specify the options of the data encryption in a dataset.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.13.1 Members

TDAEncryption class overview.

Properties

Name Description

Encryptor
Used to specify the
encryptor class that will
perform the data encryption.

Fields
Used to set field names for
which encryption will be
performed.

© 1997-2024
Devart. All Rights

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components688

© 2024 Devart

Reserved.

6.11.1.13.2 Properties

Properties of the TDAEncryption class.

For a complete list of the TDAEncryption class members, see the TDAEncryption Members

topic.

Public

Name Description

Encryptor
Used to specify the
encryptor class that will
perform the data encryption.

Published

Name Description

Fields
Used to set field names for
which encryption will be
performed.

See Also
TDAEncryption Class

TDAEncryption Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.13.2.1 Encryptor Property

Used to specify the encryptor class that will perform the data encryption.

Class

TDAEncryption

Syntax

property Encryptor: TCREncryptor;

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 689

© 2024 Devart

Remarks

Use the Encryptor property to specify the encryptor class that will perform the data

encryption.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.13.2.2 Fields Property

Used to set field names for which encryption will be performed.

Class

TDAEncryption

Syntax

property Fields: string;

Remarks

Used to set field names for which encryption will be performed. Field names must be

separated by semicolons.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.14 TDAMapRule Class

Class that formes rules for Data Type Mapping.

For a list of all members of this type, see TDAMapRule members.

Unit

DBAccess

Syntax

TDAMapRule = class(TMapRule);

Remarks

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components690

© 2024 Devart

Using properties of this class, it is possible to change parameter values of the specified rules

from the TDAMapRules set.

Inheritance Hierarchy

TMapRule

 TDAMapRule

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.14.1 Members

TDAMapRule class overview.

Properties

Name Description

DBLengthMax
Maximum DB field length,
until which the rule is
applied.

DBLengthMin
Minimum DB field length,
starting from which the rule
is applied.

DBScaleMax
Maximum DB field scale,
until which the rule is applied
to the specified DB field.

DBScaleMin

Minimum DB field Scale,
starting from which the rule
is applied to the specified
DB field.

DBType DB field type, that the rule is
applied to.

FieldLength The resultant field length in
Delphi.

FieldName DataSet field name, for
which the rule is applied.

FieldScale The resultant field Scale in
Delphi.

FieldType

Delphi field type, that the
specified DB type or
DataSet field will be
mapped to.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 691

© 2024 Devart

IgnoreErrors
Ignoring errors when
converting data from DB to
Delphi type.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.14.2 Properties

Properties of the TDAMapRule class.

For a complete list of the TDAMapRule class members, see the TDAMapRule Members

topic.

Published

Name Description

DBLengthMax
Maximum DB field length,
until which the rule is
applied.

DBLengthMin
Minimum DB field length,
starting from which the rule
is applied.

DBScaleMax
Maximum DB field scale,
until which the rule is applied
to the specified DB field.

DBScaleMin

Minimum DB field Scale,
starting from which the rule
is applied to the specified
DB field.

DBType DB field type, that the rule is
applied to.

FieldLength The resultant field length in
Delphi.

FieldName DataSet field name, for
which the rule is applied.

FieldScale The resultant field Scale in
Delphi.

FieldType

Delphi field type, that the
specified DB type or
DataSet field will be
mapped to.

IgnoreErrors Ignoring errors when

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components692

© 2024 Devart

converting data from DB to
Delphi type.

See Also
TDAMapRule Class

TDAMapRule Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.14.2.1 DBLengthMax Property

Maximum DB field length, until which the rule is applied.

Class

TDAMapRule

Syntax

property DBLengthMax: Integer default rlAny;

Remarks

Setting maximum DB field length, until which the rule is applied to the specified DB field.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.14.2.2 DBLengthMin Property

Minimum DB field length, starting from which the rule is applied.

Class

TDAMapRule

Syntax

property DBLengthMin: Integer default rlAny;

Remarks

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 693

© 2024 Devart

Setting minimum DB field length, starting from which the rule is applied to the specified DB

field.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.14.2.3 DBScaleMax Property

Maximum DB field scale, until which the rule is applied to the specified DB field.

Class

TDAMapRule

Syntax

property DBScaleMax: Integer default rlAny;

Remarks

Setting maximum DB field scale, until which the rule is applied to the specified DB field.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.14.2.4 DBScaleMin Property

Minimum DB field Scale, starting from which the rule is applied to the specified DB field.

Class

TDAMapRule

Syntax

property DBScaleMin: Integer default rlAny;

Remarks

Setting minimum DB field Scale, starting from which the rule is applied to the specified DB

field.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components694

© 2024 Devart

6.11.1.14.2.5 DBType Property

DB field type, that the rule is applied to.

Class

TDAMapRule

Syntax

property DBType: Word default dtUnknown;

Remarks

Setting DB field type, that the rule is applied to. If the current rule is set for Connection, the

rule will be applied to all fields of the specified type in all DataSets related to this Connection.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.14.2.6 FieldLength Property

The resultant field length in Delphi.

Class

TDAMapRule

Syntax

property FieldLength: Integer default rlAny;

Remarks

Setting the Delphi field length after conversion.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.14.2.7 FieldName Property

DataSet field name, for which the rule is applied.

Class

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 695

© 2024 Devart

TDAMapRule

Syntax

property FieldName: string;

Remarks

Specifies the DataSet field name, that the rule is applied to. If the current rule is set for

Connection, the rule will be applied to all fields with such name in DataSets related to this

Connection.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.14.2.8 FieldScale Property

The resultant field Scale in Delphi.

Class

TDAMapRule

Syntax

property FieldScale: Integer default rlAny;

Remarks

Setting the Delphi field Scale after conversion.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.14.2.9 FieldType Property

Delphi field type, that the specified DB type or DataSet field will be mapped to.

Class

TDAMapRule

Syntax

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components696

© 2024 Devart

property FieldType: TFieldType stored IsFieldTypeStored default

ftUnknown;

Remarks

Setting Delphi field type, that the specified DB type or DataSet field will be mapped to.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.14.2.10 IgnoreErrors Property

Ignoring errors when converting data from DB to Delphi type.

Class

TDAMapRule

Syntax

property IgnoreErrors: Boolean default False;

Remarks

Allows to ignore errors while data conversion in case if data or DB data format cannot be

recorded to the specified Delphi field type. The default value is false.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.15 TDAMapRules Class

Used for adding rules for DataSet fields mapping with both identifying by field name and by

field type and Delphi field types.

For a list of all members of this type, see TDAMapRules members.

Unit

DBAccess

Syntax

TDAMapRules = class(TMapRules);

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 697

© 2024 Devart

Inheritance Hierarchy

TMapRules

 TDAMapRules

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.15.1 Members

TDAMapRules class overview.

Properties

Name Description

IgnoreInvalidRules
Used to avoid raising
exception on mapping rules
that can't be applied.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.15.2 Properties

Properties of the TDAMapRules class.

For a complete list of the TDAMapRules class members, see the TDAMapRules Members

topic.

Published

Name Description

IgnoreInvalidRules
Used to avoid raising
exception on mapping rules
that can't be applied.

See Also
TDAMapRules Class

TDAMapRules Class Members

© 1997-2024
Devart. All Rights

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components698

© 2024 Devart

Reserved.

6.11.1.15.2.1 IgnoreInvalidRules Property

Used to avoid raising exception on mapping rules that can't be applied.

Class

TDAMapRules

Syntax

property IgnoreInvalidRules: boolean default False;

Remarks

Allows to ignore errors (not to raise exception) during data conversion in case if the data or

DB data format cannot be recorded to the specified Delphi field type. The default value is

false.

Note: In order to ignore errors occurring during data conversion, use the

TDAMapRule.IgnoreErrors property

See Also
TDAMapRule.IgnoreErrors

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.16 TDAMetaData Class

A class for retrieving metainformation of the specified database objects in the form of dataset.

For a list of all members of this type, see TDAMetaData members.

Unit

DBAccess

Syntax

TDAMetaData = class(TMemDataSet);

Remarks

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 699

© 2024 Devart

TDAMetaData is a TDataSet descendant standing for retrieving metainformation of the

specified database objects in the form of dataset. First of all you need to specify which kind of

metainformation you want to see. For this you need to assign the

TDAMetaData.MetaDataKind property. Provide one or more conditions in the

TDAMetaData.Restrictions property to diminish the size of the resultset and get only

information you are interested in.

Use the TDAMetaData.GetMetaDataKinds method to get the full list of supported kinds of

meta data. With the TDAMetaData.GetRestrictions method you can find out what restrictions

are applicable to the specified MetaDataKind.

Example

The code below demonstrates how to get information about columns of the 'emp' table:

MetaData.Connection := Connection;
MetaData.MetaDataKind := 'Columns';
MetaData.Restrictions.Values['TABLE_NAME'] := 'Emp';
MetaData.Open;

Inheritance Hierarchy

TMemDataSet

 TDAMetaData

See Also
TDAMetaData.MetaDataKind

TDAMetaData.Restrictions

TDAMetaData.GetMetaDataKinds

TDAMetaData.GetRestrictions

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.16.1 Members

TDAMetaData class overview.

Properties

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components700

© 2024 Devart

Name Description

CachedUpdates (inherited from TMemDataSet)
Used to enable or disable
the use of cached updates
for a dataset.

Connection
Used to specify a
connection object to use to
connect to a data store.

IndexFieldNames (inherited from TMemDataSet)
Used to get or set the list of
fields on which the recordset
is sorted.

KeyExclusive (inherited from TMemDataSet)
Specifies the upper and
lower boundaries for a
range.

LocalConstraints (inherited from TMemDataSet)

Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet)
Used to prevent implicit
update of rows on database
server.

MetaDataKind Used to specify which kind
of metainformation to show.

Prepared (inherited from TMemDataSet)
Determines whether a query
is prepared for execution or
not.

Ranged (inherited from TMemDataSet) Indicates whether a range is
applied to a dataset.

Restrictions
Used to provide one or more
conditions restricting the list
of objects to be described.

UpdateRecordTypes (inherited from TMemDataSet)
Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

Methods

Name Description

ApplyRange (inherited from TMemDataSet) Applies a range to the
dataset.

Reference 701

© 2024 Devart

ApplyUpdates (inherited from TMemDataSet)
Overloaded. Writes
dataset's pending cached
updates to a database.

CancelRange (inherited from TMemDataSet)
Removes any ranges
currently in effect for a
dataset.

CancelUpdates (inherited from TMemDataSet)
Clears all pending cached
updates from cache and
restores dataset in its prior
state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates
buffer.

DeferredPost (inherited from TMemDataSet) Makes permanent changes
to the database server.

EditRangeEnd (inherited from TMemDataSet)
Enables changing the
ending value for an existing
range.

EditRangeStart (inherited from TMemDataSet)
Enables changing the
starting value for an existing
range.

GetBlob (inherited from TMemDataSet)

Overloaded. Retrieves
TBlob object for a field or
current record when only its
name or the field itself is
known.

GetMetaDataKinds
Used to get values
acceptable in the
MetaDataKind property.

GetRestrictions
Used to find out which
restrictions are applicable to
a certain MetaDataKind.

Locate (inherited from TMemDataSet)
Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

LocateEx (inherited from TMemDataSet)

Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

Prepare (inherited from TMemDataSet)
Allocates resources and
creates field components for
a dataset.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the

Universal Data Access Components702

© 2024 Devart

cache of updates as
unapplied.

RevertRecord (inherited from TMemDataSet)
Cancels changes made to
the current record when
cached updates are
enabled.

SaveToXML (inherited from TMemDataSet)

Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

SetRange (inherited from TMemDataSet)
Sets the starting and ending
values of a range, and
applies it.

SetRangeEnd (inherited from TMemDataSet)

Indicates that subsequent
assignments to field values
specify the end of the range
of rows to include in the
dataset.

SetRangeStart (inherited from TMemDataSet)

Indicates that subsequent
assignments to field values
specify the start of the range
of rows to include in the
dataset.

UnPrepare (inherited from TMemDataSet)
Frees the resources
allocated for a previously
prepared query on the
server and client sides.

UpdateResult (inherited from TMemDataSet)

Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are
enabled.

UpdateStatus (inherited from TMemDataSet)
Indicates the current update
status for the dataset when
cached updates are
enabled.

Events

Name Description

OnUpdateError (inherited from TMemDataSet)
Occurs when an exception is
generated while cached
updates are applied to a

Reference 703

© 2024 Devart

database.

OnUpdateRecord (inherited from TMemDataSet)
Occurs when a single
update component can not
handle the updates.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.16.2 Properties

Properties of the TDAMetaData class.

For a complete list of the TDAMetaData class members, see the TDAMetaData Members

topic.

Public

Name Description

CachedUpdates (inherited from TMemDataSet)
Used to enable or disable
the use of cached updates
for a dataset.

Connection
Used to specify a
connection object to use to
connect to a data store.

IndexFieldNames (inherited from TMemDataSet)
Used to get or set the list of
fields on which the recordset
is sorted.

KeyExclusive (inherited from TMemDataSet)
Specifies the upper and
lower boundaries for a
range.

LocalConstraints (inherited from TMemDataSet)

Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet)
Used to prevent implicit
update of rows on database
server.

MetaDataKind Used to specify which kind
of metainformation to show.

Prepared (inherited from TMemDataSet)
Determines whether a query
is prepared for execution or
not.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components704

© 2024 Devart

Ranged (inherited from TMemDataSet) Indicates whether a range is
applied to a dataset.

Restrictions
Used to provide one or more
conditions restricting the list
of objects to be described.

UpdateRecordTypes (inherited from TMemDataSet)
Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

See Also
TDAMetaData Class

TDAMetaData Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.16.2.1 Connection Property

Used to specify a connection object to use to connect to a data store.

Class

TDAMetaData

Syntax

property Connection: TCustomDAConnection;

Remarks

Use the Connection property to specify a connection object to use to connect to a data store.

Set at design-time by selecting from the list of provided TCustomDAConnection or its

descendant class objects.

At runtime, set the Connection property to reference an instanciated TCustomDAConnection

object.

© 1997-2024
Devart. All Rights

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 705

© 2024 Devart

Reserved.

6.11.1.16.2.2 MetaDataKind Property

Used to specify which kind of metainformation to show.

Class

TDAMetaData

Syntax

property MetaDataKind: string;

Remarks

This string property specifies which kind of metainformation to show. The value of this

property should be assigned before activating the component. If MetaDataKind equals to an

empty string (the default value), the full value list that this property accepts will be shown.

They are described in the table below:

MetaDataKind Description

Columns show metainformation about columns of existing tables

Constraints show metainformation about the constraints defined in the database

IndexColumns show metainformation about indexed columns

Indexes show metainformation about indexes in a database

MetaDataKinds
show the acceptable values of this property. You will get the same
result if the MetadataKind property is an empty string

ProcedurePara
meters

show metainformation about parameters of existing procedures

Procedures show metainformation about existing procedures

Restrictions
generates a dataset that describes which restrictions are applicable
to each MetaDataKind

Tables show metainformation about existing tables

Databases show metainformation about existing databases

If you provide a value that equals neither of the values described in the table, an error will be

raised.

See Also
Restrictions

Universal Data Access Components706

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.16.2.3 Restrictions Property

Used to provide one or more conditions restricting the list of objects to be described.

Class

TDAMetaData

Syntax

property Restrictions: TStrings;

Remarks

Use the Restriction list to provide one or more conditions restricting the list of objects to be

described. To see the full list of restrictions and to which metadata kinds they are applicable,

you should assign the Restrictions value to the MetaDataKind property and view the result.

See Also
MetaDataKind

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.16.3 Methods

Methods of the TDAMetaData class.

For a complete list of the TDAMetaData class members, see the TDAMetaData Members

topic.

Public

Name Description

ApplyRange (inherited from TMemDataSet) Applies a range to the
dataset.

ApplyUpdates (inherited from TMemDataSet)
Overloaded. Writes
dataset's pending cached
updates to a database.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 707

© 2024 Devart

CancelRange (inherited from TMemDataSet)
Removes any ranges
currently in effect for a
dataset.

CancelUpdates (inherited from TMemDataSet)
Clears all pending cached
updates from cache and
restores dataset in its prior
state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates
buffer.

DeferredPost (inherited from TMemDataSet) Makes permanent changes
to the database server.

EditRangeEnd (inherited from TMemDataSet)
Enables changing the
ending value for an existing
range.

EditRangeStart (inherited from TMemDataSet)
Enables changing the
starting value for an existing
range.

GetBlob (inherited from TMemDataSet)

Overloaded. Retrieves
TBlob object for a field or
current record when only its
name or the field itself is
known.

GetMetaDataKinds
Used to get values
acceptable in the
MetaDataKind property.

GetRestrictions
Used to find out which
restrictions are applicable to
a certain MetaDataKind.

Locate (inherited from TMemDataSet)
Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

LocateEx (inherited from TMemDataSet)

Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

Prepare (inherited from TMemDataSet)
Allocates resources and
creates field components for
a dataset.

RestoreUpdates (inherited from TMemDataSet)
Marks all records in the
cache of updates as
unapplied.

RevertRecord (inherited from TMemDataSet) Cancels changes made to

Universal Data Access Components708

© 2024 Devart

the current record when
cached updates are
enabled.

SaveToXML (inherited from TMemDataSet)

Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

SetRange (inherited from TMemDataSet)
Sets the starting and ending
values of a range, and
applies it.

SetRangeEnd (inherited from TMemDataSet)

Indicates that subsequent
assignments to field values
specify the end of the range
of rows to include in the
dataset.

SetRangeStart (inherited from TMemDataSet)

Indicates that subsequent
assignments to field values
specify the start of the range
of rows to include in the
dataset.

UnPrepare (inherited from TMemDataSet)
Frees the resources
allocated for a previously
prepared query on the
server and client sides.

UpdateResult (inherited from TMemDataSet)

Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are
enabled.

UpdateStatus (inherited from TMemDataSet)
Indicates the current update
status for the dataset when
cached updates are
enabled.

See Also
TDAMetaData Class

TDAMetaData Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 709

© 2024 Devart

6.11.1.16.3.1 GetMetaDataKinds Method

Used to get values acceptable in the MetaDataKind property.

Class

TDAMetaData

Syntax

procedure GetMetaDataKinds(List: TStrings);

Parameters

List

Holds the object that will be filled with metadata kinds (restrictions).

Remarks

Call the GetMetaDataKinds method to get values acceptable in the MetaDataKind property.

The List parameter will be cleared and then filled with values.

See Also
MetaDataKind

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.16.3.2 GetRestrictions Method

Used to find out which restrictions are applicable to a certain MetaDataKind.

Class

TDAMetaData

Syntax

procedure GetRestrictions(List: TStrings; const MetaDataKind:

string);

Parameters

List

Holds the object that will be filled with metadata kinds (restrictions).

MetaDataKind

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components710

© 2024 Devart

Holds the metadata kind for which restrictions are returned.

Remarks

Call the GetRestrictions method to find out which restrictions are applicable to a certain

MetaDataKind. The List parameter will be cleared and then filled with values.

See Also
Restrictions

GetMetaDataKinds

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.17 TDAParam Class

A class that forms objects to represent the values of the parameters set.

For a list of all members of this type, see TDAParam members.

Unit

DBAccess

Syntax

TDAParam = class(TParam);

Remarks

Use the properties of TDAParam to set the value of a parameter. Objects that use

parameters create TDAParam objects to represent these parameters. For example,

TDAParam objects are used by TCustomDASQL, TCustomDADataSet.

TDAParam shares many properties with TField, as both describe the value of a field in a

dataset. However, a TField object has several properties to describe the field binding and the

way the field is displayed, edited, or calculated, that are not needed in a TDAParam object.

Conversely, TDAParam includes properties that indicate how the field value is passed as a

parameter.

See Also

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 711

© 2024 Devart

TCustomDADataSet

TCustomDASQL

TDAParams

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.17.1 Members

TDAParam class overview.

Properties

Name Description

AsBlob
Used to set and read the
value of the BLOB
parameter as string.

AsBlobRef

Used to set and read the
value of the BLOB
parameter as a TBlob
object.

AsFloat Used to assign the value for
a float field to a parameter.

AsInteger
Used to assign the value for
an integer field to the
parameter.

AsLargeInt
Used to assign the value for
a LargeInteger field to the
parameter.

AsMemo
Used to assign the value for
a memo field to the
parameter.

AsMemoRef

Used to set and read the
value of the memo
parameter as a TBlob
object.

AsSQLTimeStamp

Used to specify the value of
the parameter when it
represents a SQL
timestamp field.

AsString Used to assign the string
value to the parameter.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components712

© 2024 Devart

AsWideString
Used to assign the Unicode
string value to the
parameter.

DataType Indicates the data type of the
parameter.

IsNull
Used to indicate whether the
value assigned to a
parameter is NULL.

ParamType Used to indicate the type of
use for a parameter.

Size Specifies the size of a string
type parameter.

Value Used to represent the value
of the parameter as Variant.

Methods

Name Description

AssignField Assigns field name and field
value to a param.

AssignFieldValue
Assigns the specified field
properties and value to a
parameter.

LoadFromFile
Places the content of a
specified file into a
TDAParam object.

LoadFromStream
Places the content from a
stream into a TDAParam
object.

SetBlobData
Overloaded. Writes the data
from a specified buffer to
BLOB.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.17.2 Properties

Properties of the TDAParam class.

For a complete list of the TDAParam class members, see the TDAParam Members topic.

Public

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 713

© 2024 Devart

Name Description

AsBlob
Used to set and read the
value of the BLOB
parameter as string.

AsBlobRef

Used to set and read the
value of the BLOB
parameter as a TBlob
object.

AsFloat Used to assign the value for
a float field to a parameter.

AsInteger
Used to assign the value for
an integer field to the
parameter.

AsLargeInt
Used to assign the value for
a LargeInteger field to the
parameter.

AsMemo
Used to assign the value for
a memo field to the
parameter.

AsMemoRef

Used to set and read the
value of the memo
parameter as a TBlob
object.

AsSQLTimeStamp

Used to specify the value of
the parameter when it
represents a SQL
timestamp field.

AsString Used to assign the string
value to the parameter.

AsWideString
Used to assign the Unicode
string value to the
parameter.

IsNull
Used to indicate whether the
value assigned to a
parameter is NULL.

Published

Name Description

DataType Indicates the data type of the
parameter.

ParamType Used to indicate the type of
use for a parameter.

Universal Data Access Components714

© 2024 Devart

Size Specifies the size of a string
type parameter.

Value Used to represent the value
of the parameter as Variant.

See Also
TDAParam Class

TDAParam Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.17.2.1 AsBlob Property

Used to set and read the value of the BLOB parameter as string.

Class

TDAParam

Syntax

property AsBlob: TBlobData;

Remarks

Use the AsBlob property to set and read the value of the BLOB parameter as string. Setting

AsBlob will set the DataType property to ftBlob.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.17.2.2 AsBlobRef Property

Used to set and read the value of the BLOB parameter as a TBlob object.

Class

TDAParam

Syntax

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 715

© 2024 Devart

property AsBlobRef: TBlob;

Remarks

Use the AsBlobRef property to set and read the value of the BLOB parameter as a TBlob

object. Setting AsBlobRef will set the DataType property to ftBlob.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.17.2.3 AsFloat Property

Used to assign the value for a float field to a parameter.

Class

TDAParam

Syntax

property AsFloat: double;

Remarks

Use the AsFloat property to assign the value for a float field to the parameter. Setting AsFloat

will set the DataType property to dtFloat.

Read the AsFloat property to determine the value that was assigned to an output parameter,

represented as Double. The value of the parameter will be converted to the Double value if

possible.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.17.2.4 AsInteger Property

Used to assign the value for an integer field to the parameter.

Class

TDAParam

Syntax

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components716

© 2024 Devart

property AsInteger: LongInt;

Remarks

Use the AsInteger property to assign the value for an integer field to the parameter. Setting

AsInteger will set the DataType property to dtInteger.

Read the AsInteger property to determine the value that was assigned to an output parameter,

represented as a 32-bit integer. The value of the parameter will be converted to the Integer

value if possible.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.17.2.5 AsLargeInt Property

Used to assign the value for a LargeInteger field to the parameter.

Class

TDAParam

Syntax

property AsLargeInt: Int64;

Remarks

Set the AsLargeInt property to assign the value for an Int64 field to the parameter. Setting

AsLargeInt will set the DataType property to dtLargeint.

Read the AsLargeInt property to determine the value that was assigned to an output

parameter, represented as a 64-bit integer. The value of the parameter will be converted to

the Int64 value if possible.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.17.2.6 AsMemo Property

Used to assign the value for a memo field to the parameter.

Class

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 717

© 2024 Devart

TDAParam

Syntax

property AsMemo: string;

Remarks

Use the AsMemo property to assign the value for a memo field to the parameter. Setting

AsMemo will set the DataType property to ftMemo.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.17.2.7 AsMemoRef Property

Used to set and read the value of the memo parameter as a TBlob object.

Class

TDAParam

Syntax

property AsMemoRef: TBlob;

Remarks

Use the AsMemoRef property to set and read the value of the memo parameter as a TBlob

object. Setting AsMemoRef will set the DataType property to ftMemo.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.17.2.8 AsSQLTimeStamp Property

Used to specify the value of the parameter when it represents a SQL timestamp field.

Class

TDAParam

Syntax

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components718

© 2024 Devart

property AsSQLTimeStamp: TSQLTimeStamp;

Remarks

Set the AsSQLTimeStamp property to assign the value for a SQL timestamp field to the

parameter. Setting AsSQLTimeStamp sets the DataType property to ftTimeStamp.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.17.2.9 AsString Property

Used to assign the string value to the parameter.

Class

TDAParam

Syntax

property AsString: string;

Remarks

Use the AsString property to assign the string value to the parameter. Setting AsString will set

the DataType property to ftString.

Read the AsString property to determine the value that was assigned to an output parameter

represented as a string. The value of the parameter will be converted to a string.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.17.2.10 AsWideString Property

Used to assign the Unicode string value to the parameter.

Class

TDAParam

Syntax

property AsWideString: string;

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 719

© 2024 Devart

Remarks

Set AsWideString to assign the Unicode string value to the parameter. Setting AsWideString

will set the DataType property to ftWideString.

Read the AsWideString property to determine the value that was assigned to an output

parameter, represented as a Unicode string. The value of the parameter will be converted to a

Unicode string.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.17.2.11 DataType Property

Indicates the data type of the parameter.

Class

TDAParam

Syntax

property DataType: TFieldType stored IsDataTypeStored;

Remarks

DataType is set automatically when a value is assigned to a parameter. Do not set DataType

for bound fields, as this may cause the assigned value to be misinterpreted.

Read DataType to learn the type of data that was assigned to the parameter. Every possible

value of DataType corresponds to the type of a database field.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.17.2.12 IsNull Property

Used to indicate whether the value assigned to a parameter is NULL.

Class

TDAParam

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components720

© 2024 Devart

Syntax

property IsNull: boolean;

Remarks

Use the IsNull property to indicate whether the value assigned to a parameter is NULL.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.17.2.13 ParamType Property

Used to indicate the type of use for a parameter.

Class

TDAParam

Syntax

property ParamType default DB . ptUnknown;

Remarks

Objects that use TDAParam objects to represent field parameters set ParamType to indicate

the type of use for a parameter.

To learn the description of TParamType refer to Delphi Help.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.17.2.14 Size Property

Specifies the size of a string type parameter.

Class

TDAParam

Syntax

property Size: integer default 0;

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 721

© 2024 Devart

Remarks

Use the Size property to indicate the maximum number of characters the parameter may

contain. Use the Size property only for Output parameters of the ftString, ftFixedChar,

ftBytes, ftVarBytes, or ftWideString type.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.17.2.15 Value Property

Used to represent the value of the parameter as Variant.

Class

TDAParam

Syntax

property Value: variant stored IsValueStored;

Remarks

The Value property represents the value of the parameter as Variant.

Use Value in generic code that manipulates the values of parameters without the need to

know the field type the parameter represent.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.17.3 Methods

Methods of the TDAParam class.

For a complete list of the TDAParam class members, see the TDAParam Members topic.

Public

Name Description

AssignField Assigns field name and field
value to a param.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components722

© 2024 Devart

AssignFieldValue
Assigns the specified field
properties and value to a
parameter.

LoadFromFile
Places the content of a
specified file into a
TDAParam object.

LoadFromStream
Places the content from a
stream into a TDAParam
object.

SetBlobData
Overloaded. Writes the data
from a specified buffer to
BLOB.

See Also
TDAParam Class

TDAParam Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.17.3.1 AssignField Method

Assigns field name and field value to a param.

Class

TDAParam

Syntax

procedure AssignField(Field: TField);

Parameters

Field

Holds the field which name and value should be assigned to the param.

Remarks

Call the AssignField method to assign field name and field value to a param.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 723

© 2024 Devart

6.11.1.17.3.2 AssignFieldValue Method

Assigns the specified field properties and value to a parameter.

Class

TDAParam

Syntax

procedure AssignFieldValue(Field: TField; const Value: Variant);

virtual;

Parameters

Field

Holds the field the properties of which will be assigned to the parameter.

Value

Holds the value for the parameter.

Remarks

Call the AssignFieldValue method to assign the specified field properties and value to a

parameter.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.17.3.3 LoadFromFile Method

Places the content of a specified file into a TDAParam object.

Class

TDAParam

Syntax

procedure LoadFromFile(const FileName: string; BlobType:

TBlobType);

Parameters

FileName

Holds the name of the file.

BlobType

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components724

© 2024 Devart

Holds a value that modifies the DataType property so that this TDAParam object now holds
the BLOB value.

Remarks

Use the LoadFromFile method to place the content of a file specified by FileName into a

TDAParam object. The BlobType value modifies the DataType property so that this

TDAParam object now holds the BLOB value.

See Also
LoadFromStream

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.17.3.4 LoadFromStream Method

Places the content from a stream into a TDAParam object.

Class

TDAParam

Syntax

procedure LoadFromStream(Stream: TStream; BlobType: TBlobType);

virtual;

Parameters

Stream

Holds the stream to copy content from.

BlobType

Holds a value that modifies the DataType property so that this TDAParam object now holds
the BLOB value.

Remarks

Call the LoadFromStream method to place the content from a stream into a TDAParam

object. The BlobType value modifies the DataType property so that this TDAParam object

now holds the BLOB value.

See Also

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 725

© 2024 Devart

LoadFromFile

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.17.3.5 SetBlobData Method

Writes the data from a specified buffer to BLOB.

Class

TDAParam

Overload List

Name Description

SetBlobData(Buffer: TValueBuffer)
Writes the data from a specified buffer to
BLOB.

SetBlobData(Buffer: IntPtr; Size: Integer)
Writes the data from a specified buffer to
BLOB.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

Writes the data from a specified buffer to BLOB.

Class

TDAParam

Syntax

procedure SetBlobData(Buffer: TValueBuffer); overload;

Parameters

Buffer

Holds the pointer to the data.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components726

© 2024 Devart

Writes the data from a specified buffer to BLOB.

Class

TDAParam

Syntax

procedure SetBlobData(Buffer: IntPtr; Size: Integer); overload;

Parameters

Buffer

Holds the pointer to data.

Size

Holds the number of bytes to read from the buffer.

Remarks

Call the SetBlobData method to write data from a specified buffer to BLOB.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.18 TDAParams Class

This class is used to manage a list of TDAParam objects for an object that uses field

parameters.

For a list of all members of this type, see TDAParams members.

Unit

DBAccess

Syntax

TDAParams = class(TParams);

Remarks

Use TDAParams to manage a list of TDAParam objects for an object that uses field

parameters. For example, TCustomDADataSet objects and TCustomDASQL objects use

TDAParams objects to create and access their parameters.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 727

© 2024 Devart

See Also
TCustomDADataSet.Params

TCustomDASQL.Params

TDAParam

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.18.1 Members

TDAParams class overview.

Properties

Name Description

Items Used to interate through all
parameters.

Methods

Name Description

FindParam Searches for a parameter
with the specified name.

ParamByName Searches for a parameter
with the specified name.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.18.2 Properties

Properties of the TDAParams class.

For a complete list of the TDAParams class members, see the TDAParams Members topic.

Public

Name Description

Items Used to interate through all
parameters.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components728

© 2024 Devart

See Also
TDAParams Class

TDAParams Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.18.2.1 Items Property(Indexer)

Used to interate through all parameters.

Class

TDAParams

Syntax

property Items[Index: integer]: TDAParam; default;

Parameters

Index

Holds an index in the range 0..Count - 1.

Remarks

Use the Items property to iterate through all parameters. Index identifies the index in the range

0..Count - 1. Items can reference a particular parameter by its index, but the ParamByName

method is preferred in order to avoid depending on the order of the parameters.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.18.3 Methods

Methods of the TDAParams class.

For a complete list of the TDAParams class members, see the TDAParams Members topic.

Public

Name Description

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 729

© 2024 Devart

FindParam Searches for a parameter
with the specified name.

ParamByName Searches for a parameter
with the specified name.

See Also
TDAParams Class

TDAParams Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.18.3.1 FindParam Method

Searches for a parameter with the specified name.

Class

TDAParams

Syntax

function FindParam(const Value: string): TDAParam;

Parameters

Value

Holds the parameter name.

Return Value

a parameter, if a match was found. Nil otherwise.

Remarks

Use the FindParam method to find a parameter with the name passed in Value. If a match is

found, FindParam returns the parameter. Otherwise, it returns nil. Use this method rather

than a direct reference to the Items property to avoid depending on the order of the entries.

To locate more than one parameter at a time by name, use the GetParamList method

instead. To get only the value of a named parameter, use the ParamValues property.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components730

© 2024 Devart

6.11.1.18.3.2 ParamByName Method

Searches for a parameter with the specified name.

Class

TDAParams

Syntax

function ParamByName(const Value: string): TDAParam;

Parameters

Value

Holds the parameter name.

Return Value

a parameter, if the match was found. otherwise an exception is raised.

Remarks

Use the ParamByName method to find a parameter with the name passed in Value. If a

match was found, ParamByName returns the parameter. Otherwise, an exception is raised.

Use this method rather than a direct reference to the Items property to avoid depending on the

order of the entries.

To locate a parameter by name without raising an exception if the parameter is not found, use

the FindParam method.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.19 TDATransaction Class

A base class that implements functionality for controlling transactions.

For a list of all members of this type, see TDATransaction members.

Unit

DBAccess

Syntax

TDATransaction = class(TComponent);

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 731

© 2024 Devart

Remarks

TDATransaction is a base class for components implementing functionality for managing

transactions.

Do not create instances of TDATransaction. Use descendants of the TDATransaction class

instead.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.19.1 Members

TDATransaction class overview.

Properties

Name Description

Active Used to determine if the
transaction is active.

DefaultCloseAction

Used to specify the
transaction behaviour when
it is destroyed while being
active, or when one of its
connections is closed with
the active transaction.

Methods

Name Description

Commit Commits the current
transaction.

Rollback

Discards all modifications of
data associated with the
current transaction and ends
the transaction.

StartTransaction Begins a new transaction.

Events

Name Description

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components732

© 2024 Devart

OnCommit
Occurs after the transaction
has been successfully
committed.

OnCommitRetaining
Occurs after
CommitRetaining has been
executed.

OnError
Used to process errors that
occur during executing a
transaction.

OnRollback
Occurs after the transaction
has been successfully rolled
back.

OnRollbackRetaining
Occurs after
RollbackRetaining has been
executed.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.19.2 Properties

Properties of the TDATransaction class.

For a complete list of the TDATransaction class members, see the TDATransaction

Members topic.

Public

Name Description

Active Used to determine if the
transaction is active.

DefaultCloseAction

Used to specify the
transaction behaviour when
it is destroyed while being
active, or when one of its
connections is closed with
the active transaction.

See Also
TDATransaction Class

TDATransaction Class Members

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 733

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.19.2.1 Active Property

Used to determine if the transaction is active.

Class

TDATransaction

Syntax

property Active: boolean;

Remarks

Indicates whether the transaction is active. This property is read-only.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.19.2.2 DefaultCloseAction Property

Used to specify the transaction behaviour when it is destroyed while being active, or when

one of its connections is closed with the active transaction.

Class

TDATransaction

Syntax

property DefaultCloseAction: TCRTransactionAction default

taRollback;

Remarks

Use DefaultCloseAction to specify the transaction behaviour when it is destroyed while being

active, or when one of its connections is closed with the active transaction.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components734

© 2024 Devart

6.11.1.19.3 Methods

Methods of the TDATransaction class.

For a complete list of the TDATransaction class members, see the TDATransaction

Members topic.

Public

Name Description

Commit Commits the current
transaction.

Rollback

Discards all modifications of
data associated with the
current transaction and ends
the transaction.

StartTransaction Begins a new transaction.

See Also
TDATransaction Class

TDATransaction Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.19.3.1 Commit Method

Commits the current transaction.

Class

TDATransaction

Syntax

procedure Commit; virtual;

Remarks

Call the Commit method to commit the current transaction. On commit server writes

permanently all pending data updates associated with the current transaction to the database,

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 735

© 2024 Devart

and then finishes the transaction.

See Also
Rollback

StartTransaction

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.19.3.2 Rollback Method

Discards all modifications of data associated with the current transaction and ends the

transaction.

Class

TDATransaction

Syntax

procedure Rollback; virtual;

Remarks

Call Rollback to cancel all data modifications made within the current transaction to the

database server, and finish the transaction.

See Also
Commit

StartTransaction

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.19.3.3 StartTransaction Method

Begins a new transaction.

Class

TDATransaction

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components736

© 2024 Devart

Syntax

procedure StartTransaction; virtual;

Remarks

Call the StartTransaction method to begin a new transaction against the database server.

Before calling StartTransaction, an application should check the Active property. If

TDATransaction.Active is True, indicating that a transaction is already in progress, a

subsequent call to StartTransaction will raise EDatabaseError. An active transaction must be

finished by call to Commit or Rollback before call to StartTransaction. Call to StartTransaction

when connection is closed also will raise EDatabaseError.

Updates, insertions, and deletions that take place after a call to StartTransaction are held by

the server until the application calls Commit to save the changes, or Rollback to cancel them.

See Also
Commit

Rollback

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.19.4 Events

Events of the TDATransaction class.

For a complete list of the TDATransaction class members, see the TDATransaction

Members topic.

Public

Name Description

OnCommit
Occurs after the transaction
has been successfully
committed.

OnCommitRetaining
Occurs after
CommitRetaining has been
executed.

OnError Used to process errors that

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 737

© 2024 Devart

occur during executing a
transaction.

OnRollback
Occurs after the transaction
has been successfully rolled
back.

OnRollbackRetaining
Occurs after
RollbackRetaining has been
executed.

See Also
TDATransaction Class

TDATransaction Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.19.4.1 OnCommit Event

Occurs after the transaction has been successfully committed.

Class

TDATransaction

Syntax

property OnCommit: TNotifyEvent;

Remarks

The OnCommit event fires when the M:Devart.Dac.TDATransaction.Commit method is

executed, just after the transaction is successfully committed. In order to respond to the

TUniTransaction.CommitRetaining method execution, the OnCommitRetaining event is used.

When an error occurs during commit, the OnError event fires.

See Also
Commit

TUniTransaction.CommitRetaining

OnCommitRetaining

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components738

© 2024 Devart

OnError

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.19.4.2 OnCommitRetaining Event

Occurs after CommitRetaining has been executed.

Class

TDATransaction

Syntax

property OnCommitRetaining: TNotifyEvent;

Remarks

The OnCommitRetaining event fires when the CommitRetaining method is executed, just

after the transaction is successfully committed. In order to respond to the

M:Devart.Dac.TDATransaction.Commit method execution, the OnCommit event is used.

When an error occurs during commit, the OnError event fired.

See Also
TUniTransaction.CommitRetaining

Commit

OnCommit

OnError

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.19.4.3 OnError Event

Used to process errors that occur during executing a transaction.

Class

TDATransaction

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 739

© 2024 Devart

Syntax

property OnError: TDATransactionErrorEvent;

Remarks

Add a handler to the OnError event to process errors that occur during executing a

transaction control statements such as Commit, Rollback. Check the E parameter to get the

error code.

See Also
Commit

Rollback

StartTransaction

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.19.4.4 OnRollback Event

Occurs after the transaction has been successfully rolled back.

Class

TDATransaction

Syntax

property OnRollback: TNotifyEvent;

Remarks

The OnRollback event fires when the M:Devart.Dac.TDATransaction.Rollback method is

executed, just after the transaction is successfully rolled back. In order to respond to the

TUniTransaction.RollbackRetaining method execution, the OnRollbackRetaining event is

used.

When an error occurs during rollback, the OnError event fired.

See Also

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components740

© 2024 Devart

Rollback

TUniTransaction.RollbackRetaining

OnRollbackRetaining

OnError

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.19.4.5 OnRollbackRetaining Event

Occurs after RollbackRetaining has been executed.

Class

TDATransaction

Syntax

property OnRollbackRetaining: TNotifyEvent;

Remarks

The OnRollbackRetaining event fires when the RollbackRetaining method is executed, just

after the transaction is successfully rolled back. In order to respond to the Rollback method

execution, the OnRollback event is used. When an error occurs during rollback, the OnError

event fired.

See Also
Rollback

TUniTransaction.RollbackRetaining

OnRollback

OnError

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 741

© 2024 Devart

6.11.1.20 TMacro Class

Object that represents the value of a macro.

For a list of all members of this type, see TMacro members.

Unit

DBAccess

Syntax

TMacro = class(TCollectionItem);

Remarks

TMacro object represents the value of a macro. Macro is a variable that holds string value.

You just insert & MacroName in a SQL query text and change the value of macro by the

Macro property editor at design time or the Value property at run time. At the time of opening

query macro is replaced by its value.

If by any reason it is not convenient for you to use the ' & ' symbol as a character of macro

replacement, change the value of the MacroChar variable.

See Also
TMacros

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.20.1 Members

TMacro class overview.

Properties

Name Description

Active Used to determine if the
macro should be expanded.

AsDateTime Used to set the TDataTime
value to a macro.

AsFloat Used to set the float value to
a macro.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components742

© 2024 Devart

AsInteger Used to set the integer value
to a macro.

AsString Used to assign the string
value to a macro.

Name Used to identify a particular
macro.

Value Used to set the value to a
macro.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.20.2 Properties

Properties of the TMacro class.

For a complete list of the TMacro class members, see the TMacro Members topic.

Public

Name Description

AsDateTime Used to set the TDataTime
value to a macro.

AsFloat Used to set the float value to
a macro.

AsInteger Used to set the integer value
to a macro.

AsString Used to assign the string
value to a macro.

Published

Name Description

Active Used to determine if the
macro should be expanded.

Name Used to identify a particular
macro.

Value Used to set the value to a
macro.

See Also

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 743

© 2024 Devart

TMacro Class

TMacro Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.20.2.1 Active Property

Used to determine if the macro should be expanded.

Class

TMacro

Syntax

property Active: boolean default True;

Remarks

When set to True, the macro will be expanded, otherwise macro definition is replaced by null

string. You can use the Active property to modify the SQL property.

The default value is True.

Example

UniQuery.SQL.Text := 'SELECT * FROM Dept WHERE DeptNo > 20 &Cond1';
UniQuery.Macros[0].Value := 'and DName is NULL';
UniQuery.Macros[0].Active:= False;

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.20.2.2 AsDateTime Property

Used to set the TDataTime value to a macro.

Class

TMacro

Syntax

property AsDateTime: TDateTime;

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components744

© 2024 Devart

Remarks

Use the AsDataTime property to set the TDataTime value to a macro.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.20.2.3 AsFloat Property

Used to set the float value to a macro.

Class

TMacro

Syntax

property AsFloat: double;

Remarks

Use the AsFloat property to set the float value to a macro.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.20.2.4 AsInteger Property

Used to set the integer value to a macro.

Class

TMacro

Syntax

property AsInteger: integer;

Remarks

Use the AsInteger property to set the integer value to a macro.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 745

© 2024 Devart

6.11.1.20.2.5 AsString Property

Used to assign the string value to a macro.

Class

TMacro

Syntax

property AsString: string;

Remarks

Use the AsString property to assign the string value to a macro. Read the AsString property to

determine the value of macro represented as a string.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.20.2.6 Name Property

Used to identify a particular macro.

Class

TMacro

Syntax

property Name: string;

Remarks

Use the Name property to identify a particular macro.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.20.2.7 Value Property

Used to set the value to a macro.

Class

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components746

© 2024 Devart

TMacro

Syntax

property Value: string;

Remarks

Use the Value property to set the value to a macro.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.21 TMacros Class

Controls a list of TMacro objects for the TCustomDASQL.Macros or TCustomDADataSet

components.

For a list of all members of this type, see TMacros members.

Unit

DBAccess

Syntax

TMacros = class(TCollection);

Remarks

Use TMacros to manage a list of TMacro objects for the TCustomDASQL or

TCustomDADataSet components.

See Also
TMacro

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.21.1 Members

TMacros class overview.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 747

© 2024 Devart

Properties

Name Description

Items Used to iterate through all
the macros parameters.

Methods

Name Description

AssignValues
Copies the macros values
and properties from the
specified source.

Expand
Changes the macros in the
passed SQL statement to
their values.

FindMacro Finds a macro with the
specified name.

IsEqual Compares itself with another
TMacro object.

MacroByName Used to search for a macro
with the specified name.

Scan Creates a macros from the
passed SQL statement.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.21.2 Properties

Properties of the TMacros class.

For a complete list of the TMacros class members, see the TMacros Members topic.

Public

Name Description

Items Used to iterate through all
the macros parameters.

See Also
TMacros Class

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components748

© 2024 Devart

TMacros Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.21.2.1 Items Property(Indexer)

Used to iterate through all the macros parameters.

Class

TMacros

Syntax

property Items[Index: integer]: TMacro; default;

Parameters

Index

Holds the index in the range 0..Count - 1.

Remarks

Use the Items property to iterate through all macros parameters. Index identifies the index in

the range 0..Count - 1.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.21.3 Methods

Methods of the TMacros class.

For a complete list of the TMacros class members, see the TMacros Members topic.

Public

Name Description

AssignValues
Copies the macros values
and properties from the
specified source.

Expand
Changes the macros in the
passed SQL statement to
their values.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 749

© 2024 Devart

FindMacro Finds a macro with the
specified name.

IsEqual Compares itself with another
TMacro object.

MacroByName Used to search for a macro
with the specified name.

Scan Creates a macros from the
passed SQL statement.

See Also
TMacros Class

TMacros Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.21.3.1 AssignValues Method

Copies the macros values and properties from the specified source.

Class

TMacros

Syntax

procedure AssignValues(Value: TMacros);

Parameters

Value

Holds the source to copy the macros values and properties from.

Remarks

The Assign method copies the macros values and properties from the specified source.

Macros are not recreated. Only the values of macros with matching names are assigned.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components750

© 2024 Devart

6.11.1.21.3.2 Expand Method

Changes the macros in the passed SQL statement to their values.

Class

TMacros

Syntax

procedure Expand(var SQL: string);

Parameters

SQL

Holds the passed SQL statement.

Remarks

Call the Expand method to change the macros in the passed SQL statement to their values.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.21.3.3 FindMacro Method

Finds a macro with the specified name.

Class

TMacros

Syntax

function FindMacro(const Value: string): TMacro;

Parameters

Value

Holds the value of a macro to search for.

Return Value

TMacro object if a match is found, nil otherwise.

Remarks

Call the FindMacro method to find a macro with the specified name. If a match is found,

FindMacro returns the macro. Otherwise, it returns nil. Use this method instead of a direct

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 751

© 2024 Devart

reference to the Items property to avoid depending on the order of the items.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.21.3.4 IsEqual Method

Compares itself with another TMacro object.

Class

TMacros

Syntax

function IsEqual(Value: TMacros): boolean;

Parameters

Value

Holds the values of TMacro objects.

Return Value

True, if the number of TMacro objects and the values of all TMacro objects are equal.

Remarks

Call the IsEqual method to compare itself with another TMacro object. Returns True if the

number of TMacro objects and the values of all TMacro objects are equal.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.21.3.5 MacroByName Method

Used to search for a macro with the specified name.

Class

TMacros

Syntax

function MacroByName(const Value: string): TMacro;

Parameters

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components752

© 2024 Devart

Value

Holds a name of the macro to search for.

Return Value

TMacro object, if a macro with specified name was found.

Remarks

Call the MacroByName method to find a Macro with the name passed in Value. If a match is

found, MacroByName returns the Macro. Otherwise, an exception is raised. Use this method

instead of a direct reference to the Items property to avoid depending on the order of the

items.

To locate a macro by name without raising an exception if the parameter is not found, use

the FindMacro method.

To set a value to a macro, use the TMacro.Value property.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.21.3.6 Scan Method

Creates a macros from the passed SQL statement.

Class

TMacros

Syntax

procedure Scan(const SQL: string);

Parameters

SQL

Holds the passed SQL statement.

Remarks

Call the Scan method to create a macros from the passed SQL statement. On that all

existing TMacro objects are cleared.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 753

© 2024 Devart

6.11.1.22 TPoolingOptions Class

This class allows setting up the behaviour of the connection pool.

For a list of all members of this type, see TPoolingOptions members.

Unit

DBAccess

Syntax

TPoolingOptions = class(TPersistent);

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.22.1 Members

TPoolingOptions class overview.

Properties

Name Description

ConnectionLifetime

Used to specify the
maximum time during which
an open connection can be
used by connection pool.

MaxPoolSize

Used to specify the
maximum number of
connections that can be
opened in connection pool.

MinPoolSize

Used to specify the
minimum number of
connections that can be
opened in the connection
pool.

PoolId Used to specify an ID for a
connection pool.

Validate
Used for a connection to be
validated when it is returned
from the pool.

© 1997-2024
Devart. All Rights

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components754

© 2024 Devart

Reserved.

6.11.1.22.2 Properties

Properties of the TPoolingOptions class.

For a complete list of the TPoolingOptions class members, see the TPoolingOptions

Members topic.

Published

Name Description

ConnectionLifetime

Used to specify the
maximum time during which
an open connection can be
used by connection pool.

MaxPoolSize

Used to specify the
maximum number of
connections that can be
opened in connection pool.

MinPoolSize

Used to specify the
minimum number of
connections that can be
opened in the connection
pool.

PoolId Used to specify an ID for a
connection pool.

Validate
Used for a connection to be
validated when it is returned
from the pool.

See Also
TPoolingOptions Class

TPoolingOptions Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.22.2.1 ConnectionLifetime Property

Used to specify the maximum time during which an open connection can be used by

connection pool.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 755

© 2024 Devart

Class

TPoolingOptions

Syntax

property ConnectionLifetime: integer default

DefValConnectionLifetime;

Remarks

Use the ConnectionLifeTime property to specify the maximum time during which an open

connection can be used by connection pool. Measured in milliseconds. Pool deletes

connections with exceeded connection lifetime when TCustomDAConnection is about to

close. If ConnectionLifetime is set to 0 (by default), then the lifetime of connection is infinite.

ConnectionLifetime concerns only inactive connections in the pool.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.22.2.2 MaxPoolSize Property

Used to specify the maximum number of connections that can be opened in connection pool.

Class

TPoolingOptions

Syntax

property MaxPoolSize: integer default DefValMaxPoolSize;

Remarks

Specifies the maximum number of connections that can be opened in connection pool. Once

this value is reached, no more connections are opened. The valid values are 1 and higher.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components756

© 2024 Devart

6.11.1.22.2.3 MinPoolSize Property

Used to specify the minimum number of connections that can be opened in the connection

pool.

Class

TPoolingOptions

Syntax

property MinPoolSize: integer default DefValMinPoolSize;

Remarks

Use the MinPoolSize property to specify the minimum number of connections that can be

opened in the connection pool.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.22.2.4 PoolId Property

Used to specify an ID for a connection pool.

Class

TPoolingOptions

Syntax

property PoolId: Integer default DefValPoolId;

Remarks

Use the PoolId property to make a group of connections use a specific connection pool.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 757

© 2024 Devart

6.11.1.22.2.5 Validate Property

Used for a connection to be validated when it is returned from the pool.

Class

TPoolingOptions

Syntax

property Validate: boolean default DefValValidate;

Remarks

If the Validate property is set to True, connection will be validated when it is returned from the

pool. By default this option is set to False and pool does not validate connection when it is

returned to be used by a TCustomDAConnection component.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.23 TSmartFetchOptions Class

Smart fetch options are used to set up the behavior of the SmartFetch mode.

For a list of all members of this type, see TSmartFetchOptions members.

Unit

DBAccess

Syntax

TSmartFetchOptions = class(TPersistent);

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.23.1 Members

TSmartFetchOptions class overview.

Properties

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components758

© 2024 Devart

Name Description

Enabled Sets SmartFetch mode
enabled or not.

LiveBlock Used to minimize memory
consumption.

PrefetchedFields

List of fields additional to
key fields that will be read
from the database on
dataset open.

SQLGetKeyValues
SQL query for the read key
and prefetched fields from
the database.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.23.2 Properties

Properties of the TSmartFetchOptions class.

For a complete list of the TSmartFetchOptions class members, see the

TSmartFetchOptions Members topic.

Published

Name Description

Enabled Sets SmartFetch mode
enabled or not.

LiveBlock Used to minimize memory
consumption.

PrefetchedFields

List of fields additional to
key fields that will be read
from the database on
dataset open.

SQLGetKeyValues
SQL query for the read key
and prefetched fields from
the database.

See Also
TSmartFetchOptions Class

TSmartFetchOptions Class Members

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 759

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.23.2.1 Enabled Property

Sets SmartFetch mode enabled or not.

Class

TSmartFetchOptions

Syntax

property Enabled: Boolean default False;

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.23.2.2 LiveBlock Property

Used to minimize memory consumption.

Class

TSmartFetchOptions

Syntax

property LiveBlock: Boolean default True;

Remarks

If LiveBlock is True, then on navigating through a dataset forward or backward, memory will

be allocated for records count defined in the the FetchRows propety, and no additional

memory will be allocated. But if you return records that were read from the database before,

they will be read from the database again, because when you left block with these records,

memory was free. So the LiveBlock mode minimizes memory consumption, but can

decrease performance, because it can lead to repeated data reading from the database.

The default value of LiveBlock is False.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components760

© 2024 Devart

6.11.1.23.2.3 PrefetchedFields Property

List of fields additional to key fields that will be read from the database on dataset open.

Class

TSmartFetchOptions

Syntax

property PrefetchedFields: string;

Remarks

If you are going to use locate, filter or sort by some fields, then these fields should be added to

the prefetched fields list to avoid excessive reading from the database.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.1.23.2.4 SQLGetKeyValues Property

SQL query for the read key and prefetched fields from the database.

Class

TSmartFetchOptions

Syntax

property SQLGetKeyValues: TStrings;

Remarks

SQLGetKeyValues is used when the basic SQL query is complex and the query for reading

the key and prefetched fields can't be generated automatically.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 761

© 2024 Devart

6.11.2 Types

Types in the DBAccess unit.

Types

Name Description

TAfterExecuteEvent

This type is used for the
TCustomDADataSet.AfterE
xecute and
TCustomDASQL.AfterExecu
te events.

TAfterFetchEvent
This type is used for the
TCustomDADataSet.AfterF
etch event.

TBeforeFetchEvent
This type is used for the
TCustomDADataSet.Before
Fetch event.

TConnectionLostEvent
This type is used for the
TCustomDAConnection.On
ConnectionLost event.

TDAConnectionErrorEvent
This type is used for the
TCustomDAConnection.On
Error event.

TDATransactionErrorEvent
This type is used for the
TDATransaction.OnError
event.

TRefreshOptions Represents the set of
TRefreshOption.

TUpdateExecuteEvent

This type is used for the
TCustomDADataSet.AfterU
pdateExecute and
TCustomDADataSet.Before
UpdateExecute events.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.2.1 TAfterExecuteEvent Procedure Reference

This type is used for the TCustomDADataSet.AfterExecute and

TCustomDASQL.AfterExecute events.

Unit

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components762

© 2024 Devart

DBAccess

Syntax

TAfterExecuteEvent = procedure (Sender: TObject; Result: boolean)

of object;

Parameters

Sender

An object that raised the event.

Result

The result is True if SQL statement is executed successfully. False otherwise.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.2.2 TAfterFetchEvent Procedure Reference

This type is used for the TCustomDADataSet.AfterFetch event.

Unit

DBAccess

Syntax

TAfterFetchEvent = procedure (DataSet: TCustomDADataSet) of

object;

Parameters

DataSet

Holds the TCustomDADataSet descendant to synchronize the record position with.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.2.3 TBeforeFetchEvent Procedure Reference

This type is used for the TCustomDADataSet.BeforeFetch event.

Unit

DBAccess

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 763

© 2024 Devart

Syntax

TBeforeFetchEvent = procedure (DataSet: TCustomDADataSet; var

Cancel: boolean) of object;

Parameters

DataSet

Holds the TCustomDADataSet descendant to synchronize the record position with.

Cancel

True, if the current fetch operation should be aborted.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.2.4 TConnectionLostEvent Procedure Reference

This type is used for the TCustomDAConnection.OnConnectionLost event.

Unit

DBAccess

Syntax

TConnectionLostEvent = procedure (Sender: TObject; Component:

TComponent; ConnLostCause: TConnLostCause; var RetryMode:

TRetryMode) of object;

Parameters

Sender

An object that raised the event.

Component

ConnLostCause

The reason of the connection loss.

RetryMode

The application behavior when connection is lost.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components764

© 2024 Devart

6.11.2.5 TDAConnectionErrorEvent Procedure Reference

This type is used for the TCustomDAConnection.OnError event.

Unit

DBAccess

Syntax

TDAConnectionErrorEvent = procedure (Sender: TObject; E: EDAError;

var Fail: boolean) of object;

Parameters

Sender

An object that raised the event.

E

The error information.

Fail

False, if an error dialog should be prevented from being displayed and EAbort exception
should be raised to cancel current operation .

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.2.6 TDATransactionErrorEvent Procedure Reference

This type is used for the TDATransaction.OnError event.

Unit

DBAccess

Syntax

TDATransactionErrorEvent = procedure (Sender: TObject; E:

EDAError; var Fail: boolean) of object;

Parameters

Sender

An object that raised the event.

E

The error code.

Fail

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 765

© 2024 Devart

False, if an error dialog should be prevented from being displayed and EAbort exception to
cancel the current operation should be raised.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.2.7 TRefreshOptions Set

Represents the set of TRefreshOption.

Unit

DBAccess

Syntax

TRefreshOptions = set of TRefreshOption;

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.2.8 TUpdateExecuteEvent Procedure Reference

This type is used for the TCustomDADataSet.AfterUpdateExecute and

TCustomDADataSet.BeforeUpdateExecute events.

Unit

DBAccess

Syntax

TUpdateExecuteEvent = procedure (Sender: TDataSet; StatementTypes:

TStatementTypes; Params: TDAParams) of object;

Parameters

Sender

An object that raised the event.

StatementTypes

Holds the type of the SQL statement being executed.

Params

Holds the parameters with which the SQL statement will be executed.

© 1997-2024
Devart. All Rights

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components766

© 2024 Devart

Reserved.

6.11.3 Enumerations

Enumerations in the DBAccess unit.

Enumerations

Name Description

TLabelSet Sets the languauge of labels
in the connect dialog.

TLockMode Specifies the lock mode.

TRefreshOption Indicates when the editing
record will be refreshed.

TRetryMode
Specifies the application
behavior when connection is
lost.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.3.1 TLabelSet Enumeration

Sets the languauge of labels in the connect dialog.

Unit

DBAccess

Syntax

TLabelSet = (lsCustom, lsEnglish, lsFrench, lsGerman, lsItalian,

lsPolish, lsPortuguese, lsRussian, lsSpanish);

Values

Value Meaning

lsCustom Set the language of labels in the connect dialog manually.

lsEnglish Set English as the language of labels in the connect dialog.

lsFrench Set French as the language of labels in the connect dialog.

lsGerman Set German as the language of labels in the connect dialog.

lsItalian Set Italian as the language of labels in the connect dialog.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 767

© 2024 Devart

lsPolish Set Polish as the language of labels in the connect dialog.

lsPortuguese Set Portuguese as the language of labels in the connect dialog.

lsRussian Set Russian as the language of labels in the connect dialog.

lsSpanish Set Spanish as the language of labels in the connect dialog.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.3.2 TLockMode Enumeration

Specifies the lock mode.

Unit

DBAccess

Syntax

TLockMode = (lmNone, lmPessimistic, lmOptimistic);

Values

Value Meaning

lmNone No locking occurs. This mode should only be used in single user
applications. The default value.

lmOptimistic Locking occurs when the user posts an edited record, then the
lock is released. Locking is done by the RefreshRecord method.

lmPessimistic Locking occurs when the user starts editing a record. The lock is
released after the user has posted or canceled the changes.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.3.3 TRefreshOption Enumeration

Indicates when the editing record will be refreshed.

Unit

DBAccess

Syntax

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components768

© 2024 Devart

TRefreshOption = (roAfterInsert, roAfterUpdate, roBeforeEdit);

Values

Value Meaning

roAfterInsert Refresh is performed after inserting.

roAfterUpdate Refresh is performed after updating.

roBeforeEdit Refresh is performed by Edit method.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.3.4 TRetryMode Enumeration

Specifies the application behavior when connection is lost.

Unit

DBAccess

Syntax

TRetryMode = (rmRaise, rmReconnect, rmReconnectExecute);

Values

Value Meaning

rmRaise An exception is raised.

rmReconnect Reconnect is performed and then exception is raised.

rmReconnectExec
ute

Reconnect is performed and abortive operation is reexecuted.
Exception is not raised.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.4 Variables

Variables in the DBAccess unit.

Variables

Name Description

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 769

© 2024 Devart

ChangeCursor

When set to True allows
data access components to
change screen cursor for the
execution time.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.11.4.1 ChangeCursor Variable

When set to True allows data access components to change screen cursor for the execution

time.

Unit

DBAccess

Syntax

ChangeCursor: boolean = True;

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.12 LiteCollation

This unit contains types for registering user-defined collations.

Types

Name Description

TLiteAnsiCollation
This type is used for
registering a user-defined
non-Unicode collation.

TLiteCollation
This type is used for
registering a user-defined
collation.

TLiteWideCollation
This type is used for
registering a user-defined
Unicode collation.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components770

© 2024 Devart

6.12.1 Types

Types in the LiteCollation unit.

Types

Name Description

TLiteAnsiCollation
This type is used for
registering a user-defined
non-Unicode collation.

TLiteCollation
This type is used for
registering a user-defined
collation.

TLiteWideCollation
This type is used for
registering a user-defined
Unicode collation.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.12.1.1 TLiteAnsiCollation Function Reference

This type is used for registering a user-defined non-Unicode collation.

Unit

LiteCollation

Syntax

TLiteAnsiCollation = function (const Str1: AnsiString; const

Str2: AnsiString): Integer;

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.12.1.2 TLiteCollation Function Reference

This type is used for registering a user-defined collation.

Unit

LiteCollation

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 771

© 2024 Devart

Syntax

TLiteCollation = function (const Str1: string; const Str2:

string): Integer;

Remarks

Collation parameter data types depend on Delphi version.

Delphi version Parameter data type Description

Delphi 2007 and lower String = AnsiString non-Unicode collation

Delphi 2009 and higher String = WideString Unicode collation

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.12.1.3 TLiteWideCollation Function Reference

This type is used for registering a user-defined Unicode collation.

Unit

LiteCollation

Syntax

TLiteWideCollation = function (const Str1: string; const Str2:

string): Integer;

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.13 LiteFunction

This unit contains types for registering user-defined functions.

Types

Name Description

TLiteFunction
This type is used for the
registering a user-defined
function.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components772

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.13.1 Types

Types in the LiteFunction unit.

Types

Name Description

TLiteFunction
This type is used for the
registering a user-defined
function.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.13.1.1 TLiteFunction Function Reference

This type is used for the registering a user-defined function.

Unit

LiteFunction

Syntax

TLiteFunction = function (InValues: array of Variant): Variant;

Remarks

If the UseUnicode connection specific option is true then input string parameters will be

represented as WideString else input string parameters will be represented as AnsiString.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14 MemData

This unit contains classes for storing data in memory.

Classes

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 773

© 2024 Devart

Name Description

TBlob
Holds large object value for
field and parameter dtBlob,
dtMemo data types.

TCompressedBlob

Holds large object value for
field and parameter dtBlob,
dtMemo data types and can
compress its data.

TDBObject
A base class for classes that
work with user-defined data
types that have attributes.

TMemData Implements in-memory
database.

TObjectType This class is not used.

TSharedObject

A base class that allows to
simplify memory
management for object
referenced by several other
objects.

Types

Name Description

TLocateExOptions Represents the set of
TLocateExOption.

TUpdateRecKinds Represents the set of
TUpdateRecKind.

Enumerations

Name Description

TCompressBlobMode

Specifies when the values
should be compressed and
the way they should be
stored.

TConnLostCause Specifies the cause of the
connection loss.

TDANumericType

Specifies the format of
storing and representing of
the NUMERIC (DECIMAL)
fields.

TLocateExOption Allows to set additional

Universal Data Access Components774

© 2024 Devart

search parameters which
will be used by the LocateEx
method.

TSortType Specifies a sort type for
string fields.

TUpdateRecKind
Indicates records for which
the ApplyUpdates method
will be performed.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.1 Classes

Classes in the MemData unit.

Classes

Name Description

TBlob
Holds large object value for
field and parameter dtBlob,
dtMemo data types.

TCompressedBlob

Holds large object value for
field and parameter dtBlob,
dtMemo data types and can
compress its data.

TDBObject
A base class for classes that
work with user-defined data
types that have attributes.

TMemData Implements in-memory
database.

TObjectType This class is not used.

TSharedObject

A base class that allows to
simplify memory
management for object
referenced by several other
objects.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 775

© 2024 Devart

6.14.1.1 TBlob Class

Holds large object value for field and parameter dtBlob, dtMemo data types.

For a list of all members of this type, see TBlob members.

Unit

MemData

Syntax

TBlob = class(TSharedObject);

Remarks

Object TBlob holds large object value for the field and parameter dtBlob, dtMemo,

dtWideMemo data types.

Inheritance Hierarchy

TSharedObject

 TBlob

See Also
TMemDataSet.GetBlob

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.1.1.1 Members

TBlob class overview.

Properties

Name Description

AsString Used to manipulate BLOB
value as string.

AsWideString Used to manipulate BLOB
value as Unicode string.

IsUnicode Gives choice of making
TBlob store and process

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components776

© 2024 Devart

data in Unicode format or
not.

RefCount (inherited from TSharedObject)
Used to return the count of
reference to a
TSharedObject object.

Size Used to learn the size of the
TBlob value in bytes.

Methods

Name Description

AddRef (inherited from TSharedObject)

Increments the reference
count for the number of
references dependent on the
TSharedObject object.

Assign Sets BLOB value from
another TBlob object.

Clear Deletes the current value in
TBlob object.

LoadFromFile Loads the contents of a file
into a TBlob object.

LoadFromStream Copies the contents of a
stream into the TBlob object.

Read
Acquires a raw sequence of
bytes from the data stored in
TBlob.

Release (inherited from TSharedObject) Decrements the reference
count.

SaveToFile Saves the contents of the
TBlob object to a file.

SaveToStream Copies the contents of a
TBlob object to a stream.

Truncate Sets new TBlob size and
discards all data over it.

Write Stores a raw sequence of
bytes into a TBlob object.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 777

© 2024 Devart

6.14.1.1.2 Properties

Properties of the TBlob class.

For a complete list of the TBlob class members, see the TBlob Members topic.

Public

Name Description

AsString Used to manipulate BLOB
value as string.

AsWideString Used to manipulate BLOB
value as Unicode string.

IsUnicode

Gives choice of making
TBlob store and process
data in Unicode format or
not.

RefCount (inherited from TSharedObject)
Used to return the count of
reference to a
TSharedObject object.

Size Used to learn the size of the
TBlob value in bytes.

See Also
TBlob Class

TBlob Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.1.1.2.1 AsString Property

Used to manipulate BLOB value as string.

Class

TBlob

Syntax

property AsString: string;

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components778

© 2024 Devart

Remarks

Use the AsString property to manipulate BLOB value as string.

See Also
Assign

AsWideString

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.1.1.2.2 AsWideString Property

Used to manipulate BLOB value as Unicode string.

Class

TBlob

Syntax

property AsWideString: string;

Remarks

Use the AsWideString property to manipulate BLOB value as Unicode string.

See Also
Assign

AsString

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.1.1.2.3 IsUnicode Property

Gives choice of making TBlob store and process data in Unicode format or not.

Class

TBlob

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 779

© 2024 Devart

Syntax

property IsUnicode: boolean;

Remarks

Set IsUnicode to True if you want TBlob to store and process data in Unicode format.

Note: changing this property raises an exception if TBlob is not empty.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.1.1.2.4 Size Property

Used to learn the size of the TBlob value in bytes.

Class

TBlob

Syntax

property Size: Cardinal;

Remarks

Use the Size property to find out the size of the TBlob value in bytes.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.1.1.3 Methods

Methods of the TBlob class.

For a complete list of the TBlob class members, see the TBlob Members topic.

Public

Name Description

AddRef (inherited from TSharedObject)
Increments the reference
count for the number of
references dependent on the

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components780

© 2024 Devart

TSharedObject object.

Assign Sets BLOB value from
another TBlob object.

Clear Deletes the current value in
TBlob object.

LoadFromFile Loads the contents of a file
into a TBlob object.

LoadFromStream Copies the contents of a
stream into the TBlob object.

Read
Acquires a raw sequence of
bytes from the data stored in
TBlob.

Release (inherited from TSharedObject) Decrements the reference
count.

SaveToFile Saves the contents of the
TBlob object to a file.

SaveToStream Copies the contents of a
TBlob object to a stream.

Truncate Sets new TBlob size and
discards all data over it.

Write Stores a raw sequence of
bytes into a TBlob object.

See Also
TBlob Class

TBlob Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.1.1.3.1 Assign Method

Sets BLOB value from another TBlob object.

Class

TBlob

Syntax

procedure Assign(Source: TBlob);

Parameters

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 781

© 2024 Devart

Source

Holds the BLOB from which the value to the current object will be assigned.

Remarks

Call the Assign method to set BLOB value from another TBlob object.

See Also
LoadFromStream

AsString

AsWideString

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.1.1.3.2 Clear Method

Deletes the current value in TBlob object.

Class

TBlob

Syntax

procedure Clear; virtual;

Remarks

Call the Clear method to delete the current value in TBlob object.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.1.1.3.3 LoadFromFile Method

Loads the contents of a file into a TBlob object.

Class

TBlob

Syntax

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components782

© 2024 Devart

procedure LoadFromFile(const FileName: string);

Parameters

FileName

Holds the name of the file from which the TBlob value is loaded.

Remarks

Call the LoadFromFile method to load the contents of a file into a TBlob object. Specify the

name of the file to load into the field as the value of the FileName parameter.

See Also
SaveToFile

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.1.1.3.4 LoadFromStream Method

Copies the contents of a stream into the TBlob object.

Class

TBlob

Syntax

procedure LoadFromStream(Stream: TStream); virtual;

Parameters

Stream

Holds the specified stream from which the field's value is copied.

Remarks

Call the LoadFromStream method to copy the contents of a stream into the TBlob object.

Specify the stream from which the field's value is copied as the value of the Stream

parameter.

See Also
SaveToStream

© 1997-2024 Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 783

© 2024 Devart

Devart. All Rights
Reserved.

6.14.1.1.3.5 Read Method

Acquires a raw sequence of bytes from the data stored in TBlob.

Class

TBlob

Syntax

function Read(Position: Cardinal; Count: Cardinal; Dest: IntPtr):

Cardinal; virtual;

Parameters

Position

Holds the starting point of the byte sequence.

Count

Holds the size of the sequence in bytes.

Dest

Holds a pointer to the memory area where to store the sequence.

Return Value

Actually read byte count if the sequence crosses object size limit.

Remarks

Call the Read method to acquire a raw sequence of bytes from the data stored in TBlob.

The Position parameter is the starting point of byte sequence which lasts Count number of

bytes. The Dest parameter is a pointer to the memory area where to store the sequence.

If the sequence crosses object size limit, function will return actually read byte count.

See Also
Write

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components784

© 2024 Devart

6.14.1.1.3.6 SaveToFile Method

Saves the contents of the TBlob object to a file.

Class

TBlob

Syntax

procedure SaveToFile(const FileName: string);

Parameters

FileName

Holds a string that contains the name of the file.

Remarks

Call the SaveToFile method to save the contents of the TBlob object to a file. Specify the

name of the file as the value of the FileName parameter.

See Also
LoadFromFile

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.1.1.3.7 SaveToStream Method

Copies the contents of a TBlob object to a stream.

Class

TBlob

Syntax

procedure SaveToStream(Stream: TStream); virtual;

Parameters

Stream

Holds the name of the stream.

Remarks

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 785

© 2024 Devart

Call the SaveToStream method to copy the contents of a TBlob object to a stream. Specify

the name of the stream to which the field's value is saved as the value of the Stream

parameter.

See Also
LoadFromStream

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.1.1.3.8 Truncate Method

Sets new TBlob size and discards all data over it.

Class

TBlob

Syntax

procedure Truncate(NewSize: Cardinal); virtual;

Parameters

NewSize

Holds the new size of TBlob.

Remarks

Call the Truncate method to set new TBlob size and discard all data over it. If NewSize is

greater or equal TBlob.Size, it does nothing.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.1.1.3.9 Write Method

Stores a raw sequence of bytes into a TBlob object.

Class

TBlob

Syntax

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components786

© 2024 Devart

procedure Write(Position: Cardinal; Count: Cardinal; Source:

IntPtr); virtual;

Parameters

Position

Holds the starting point of the byte sequence.

Count

Holds the size of the sequence in bytes.

Source

Holds a pointer to a source memory area.

Remarks

Call the Write method to store a raw sequence of bytes into a TBlob object.

The Position parameter is the starting point of byte sequence which lasts Count number of

bytes. The Source parameter is a pointer to a source memory area.

If the value of the Position parameter crosses current size limit of TBlob object, source data

will be appended to the object data.

See Also
Read

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.1.2 TCompressedBlob Class

Holds large object value for field and parameter dtBlob, dtMemo data types and can

compress its data.

For a list of all members of this type, see TCompressedBlob members.

Unit

MemData

Syntax

TCompressedBlob = class(TBlob);

Remarks

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 787

© 2024 Devart

TCompressedBlob is a descendant of the TBlob class. It holds large object value for field and

parameter dtBlob, dtMemo data types and can compress its data. For more information about

using BLOB compression see TCustomDADataSet.Options.

Note: Internal compression functions are available in CodeGear Delphi 2007 for Win32,

Borland Developer Studio 2006, Borland Delphi 2005, and Borland Delphi 7. To use BLOB

compression under Borland Delphi 6 and Borland C++ Builder you should use your own

compression functions. To use them set the CompressProc and UncompressProc variables

declared in the MemUtils unit.

Example

type
 TCompressProc = function(dest: IntPtr; destLen: IntPtr; const source: IntPtr; sourceLen: longint): longint;
 TUncompressProc = function(dest: IntPtr; destlen: IntPtr; source: IntPtr; sourceLne: longint): longint;
var
 CompressProc: TCompressProc;
 UncompressProc: TUncompressProc;

Inheritance Hierarchy

TSharedObject

 TBlob

 TCompressedBlob

See Also
TBlob

TMemDataSet.GetBlob

TCustomDADataSet.Options

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.1.2.1 Members

TCompressedBlob class overview.

Properties

Name Description

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components788

© 2024 Devart

AsString (inherited from TBlob) Used to manipulate BLOB
value as string.

AsWideString (inherited from TBlob) Used to manipulate BLOB
value as Unicode string.

Compressed Used to indicate if the Blob
is compressed.

CompressedSize
Used to indicate
compressed size of the Blob
data.

IsUnicode (inherited from TBlob)
Gives choice of making
TBlob store and process
data in Unicode format or
not.

RefCount (inherited from TSharedObject)
Used to return the count of
reference to a
TSharedObject object.

Size (inherited from TBlob) Used to learn the size of the
TBlob value in bytes.

Methods

Name Description

AddRef (inherited from TSharedObject)
Increments the reference
count for the number of
references dependent on the
TSharedObject object.

Assign (inherited from TBlob) Sets BLOB value from
another TBlob object.

Clear (inherited from TBlob) Deletes the current value in
TBlob object.

LoadFromFile (inherited from TBlob) Loads the contents of a file
into a TBlob object.

LoadFromStream (inherited from TBlob) Copies the contents of a
stream into the TBlob object.

Read (inherited from TBlob)
Acquires a raw sequence of
bytes from the data stored in
TBlob.

Release (inherited from TSharedObject) Decrements the reference
count.

SaveToFile (inherited from TBlob) Saves the contents of the
TBlob object to a file.

SaveToStream (inherited from TBlob) Copies the contents of a
TBlob object to a stream.

Reference 789

© 2024 Devart

Truncate (inherited from TBlob) Sets new TBlob size and
discards all data over it.

Write (inherited from TBlob) Stores a raw sequence of
bytes into a TBlob object.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.1.2.2 Properties

Properties of the TCompressedBlob class.

For a complete list of the TCompressedBlob class members, see the TCompressedBlob

Members topic.

Public

Name Description

AsString (inherited from TBlob) Used to manipulate BLOB
value as string.

AsWideString (inherited from TBlob) Used to manipulate BLOB
value as Unicode string.

Compressed Used to indicate if the Blob
is compressed.

CompressedSize
Used to indicate
compressed size of the Blob
data.

IsUnicode (inherited from TBlob)

Gives choice of making
TBlob store and process
data in Unicode format or
not.

RefCount (inherited from TSharedObject)
Used to return the count of
reference to a
TSharedObject object.

Size (inherited from TBlob) Used to learn the size of the
TBlob value in bytes.

See Also
TCompressedBlob Class

TCompressedBlob Class Members

© 1997-2024 Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components790

© 2024 Devart

Devart. All Rights
Reserved.

6.14.1.2.2.1 Compressed Property

Used to indicate if the Blob is compressed.

Class

TCompressedBlob

Syntax

property Compressed: boolean;

Remarks

Indicates whether the Blob is compressed. Set this property to True or False to compress or

decompress the Blob.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.1.2.2.2 CompressedSize Property

Used to indicate compressed size of the Blob data.

Class

TCompressedBlob

Syntax

property CompressedSize: Cardinal;

Remarks

Indicates compressed size of the Blob data.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 791

© 2024 Devart

6.14.1.3 TDBObject Class

A base class for classes that work with user-defined data types that have attributes.

For a list of all members of this type, see TDBObject members.

Unit

MemData

Syntax

TDBObject = class(TSharedObject);

Remarks

TDBObject is a base class for classes that work with user-defined data types that have

attributes.

Inheritance Hierarchy

TSharedObject

 TDBObject

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.1.3.1 Members

TDBObject class overview.

Properties

Name Description

RefCount (inherited from TSharedObject)
Used to return the count of
reference to a
TSharedObject object.

Methods

Name Description

AddRef (inherited from TSharedObject)
Increments the reference
count for the number of
references dependent on the

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components792

© 2024 Devart

TSharedObject object.

Release (inherited from TSharedObject) Decrements the reference
count.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.1.4 TMemData Class

Implements in-memory database.

For a list of all members of this type, see TMemData members.

Unit

MemData

Syntax

TMemData = class(TData);

Inheritance Hierarchy

TData

 TMemData

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.1.4.1 Members

TMemData class overview.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.1.5 TObjectType Class

This class is not used.

For a list of all members of this type, see TObjectType members.

Unit

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 793

© 2024 Devart

MemData

Syntax

TObjectType = class(TSharedObject);

Inheritance Hierarchy

TSharedObject

 TObjectType

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.1.5.1 Members

TObjectType class overview.

Properties

Name Description

AttributeCount Used to indicate the number
of attributes of type.

Attributes Used to access separate
attributes.

DataType
Used to indicate the type of
object dtObject, dtArray or
dtTable.

RefCount (inherited from TSharedObject)
Used to return the count of
reference to a
TSharedObject object.

Size Used to learn the size of an
object instance.

Methods

Name Description

AddRef (inherited from TSharedObject)
Increments the reference
count for the number of
references dependent on the
TSharedObject object.

FindAttribute Indicates whether a
specified Attribute

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components794

© 2024 Devart

component is referenced in
the TAttributes object.

Release (inherited from TSharedObject) Decrements the reference
count.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.1.5.2 Properties

Properties of the TObjectType class.

For a complete list of the TObjectType class members, see the TObjectType Members

topic.

Public

Name Description

AttributeCount Used to indicate the number
of attributes of type.

Attributes Used to access separate
attributes.

DataType
Used to indicate the type of
object dtObject, dtArray or
dtTable.

RefCount (inherited from TSharedObject)
Used to return the count of
reference to a
TSharedObject object.

Size Used to learn the size of an
object instance.

See Also
TObjectType Class

TObjectType Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 795

© 2024 Devart

6.14.1.5.2.1 AttributeCount Property

Used to indicate the number of attributes of type.

Class

TObjectType

Syntax

property AttributeCount: Integer;

Remarks

Use the AttributeCount property to determine the number of attributes of type.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.1.5.2.2 Attributes Property(Indexer)

Used to access separate attributes.

Class

TObjectType

Syntax

property Attributes[Index: integer]: TAttribute;

Parameters

Index

Holds the attribute's ordinal position.

Remarks

Use the Attributes property to access individual attributes. The value of the Index parameter

corresponds to the AttributeNo property of TAttribute.

See Also
TAttribute

FindAttribute

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components796

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.1.5.2.3 DataType Property

Used to indicate the type of object dtObject, dtArray or dtTable.

Class

TObjectType

Syntax

property DataType: Word;

Remarks

Use the DataType property to determine the type of object dtObject, dtArray or dtTable.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.1.5.2.4 Size Property

Used to learn the size of an object instance.

Class

TObjectType

Syntax

property Size: Integer;

Remarks

Use the Size property to find out the size of an object instance. Size is a sum of all attribute

sizes.

See Also
TAttribute.Size

© 1997-2024
Devart. All Rights

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 797

© 2024 Devart

Reserved.

6.14.1.5.3 Methods

Methods of the TObjectType class.

For a complete list of the TObjectType class members, see the TObjectType Members

topic.

Public

Name Description

AddRef (inherited from TSharedObject)

Increments the reference
count for the number of
references dependent on the
TSharedObject object.

FindAttribute

Indicates whether a
specified Attribute
component is referenced in
the TAttributes object.

Release (inherited from TSharedObject) Decrements the reference
count.

See Also
TObjectType Class

TObjectType Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.1.5.3.1 FindAttribute Method

Indicates whether a specified Attribute component is referenced in the TAttributes object.

Class

TObjectType

Syntax

function FindAttribute(const Name: string): TAttribute; virtual;

Parameters

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components798

© 2024 Devart

Name

Holds the name of the attribute to search for.

Return Value

TAttribute, if an attribute with a matching name was found. Nil Otherwise.

Remarks

Call FindAttribute to determine if a specified Attribute component is referenced in the

TAttributes object. Name is the name of the Attribute for which to search. If FindAttribute finds

an Attribute with a matching name, it returns the TAttribute. Otherwise it returns nil.

See Also
TAttribute

Attributes

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.1.6 TSharedObject Class

A base class that allows to simplify memory management for object referenced by several

other objects.

For a list of all members of this type, see TSharedObject members.

Unit

MemData

Syntax

TSharedObject = class(System.TObject);

Remarks

TSharedObject allows to simplify memory management for object referenced by several

other objects. TSharedObject holds a count of references to itself. When any object (referer

object) is going to use TSharedObject, it calls the TSharedObject.AddRef method. Referer

object has to call the TSharedObject.Release method after using TSharedObject.

See Also

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 799

© 2024 Devart

TBlob

TObjectType

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.1.6.1 Members

TSharedObject class overview.

Properties

Name Description

RefCount
Used to return the count of
reference to a
TSharedObject object.

Methods

Name Description

AddRef

Increments the reference
count for the number of
references dependent on the
TSharedObject object.

Release Decrements the reference
count.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.1.6.2 Properties

Properties of the TSharedObject class.

For a complete list of the TSharedObject class members, see the TSharedObject Members

topic.

Public

Name Description

RefCount Used to return the count of
reference to a

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components800

© 2024 Devart

TSharedObject object.

See Also
TSharedObject Class

TSharedObject Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.1.6.2.1 RefCount Property

Used to return the count of reference to a TSharedObject object.

Class

TSharedObject

Syntax

property RefCount: Integer;

Remarks

Returns the count of reference to a TSharedObject object.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.1.6.3 Methods

Methods of the TSharedObject class.

For a complete list of the TSharedObject class members, see the TSharedObject Members

topic.

Public

Name Description

AddRef

Increments the reference
count for the number of
references dependent on the
TSharedObject object.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 801

© 2024 Devart

Release Decrements the reference
count.

See Also
TSharedObject Class

TSharedObject Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.1.6.3.1 AddRef Method

Increments the reference count for the number of references dependent on the

TSharedObject object.

Class

TSharedObject

Syntax

procedure AddRef;

Remarks

Increments the reference count for the number of references dependent on the

TSharedObject object.

See Also
Release

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.1.6.3.2 Release Method

Decrements the reference count.

Class

TSharedObject

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components802

© 2024 Devart

Syntax

procedure Release;

Remarks

Call the Release method to decrement the reference count. When RefCount is 1,

TSharedObject is deleted from memory.

See Also
AddRef

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.2 Types

Types in the MemData unit.

Types

Name Description

TLocateExOptions Represents the set of
TLocateExOption.

TUpdateRecKinds Represents the set of
TUpdateRecKind.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.2.1 TLocateExOptions Set

Represents the set of TLocateExOption.

Unit

MemData

Syntax

TLocateExOptions = set of TLocateExOption;

© 1997-2024 Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 803

© 2024 Devart

Devart. All Rights
Reserved.

6.14.2.2 TUpdateRecKinds Set

Represents the set of TUpdateRecKind.

Unit

MemData

Syntax

TUpdateRecKinds = set of TUpdateRecKind;

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.3 Enumerations

Enumerations in the MemData unit.

Enumerations

Name Description

TCompressBlobMode

Specifies when the values
should be compressed and
the way they should be
stored.

TConnLostCause Specifies the cause of the
connection loss.

TDANumericType

Specifies the format of
storing and representing of
the NUMERIC (DECIMAL)
fields.

TLocateExOption

Allows to set additional
search parameters which
will be used by the LocateEx
method.

TSortType Specifies a sort type for
string fields.

TUpdateRecKind
Indicates records for which
the ApplyUpdates method
will be performed.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components804

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.3.1 TCompressBlobMode Enumeration

Specifies when the values should be compressed and the way they should be stored.

Unit

MemData

Syntax

TCompressBlobMode = (cbNone, cbClient, cbServer, cbClientServer);

Values

Value Meaning

cbClient

Values are compressed and stored as compressed data at the
client side. Before posting data to the server decompression is
performed and data at the server side stored in the original form.
Allows to reduce used client memory due to increase access
time to field values. The time spent on the opening DataSet and
executing Post increases.

cbClientServer

Values are compressed and stored in compressed form. Allows
to decrease the volume of used memory at client and server
sides. Access time to the field values increases as for cbClient.
The time spent on opening DataSet and executing Post
decreases.Note: On using cbServer or cbClientServer data on
the server is stored as compressed. Other applications can add
records in uncompressed format but can't read and write already
compressed data. If compressed BLOB is partially changed by
another application (if signature was not changed), DAC will
consider its value as NULL.Blob compression is not applied to
Memo fields because of possible cutting.

cbNone Values not compressed. The default value.

cbServer

Values are compressed before passing to the server and store at
the server in compressed form. Allows to decrease database
size on the server. Access time to the field values does not
change. The time spent on opening DataSet and executing Post
usually decreases.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 805

© 2024 Devart

6.14.3.2 TConnLostCause Enumeration

Specifies the cause of the connection loss.

Unit

MemData

Syntax

TConnLostCause = (clUnknown, clExecute, clOpen, clRefresh, clApply,

clServiceQuery, clTransStart, clConnectionApply, clConnect);

Values

Value Meaning

clApply Connection loss detected during DataSet.ApplyUpdates
(Reconnect/Reexecute possible).

clConnect Connection loss detected during connection establishing
(Reconnect possible).

clConnectionApply Connection loss detected during Connection.ApplyUpdates
(Reconnect/Reexecute possible).

clExecute Connection loss detected during SQL execution (Reconnect with
exception is possible).

clOpen Connection loss detected during execution of a SELECT
statement (Reconnect with exception possible).

clRefresh Connection loss detected during query opening (Reconnect/
Reexecute possible).

clServiceQuery Connection loss detected during service information request
(Reconnect/Reexecute possible).

clTransStart
Connection loss detected during transaction start (Reconnect/
Reexecute possible). clTransStart has less priority then
clConnectionApply.

clUnknown The connection loss reason is unknown.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.3.3 TDANumericType Enumeration

Specifies the format of storing and representing of the NUMERIC (DECIMAL) fields.

Unit

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components806

© 2024 Devart

MemData

Syntax

TDANumericType = (ntFloat, ntBCD, ntFmtBCD);

Values

Value Meaning

ntBCD
Data is stored on the client side as currency and represented as
TBCDField. This format allows storing data with precision up to
0,0001.

ntFloat Data stored on the client side is in double format and
represented as TFloatField. The default value.

ntFmtBCD Data is represented as TFMTBCDField. TFMTBCDField gives
greater precision and accuracy than TBCDField, but it is slower.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.3.4 TLocateExOption Enumeration

Allows to set additional search parameters which will be used by the LocateEx method.

Unit

MemData

Syntax

TLocateExOption = (lxCaseInsensitive, lxPartialKey, lxNearest,

lxNext, lxUp, lxPartialCompare);

Values

Value Meaning

lxCaseInsensitive Similar to loCaseInsensitive. Key fields and key values are
matched without regard to the case.

lxNearest

LocateEx moves the cursor to a specific record in a dataset or to
the first record in the dataset that is greater than the values
specified in the KeyValues parameter. For this option to work
correctly dataset should be sorted by the fields the search is
performed in. If dataset is not sorted, the function may return a

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 807

© 2024 Devart

line that is not connected with the search condition.
lxNext LocateEx searches from the current record.

lxPartialCompare
Similar to lxPartialKey, but the difference is that it can process
value entries in any position. For example, 'HAM' would match
both 'HAMM', 'HAMMER.', and also 'MR HAMMER'.

lxPartialKey
Similar to loPartialKey. Key values can include only a part of the
matching key field value. For example, 'HAM' would match both
'HAMM' and 'HAMMER.', but not 'MR HAMMER'.

lxUp LocateEx searches from the current record to the first record.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.3.5 TSortType Enumeration

Specifies a sort type for string fields.

Unit

MemData

Syntax

TSortType = (stCaseSensitive, stCaseInsensitive, stBinary);

Values

Value Meaning

stBinary Sorting by character ordinal values (this comparison is also case
sensitive).

stCaseInsensitive Sorting without case sensitivity.

stCaseSensitive Sorting with case sensitivity.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.14.3.6 TUpdateRecKind Enumeration

Indicates records for which the ApplyUpdates method will be performed.

Unit

MemData

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components808

© 2024 Devart

Syntax

TUpdateRecKind = (ukUpdate, ukInsert, ukDelete);

Values

Value Meaning

ukDelete ApplyUpdates will be performed for deleted records.

ukInsert ApplyUpdates will be performed for inserted records.

ukUpdate ApplyUpdates will be performed for updated records.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.15 MemDS

This unit contains implementation of the TMemDataSet class.

Classes

Name Description

TMemDataSet
A base class for working
with data and manipulating
data in memory.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.15.1 Classes

Classes in the MemDS unit.

Classes

Name Description

TMemDataSet
A base class for working
with data and manipulating
data in memory.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 809

© 2024 Devart

6.15.1.1 TMemDataSet Class

A base class for working with data and manipulating data in memory.

For a list of all members of this type, see TMemDataSet members.

Unit

MemDS

Syntax

TMemDataSet = class(TDataSet);

Remarks

TMemDataSet derives from the TDataSet database-engine independent set of properties,

events, and methods for working with data and introduces additional techniques to store and

manipulate data in memory.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.15.1.1.1 Members

TMemDataSet class overview.

Properties

Name Description

CachedUpdates
Used to enable or disable
the use of cached updates
for a dataset.

IndexFieldNames
Used to get or set the list of
fields on which the recordset
is sorted.

KeyExclusive
Specifies the upper and
lower boundaries for a
range.

LocalConstraints

Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components810

© 2024 Devart

LocalUpdate
Used to prevent implicit
update of rows on database
server.

Prepared
Determines whether a query
is prepared for execution or
not.

Ranged Indicates whether a range is
applied to a dataset.

UpdateRecordTypes

Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdatesPending Used to check the status of
the cached updates buffer.

Methods

Name Description

ApplyRange Applies a range to the
dataset.

ApplyUpdates
Overloaded. Writes
dataset's pending cached
updates to a database.

CancelRange
Removes any ranges
currently in effect for a
dataset.

CancelUpdates

Clears all pending cached
updates from cache and
restores dataset in its prior
state.

CommitUpdates Clears the cached updates
buffer.

DeferredPost Makes permanent changes
to the database server.

EditRangeEnd
Enables changing the
ending value for an existing
range.

EditRangeStart
Enables changing the
starting value for an existing
range.

GetBlob

Overloaded. Retrieves
TBlob object for a field or
current record when only its
name or the field itself is

Reference 811

© 2024 Devart

known.

Locate

Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

LocateEx

Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

Prepare
Allocates resources and
creates field components for
a dataset.

RestoreUpdates
Marks all records in the
cache of updates as
unapplied.

RevertRecord

Cancels changes made to
the current record when
cached updates are
enabled.

SaveToXML

Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

SetRange
Sets the starting and ending
values of a range, and
applies it.

SetRangeEnd

Indicates that subsequent
assignments to field values
specify the end of the range
of rows to include in the
dataset.

SetRangeStart

Indicates that subsequent
assignments to field values
specify the start of the range
of rows to include in the
dataset.

UnPrepare

Frees the resources
allocated for a previously
prepared query on the
server and client sides.

UpdateResult
Reads the status of the
latest call to the
ApplyUpdates method while

Universal Data Access Components812

© 2024 Devart

cached updates are
enabled.

UpdateStatus

Indicates the current update
status for the dataset when
cached updates are
enabled.

Events

Name Description

OnUpdateError

Occurs when an exception is
generated while cached
updates are applied to a
database.

OnUpdateRecord
Occurs when a single
update component can not
handle the updates.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.15.1.1.2 Properties

Properties of the TMemDataSet class.

For a complete list of the TMemDataSet class members, see the TMemDataSet Members

topic.

Public

Name Description

CachedUpdates
Used to enable or disable
the use of cached updates
for a dataset.

IndexFieldNames
Used to get or set the list of
fields on which the recordset
is sorted.

KeyExclusive
Specifies the upper and
lower boundaries for a
range.

LocalConstraints
Used to avoid setting the
Required property of a
TField component for NOT

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 813

© 2024 Devart

NULL fields at the time of
opening TMemDataSet.

LocalUpdate
Used to prevent implicit
update of rows on database
server.

Prepared
Determines whether a query
is prepared for execution or
not.

Ranged Indicates whether a range is
applied to a dataset.

UpdateRecordTypes

Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdatesPending Used to check the status of
the cached updates buffer.

See Also
TMemDataSet Class

TMemDataSet Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.15.1.1.2.1 CachedUpdates Property

Used to enable or disable the use of cached updates for a dataset.

Class

TMemDataSet

Syntax

property CachedUpdates: boolean default False;

Remarks

Use the CachedUpdates property to enable or disable the use of cached updates for a

dataset. Setting CachedUpdates to True enables updates to a dataset (such as posting

changes, inserting new records, or deleting records) to be stored in an internal cache on the

client side instead of being written directly to the dataset's underlying database tables. When

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components814

© 2024 Devart

changes are completed, an application writes all cached changes to the database in the

context of a single transaction.

Cached updates are especially useful for client applications working with remote database

servers. Enabling cached updates brings up the following benefits:

Fewer transactions and shorter transaction times.

Minimized network traffic.

The potential drawbacks of enabling cached updates are:

Other applications can access and change the actual data on the server while users are

editing local copies of data, resulting in an update conflict when cached updates are applied

to the database.

Other applications cannot access data changes made by an application until its cached

updates are applied to the database.

The default value is False.

Note: When establishing master/detail relationship the CachedUpdates property of detail

dataset works properly only when TDADataSetOptions.LocalMasterDetail is set to True.

See Also
UpdatesPending

TMemDataSet.ApplyUpdates

RestoreUpdates

CommitUpdates

CancelUpdates

UpdateStatus

TCustomDADataSet.Options

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 815

© 2024 Devart

6.15.1.1.2.2 IndexFieldNames Property

Used to get or set the list of fields on which the recordset is sorted.

Class

TMemDataSet

Syntax

property IndexFieldNames: string;

Remarks

Use the IndexFieldNames property to get or set the list of fields on which the recordset is

sorted. Specify the name of each column in IndexFieldNames to use as an index for a table.

Column names order is significant. Separate names with semicolons. The specified columns

don't need to be indexed. Set IndexFieldNames to an empty string to reset the recordset to

the sort order originally used when the recordset's data was first retrieved.

Each field may optionally be followed by the keyword ASC / DESC or CIS / CS / BIN.

Use ASC, DESC keywords to specify a sort order for the field. If one of these keywords is not

used, the default sort order for the field is ascending.

Use CIS, CS or BIN keywords to specify the sort type for string fields:

CIS - compare without case sensitivity;

CS - compare with case sensitivity;

BIN - compare by character ordinal values (this comparison is also case sensitive).

If a dataset uses a TCustomDAConnection component, the default value of the sort type

depends on the TCustomDAConnection.Options option of the connection. If a dataset does

not use a connection (TVirtualTable dataset), the default is CS.

Read IndexFieldNames to determine the field or fields on which the recordset is sorted.

Sorting is performed locally.

Note:

You cannot sort by BLOB fields.

Universal Data Access Components816

© 2024 Devart

IndexFieldNames cannot be set to True when TCustomDADataSet.UniDirectional=True.

Example

The following procedure illustrates how to set IndexFieldNames in response to a button click:

DataSet1.IndexFieldNames := 'LastName ASC CIS; DateDue DESC';

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.15.1.1.2.3 KeyExclusive Property

Specifies the upper and lower boundaries for a range.

Class

TMemDataSet

Syntax

property KeyExclusive: Boolean;

Remarks

Use KeyExclusive to specify whether a range includes or excludes the records that match its

specified starting and ending values.

By default, KeyExclusive is False, meaning that matching values are included.

To restrict a range to those records that are greater than the specified starting value and less

than the specified ending value, set KeyExclusive to True.

See Also
SetRange

SetRangeEnd

SetRangeStart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 817

© 2024 Devart

6.15.1.1.2.4 LocalConstraints Property

Used to avoid setting the Required property of a TField component for NOT NULL fields at the

time of opening TMemDataSet.

Class

TMemDataSet

Syntax

property LocalConstraints: boolean default True;

Remarks

Use the LocalConstraints property to avoid setting the Required property of a TField

component for NOT NULL fields at the time of opening TMemDataSet. When LocalConstrains

is True, TMemDataSet ignores NOT NULL server constraints. It is useful for tables that have

fields updated by triggers.

LocalConstraints is obsolete, and is only included for backward compatibility.

The default value is True.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.15.1.1.2.5 LocalUpdate Property

Used to prevent implicit update of rows on database server.

Class

TMemDataSet

Syntax

property LocalUpdate: boolean default False;

Remarks

Set the LocalUpdate property to True to prevent implicit update of rows on database server.

Data changes are cached locally in client memory.

© 1997-2024 Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components818

© 2024 Devart

Devart. All Rights
Reserved.

6.15.1.1.2.6 Prepared Property

Determines whether a query is prepared for execution or not.

Class

TMemDataSet

Syntax

property Prepared: boolean;

Remarks

Determines whether a query is prepared for execution or not.

See Also
Prepare

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.15.1.1.2.7 Ranged Property

Indicates whether a range is applied to a dataset.

Class

TMemDataSet

Syntax

property Ranged: Boolean;

Remarks

Use the Ranged property to detect whether a range is applied to a dataset.

See Also
SetRange

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 819

© 2024 Devart

SetRangeEnd

SetRangeStart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.15.1.1.2.8 UpdateRecordTypes Property

Used to indicate the update status for the current record when cached updates are enabled.

Class

TMemDataSet

Syntax

property UpdateRecordTypes: TUpdateRecordTypes default

[rtModified, rtInserted, rtUnmodified];

Remarks

Use the UpdateRecordTypes property to determine the update status for the current record

when cached updates are enabled. Update status can change frequently as records are

edited, inserted, or deleted. UpdateRecordTypes offers a convenient method for applications

to assess the current status before undertaking or completing operations that depend on the

update status of records.

See Also
CachedUpdates

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.15.1.1.2.9 UpdatesPending Property

Used to check the status of the cached updates buffer.

Class

TMemDataSet

Syntax

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components820

© 2024 Devart

property UpdatesPending: boolean;

Remarks

Use the UpdatesPending property to check the status of the cached updates buffer. If

UpdatesPending is True, then there are edited, deleted, or inserted records remaining in local

cache and not yet applied to the database. If UpdatesPending is False, there are no such

records in the cache.

See Also
CachedUpdates

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.15.1.1.3 Methods

Methods of the TMemDataSet class.

For a complete list of the TMemDataSet class members, see the TMemDataSet Members

topic.

Public

Name Description

ApplyRange Applies a range to the
dataset.

ApplyUpdates
Overloaded. Writes
dataset's pending cached
updates to a database.

CancelRange
Removes any ranges
currently in effect for a
dataset.

CancelUpdates

Clears all pending cached
updates from cache and
restores dataset in its prior
state.

CommitUpdates Clears the cached updates
buffer.

DeferredPost Makes permanent changes
to the database server.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 821

© 2024 Devart

EditRangeEnd
Enables changing the
ending value for an existing
range.

EditRangeStart
Enables changing the
starting value for an existing
range.

GetBlob

Overloaded. Retrieves
TBlob object for a field or
current record when only its
name or the field itself is
known.

Locate

Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

LocateEx

Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

Prepare
Allocates resources and
creates field components for
a dataset.

RestoreUpdates
Marks all records in the
cache of updates as
unapplied.

RevertRecord

Cancels changes made to
the current record when
cached updates are
enabled.

SaveToXML

Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

SetRange
Sets the starting and ending
values of a range, and
applies it.

SetRangeEnd

Indicates that subsequent
assignments to field values
specify the end of the range
of rows to include in the
dataset.

SetRangeStart Indicates that subsequent
assignments to field values

Universal Data Access Components822

© 2024 Devart

specify the start of the range
of rows to include in the
dataset.

UnPrepare

Frees the resources
allocated for a previously
prepared query on the
server and client sides.

UpdateResult

Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are
enabled.

UpdateStatus

Indicates the current update
status for the dataset when
cached updates are
enabled.

See Also
TMemDataSet Class

TMemDataSet Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.15.1.1.3.1 ApplyRange Method

Applies a range to the dataset.

Class

TMemDataSet

Syntax

procedure ApplyRange;

Remarks

Call ApplyRange to cause a range established with SetRangeStart and SetRangeEnd, or

EditRangeStart and EditRangeEnd, to take effect.

When a range is in effect, only those records that fall within the range are available to the

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 823

© 2024 Devart

application for viewing and editing.

After a call to ApplyRange, the cursor is left on the first record in the range.

See Also
CancelRange

EditRangeEnd

EditRangeStart

IndexFieldNames

SetRange

SetRangeEnd

SetRangeStart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.15.1.1.3.2 ApplyUpdates Method

Writes dataset's pending cached updates to a database.

Class

TMemDataSet

Overload List

Name Description

ApplyUpdates
Writes dataset's pending cached updates
to a database.

ApplyUpdates(const UpdateRecKinds:
TUpdateRecKinds)

Writes dataset's pending cached updates
of specified records to a database.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

Writes dataset's pending cached updates to a database.

Class

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components824

© 2024 Devart

TMemDataSet

Syntax

procedure ApplyUpdates; overload; virtual;

Remarks

Call the ApplyUpdates method to write a dataset's pending cached updates to a database.

This method passes cached data to the database, but the changes are not committed to the

database if there is an active transaction. An application must explicitly call the database

component's Commit method to commit the changes to the database if the write is

successful, or call the database's Rollback method to undo the changes if there is an error.

Following a successful write to the database, and following a successful call to a

connection's Commit method, an application should call the CommitUpdates method to clear

the cached update buffer.

Note: The preferred method for updating datasets is to call a connection component's

ApplyUpdates method rather than to call each individual dataset's ApplyUpdates method. The

connection component's ApplyUpdates method takes care of committing and rolling back

transactions and clearing the cache when the operation is successful.

Example

The following procedure illustrates how to apply a dataset's cached updates to a database in

response to a button click:

procedure ApplyButtonClick(Sender: TObject);
begin
 with MyQuery do
 begin
 Session.StartTransaction;
 try
 ... <Modify data>
 ApplyUpdates; <try to write the updates to the database>
 Session.Commit; <on success, commit the changes>
 except
 RestoreUpdates; <restore update result for applied records>
 Session.Rollback; <on failure, undo the changes>
 raise; <raise the exception to prevent a call to CommitUpdates!>
 end;
 CommitUpdates; <on success, clear the cache>
 end;
end;

Reference 825

© 2024 Devart

See Also
TMemDataSet.CachedUpdates

TMemDataSet.CancelUpdates

TMemDataSet.CommitUpdates

TMemDataSet.UpdateStatus

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

Writes dataset's pending cached updates of specified records to a database.

Class

TMemDataSet

Syntax

procedure ApplyUpdates(const UpdateRecKinds: TUpdateRecKinds);

overload; virtual;

Parameters

UpdateRecKinds

Indicates records for which the ApplyUpdates method will be performed.

Remarks

Call the ApplyUpdates method to write a dataset's pending cached updates of specified

records to a database. This method passes cached data to the database, but the changes

are not committed to the database if there is an active transaction. An application must

explicitly call the database component's Commit method to commit the changes to the

database if the write is successful, or call the database's Rollback method to undo the

changes if there is an error.

Following a successful write to the database, and following a successful call to a

connection's Commit method, an application should call the CommitUpdates method to clear

the cached update buffer.

Note: The preferred method for updating datasets is to call a connection component's

ApplyUpdates method rather than to call each individual dataset's ApplyUpdates method. The

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components826

© 2024 Devart

connection component's ApplyUpdates method takes care of committing and rolling back

transactions and clearing the cache when the operation is successful.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.15.1.1.3.3 CancelRange Method

Removes any ranges currently in effect for a dataset.

Class

TMemDataSet

Syntax

procedure CancelRange;

Remarks

Call CancelRange to remove a range currently applied to a dataset. Canceling a range

reenables access to all records in the dataset.

See Also
ApplyRange

EditRangeEnd

EditRangeStart

IndexFieldNames

SetRange

SetRangeEnd

SetRangeStart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 827

© 2024 Devart

6.15.1.1.3.4 CancelUpdates Method

Clears all pending cached updates from cache and restores dataset in its prior state.

Class

TMemDataSet

Syntax

procedure CancelUpdates;

Remarks

Call the CancelUpdates method to clear all pending cached updates from cache and restore

dataset in its prior state.

It restores the dataset to the state it was in when the table was opened, cached updates were

last enabled, or updates were last successfully applied to the database.

When a dataset is closed, or the CachedUpdates property is set to False, CancelUpdates is

called automatically.

See Also
CachedUpdates

TMemDataSet.ApplyUpdates

UpdateStatus

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.15.1.1.3.5 CommitUpdates Method

Clears the cached updates buffer.

Class

TMemDataSet

Syntax

procedure CommitUpdates;

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components828

© 2024 Devart

Remarks

Call the CommitUpdates method to clear the cached updates buffer after both a successful

call to ApplyUpdates and a database component's Commit method. Clearing the cache after

applying updates ensures that the cache is empty except for records that could not be

processed and were skipped by the OnUpdateRecord or OnUpdateError event handlers. An

application can attempt to modify the records still in cache.

CommitUpdates also checks wether there are pending updates in dataset. And if there are, it

calls ApplyUpdates.

Record modifications made after a call to CommitUpdates repopulate the cached update

buffer and require a subsequent call to ApplyUpdates to move them to the database.

See Also
CachedUpdates

TMemDataSet.ApplyUpdates

UpdateStatus

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.15.1.1.3.6 DeferredPost Method

Makes permanent changes to the database server.

Class

TMemDataSet

Syntax

procedure DeferredPost;

Remarks

Call DeferredPost to make permanent changes to the database server while retaining dataset

in its state whether it is dsEdit or dsInsert.

Explicit call to the Cancel method after DeferredPost has been applied does not abandon

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 829

© 2024 Devart

modifications to a dataset already fixed in database.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.15.1.1.3.7 EditRangeEnd Method

Enables changing the ending value for an existing range.

Class

TMemDataSet

Syntax

procedure EditRangeEnd;

Remarks

Call EditRangeEnd to change the ending value for an existing range.

To specify an end range value, call FieldByName after calling EditRangeEnd.

After assigning a new ending value, call ApplyRange to activate the modified range.

See Also
ApplyRange

CancelRange

EditRangeStart

IndexFieldNames

SetRange

SetRangeEnd

SetRangeStart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components830

© 2024 Devart

6.15.1.1.3.8 EditRangeStart Method

Enables changing the starting value for an existing range.

Class

TMemDataSet

Syntax

procedure EditRangeStart;

Remarks

Call EditRangeStart to change the starting value for an existing range.

To specify a start range value, call FieldByName after calling EditRangeStart.

After assigning a new ending value, call ApplyRange to activate the modified range.

See Also
ApplyRange

CancelRange

EditRangeEnd

IndexFieldNames

SetRange

SetRangeEnd

SetRangeStart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.15.1.1.3.9 GetBlob Method

Retrieves TBlob object for a field or current record when only its name or the field itself is

known.

Class

TMemDataSet

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 831

© 2024 Devart

Overload List

Name Description

GetBlob(Field: TField)
Retrieves TBlob object for a field or current
record when the field itself is known.

GetBlob(const FieldName: string) Retrieves TBlob object for a field or current
record when its name is known.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

Retrieves TBlob object for a field or current record when the field itself is known.

Class

TMemDataSet

Syntax

function GetBlob(Field: TField): TBlob; overload;

Parameters

Field

Holds an existing TField object.

Return Value

TBlob object that was retrieved.

Remarks

Call the GetBlob method to retrieve TBlob object for a field or current record when only its

name or the field itself is known. FieldName is the name of an existing field. The field should

have MEMO or BLOB type.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

Retrieves TBlob object for a field or current record when its name is known.

Class

TMemDataSet

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components832

© 2024 Devart

Syntax

function GetBlob(const FieldName: string): TBlob; overload;

Parameters

FieldName

Holds the name of an existing field.

Return Value

TBlob object that was retrieved.

Example

UniQuery1.GetBlob('Comment').SaveToFile('Comment.txt');

See Also
TBlob

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.15.1.1.3.10 Locate Method

Searches a dataset for a specific record and positions the cursor on it.

Class

TMemDataSet

Overload List

Name Description

Locate(const KeyFields: array of TField;
const KeyValues: variant; Options:
TLocateOptions)

Searches a dataset by the specified fields
for a specific record and positions cursor
on it.

Locate(const KeyFields: string; const
KeyValues: variant; Options:
TLocateOptions)

Searches a dataset by the fields specified
by name for a specific record and positions
the cursor on it.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 833

© 2024 Devart

Searches a dataset by the specified fields for a specific record and positions cursor on it.

Class

TMemDataSet

Syntax

function Locate(const KeyFields: array of TField; const

KeyValues: variant; Options: TLocateOptions): boolean;

reintroduce; overload;

Parameters

KeyFields

Holds TField objects in which to search.

KeyValues

Holds the variant that specifies the values to match in the key fields.

Options

Holds additional search latitude when searching in string fields.

Return Value

True if it finds a matching record, and makes this record the current one. Otherwise it
returns False.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

Searches a dataset by the fields specified by name for a specific record and positions the

cursor on it.

Class

TMemDataSet

Syntax

function Locate(const KeyFields: string; const KeyValues:

variant; Options: TLocateOptions): boolean; overload; override;

Parameters

KeyFields

Holds a semicolon-delimited list of field names in which to search.

KeyValues

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components834

© 2024 Devart

Holds the variant that specifies the values to match in the key fields.

Options

Holds additional search latitude when searching in string fields.

Return Value

True if it finds a matching record, and makes this record the current one. Otherwise it
returns False.

Remarks

Call the Locate method to search a dataset for a specific record and position cursor on it.

KeyFields is a string containing a semicolon-delimited list of field names on which to search.

KeyValues is a variant that specifies the values to match in the key fields. If KeyFields lists a

single field, KeyValues specifies the value for that field on the desired record. To specify

multiple search values, pass a variant array as KeyValues, or construct a variant array on the

fly using the VarArrayOf routine. An example is provided below.

Options is a set that optionally specifies additional search latitude when searching in string

fields. If Options contains the loCaseInsensitive setting, then Locate ignores case when

matching fields. If Options contains the loPartialKey setting, then Locate allows partial-string

matching on strings in KeyValues. If Options is an empty set, or if KeyFields does not include

any string fields, Options is ignored.

Locate returns True if it finds a matching record, and makes this record the current one.

Otherwise it returns False.

The Locate function works faster when dataset is locally sorted on the KeyFields fields. Local

dataset sorting can be set with the TMemDataSet.IndexFieldNames property.

Example

An example of specifying multiple search values:

with CustTable do
 Locate('Company;Contact;Phone', VarArrayOf(['Sight Diver', 'P',
 '408-431-1000']), [loPartialKey]);

See Also
TMemDataSet.IndexFieldNames

TMemDataSet.LocateEx

© 1997-2024 Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 835

© 2024 Devart

Devart. All Rights
Reserved.

6.15.1.1.3.11 LocateEx Method

Excludes features that don't need to be included to the TMemDataSet.Locate method of

TDataSet.

Class

TMemDataSet

Overload List

Name Description

LocateEx(const KeyFields: array of
TField; const KeyValues: variant; Options:
TLocateExOptions)

Excludes features that don't need to be
included to the TMemDataSet.Locate
method of TDataSet by the specified fields.

LocateEx(const KeyFields: string; const
KeyValues: variant; Options:
TLocateExOptions)

Excludes features that don't need to be
included to the TMemDataSet.Locate
method of TDataSet by the specified field
names.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

Excludes features that don't need to be included to the TMemDataSet.Locate method of

TDataSet by the specified fields.

Class

TMemDataSet

Syntax

function LocateEx(const KeyFields: array of TField; const

KeyValues: variant; Options: TLocateExOptions): boolean; overload;

Parameters

KeyFields

Holds TField objects to search in.

KeyValues

Holds the values of the fields to search for.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components836

© 2024 Devart

Options

Holds additional search parameters which will be used by the LocateEx method.

Return Value

True, if a matching record was found. Otherwise returns False.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

Excludes features that don't need to be included to the TMemDataSet.Locate method of

TDataSet by the specified field names.

Class

TMemDataSet

Syntax

function LocateEx(const KeyFields: string; const KeyValues:

variant; Options: TLocateExOptions): boolean; overload;

Parameters

KeyFields

Holds the fields to search in.

KeyValues

Holds the values of the fields to search for.

Options

Holds additional search parameters which will be used by the LocateEx method.

Return Value

True, if a matching record was found. Otherwise returns False.

Remarks

Call the LocateEx method when you need some features not to be included to the

TMemDataSet.Locate method of TDataSet.

LocateEx returns True if it finds a matching record, and makes that record the current one.

Otherwise LocateEx returns False.

The LocateEx function works faster when dataset is locally sorted on the KeyFields fields.

Local dataset sorting can be set with the TMemDataSet.IndexFieldNames property.

Note: Please add the MemData unit to the "uses" list to use the TLocalExOption

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 837

© 2024 Devart

enumeration.

See Also
TMemDataSet.IndexFieldNames

TMemDataSet.Locate

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.15.1.1.3.12 Prepare Method

Allocates resources and creates field components for a dataset.

Class

TMemDataSet

Syntax

procedure Prepare; virtual;

Remarks

Call the Prepare method to allocate resources and create field components for a dataset. To

learn whether dataset is prepared or not use the Prepared property.

The UnPrepare method unprepares a query.

Note: When you change the text of a query at runtime, the query is automatically closed and

unprepared.

See Also
Prepared

UnPrepare

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components838

© 2024 Devart

6.15.1.1.3.13 RestoreUpdates Method

Marks all records in the cache of updates as unapplied.

Class

TMemDataSet

Syntax

procedure RestoreUpdates;

Remarks

Call the RestoreUpdates method to return the cache of updates to its state before calling

ApplyUpdates. RestoreUpdates marks all records in the cache of updates as unapplied. It is

useful when ApplyUpdates fails.

See Also
CachedUpdates

TMemDataSet.ApplyUpdates

CancelUpdates

UpdateStatus

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.15.1.1.3.14 RevertRecord Method

Cancels changes made to the current record when cached updates are enabled.

Class

TMemDataSet

Syntax

procedure RevertRecord;

Remarks

Call the RevertRecord method to undo changes made to the current record when cached

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 839

© 2024 Devart

updates are enabled.

See Also
CachedUpdates

CancelUpdates

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.15.1.1.3.15 SaveToXML Method

Saves the current dataset data to a file or a stream in the XML format compatible with ADO

format.

Class

TMemDataSet

Overload List

Name Description

SaveToXML(Destination: TStream)
Saves the current dataset data to a stream
in the XML format compatible with ADO
format.

SaveToXML(const FileName: string)
Saves the current dataset data to a file in
the XML format compatible with ADO
format.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

Saves the current dataset data to a stream in the XML format compatible with ADO format.

Class

TMemDataSet

Syntax

procedure SaveToXML(Destination: TStream); overload;

Parameters

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components840

© 2024 Devart

Destination

Holds a TStream object.

Remarks

Call the SaveToXML method to save the current dataset data to a file or a stream in the XML

format compatible with ADO format.

If the destination file already exists, it is overwritten. It remains open from the first call to

SaveToXML until the dataset is closed. This file can be read by other applications while it is

opened, but they cannot write to the file.

When saving data to a stream, a TStream object must be created and its position must be

set in a preferable value.

See Also
TVirtualTable.LoadFromFile

TVirtualTable.LoadFromStream

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

Saves the current dataset data to a file in the XML format compatible with ADO format.

Class

TMemDataSet

Syntax

procedure SaveToXML(const FileName: string); overload;

Parameters

FileName

Holds the name of a destination file.

See Also
TVirtualTable.LoadFromFile

TVirtualTable.LoadFromStream

© 1997-2024 Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 841

© 2024 Devart

Devart. All Rights
Reserved.

6.15.1.1.3.16 SetRange Method

Sets the starting and ending values of a range, and applies it.

Class

TMemDataSet

Syntax

procedure SetRange(const StartValues: array of System.TVarRec;

const EndValues: array of System.TVarRec; StartExlusive: Boolean

= False; EndExclusive: Boolean = False);

Parameters

StartValues

Indicates the field values that designate the first record in the range. In C++,
StartValues_Size is the index of the last value in the StartValues array.

EndValues

Indicates the field values that designate the last record in the range. In C++,
EndValues_Size is the index of the last value in the EndValues array.

StartExlusive

Iindicates the upper and lower boundaries of the start range.

EndExclusive

Indicates the upper and lower boundaries of the end range.

Remarks

Call SetRange to specify a range and apply it to the dataset. The new range replaces the

currently specified range, if any.

SetRange combines the functionality of SetRangeStart, SetRangeEnd, and ApplyRange in a

single procedure call. SetRange performs the following functions:

1. Puts the dataset into dsSetKey state.

2. Erases any previously specified starting range values and ending range values.

3. Sets the start and end range values.

4. Applies the range to the dataset.

Universal Data Access Components842

© 2024 Devart

After a call to SetRange, the cursor is left on the first record in the range.

If either StartValues or EndValues has fewer elements than the number of fields in the current

index, then the remaining entries are ignored when performing a search.

See Also
ApplyRange

CancelRange

EditRangeEnd

EditRangeStart

IndexFieldNames

KeyExclusive

SetRangeEnd

SetRangeStart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.15.1.1.3.17 SetRangeEnd Method

Indicates that subsequent assignments to field values specify the end of the range of rows to

include in the dataset.

Class

TMemDataSet

Syntax

procedure SetRangeEnd;

Remarks

Call SetRangeEnd to put the dataset into dsSetKey state, erase any previous end range

values, and set them to NULL.

Subsequent field assignments made with FieldByName specify the actual set of ending

values for a range.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 843

© 2024 Devart

After assigning end-range values, call ApplyRange to activate the modified range.

See Also
ApplyRange

CancelRange

EditRangeStart

IndexFieldNames

SetRange

SetRangeStart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.15.1.1.3.18 SetRangeStart Method

Indicates that subsequent assignments to field values specify the start of the range of rows to

include in the dataset.

Class

TMemDataSet

Syntax

procedure SetRangeStart;

Remarks

Call SetRangeStart to put the dataset into dsSetKey state, erase any previous start range

values, and set them to NULL.

Subsequent field assignments to FieldByName specify the actual set of starting values for a

range.

After assigning start-range values, call ApplyRange to activate the modified range.

See Also
ApplyRange

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components844

© 2024 Devart

CancelRange

EditRangeStart

IndexFieldNames

SetRange

SetRangeEnd

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.15.1.1.3.19 UnPrepare Method

Frees the resources allocated for a previously prepared query on the server and client sides.

Class

TMemDataSet

Syntax

procedure UnPrepare; virtual;

Remarks

Call the UnPrepare method to free the resources allocated for a previously prepared query on

the server and client sides.

Note: When you change the text of a query at runtime, the query is automatically closed and

unprepared.

See Also
Prepare

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.15.1.1.3.20 UpdateResult Method

Reads the status of the latest call to the ApplyUpdates method while cached updates are

enabled.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 845

© 2024 Devart

Class

TMemDataSet

Syntax

function UpdateResult: TUpdateAction;

Return Value

a value of the TUpdateAction enumeration.

Remarks

Call the UpdateResult method to read the status of the latest call to the ApplyUpdates method

while cached updates are enabled. UpdateResult reflects updates made on the records that

have been edited, inserted, or deleted.

UpdateResult works on the record by record basis and is applicable to the current record

only.

See Also
CachedUpdates

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.15.1.1.3.21 UpdateStatus Method

Indicates the current update status for the dataset when cached updates are enabled.

Class

TMemDataSet

Syntax

function UpdateStatus: TUpdateStatus; override;

Return Value

a value of the TUpdateStatus enumeration.

Remarks

Call the UpdateStatus method to determine the current update status for the dataset when

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components846

© 2024 Devart

cached updates are enabled. Update status can change frequently as records are edited,

inserted, or deleted. UpdateStatus offers a convenient method for applications to assess the

current status before undertaking or completing operations that depend on the update status

of the dataset.

See Also
CachedUpdates

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.15.1.1.4 Events

Events of the TMemDataSet class.

For a complete list of the TMemDataSet class members, see the TMemDataSet Members

topic.

Public

Name Description

OnUpdateError

Occurs when an exception is
generated while cached
updates are applied to a
database.

OnUpdateRecord
Occurs when a single
update component can not
handle the updates.

See Also
TMemDataSet Class

TMemDataSet Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 847

© 2024 Devart

6.15.1.1.4.1 OnUpdateError Event

Occurs when an exception is generated while cached updates are applied to a database.

Class

TMemDataSet

Syntax

property OnUpdateError: TUpdateErrorEvent;

Remarks

Write the OnUpdateError event handler to respond to exceptions generated when cached

updates are applied to a database.

E is a pointer to an EDatabaseError object from which application can extract an error

message and the actual cause of the error condition. The OnUpdateError handler can use

this information to determine how to respond to the error condition.

UpdateKind describes the type of update that generated the error.

UpdateAction indicates the action to take when the OnUpdateError handler exits. On entry into

the handler, UpdateAction is always set to uaFail. If OnUpdateError can handle or correct the

error, set UpdateAction to uaRetry before exiting the error handler.

The error handler can use the TField.OldValue and TField.NewValue properties to evaluate

error conditions and set TField.NewValue to a new value to reapply. In this case, set

UpdateAction to uaRetry before exiting.

Note: If a call to ApplyUpdates raises an exception and ApplyUpdates is not called within the

context of a try...except block, an error message is displayed. If the OnUpdateError handler

cannot correct the error condition and leaves UpdateAction set to uaFail, the error message is

displayed twice. To prevent redisplay, set UpdateAction to uaAbort in the error handler.

See Also
CachedUpdates

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components848

© 2024 Devart

6.15.1.1.4.2 OnUpdateRecord Event

Occurs when a single update component can not handle the updates.

Class

TMemDataSet

Syntax

property OnUpdateRecord: TUpdateRecordEvent;

Remarks

Write the OnUpdateRecord event handler to process updates that cannot be handled by a

single update component, such as implementation of cascading updates, insertions, or

deletions. This handler is also useful for applications that require additional control over

parameter substitution in update components.

UpdateKind describes the type of update to perform.

UpdateAction indicates the action taken by the OnUpdateRecord handler before it exits. On

entry into the handler, UpdateAction is always set to uaFail. If OnUpdateRecord is successful,

it should set UpdateAction to uaApplied before exiting.

See Also
CachedUpdates

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.16 OracleUniProvider

This unit contains the TOraUtils class that allows you to use features of Oracle database.

Classes

Name Description

TOraUtils

This class class is used for
implementation of specific
Oracle operations, such as
changing a user's password.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 849

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.16.1 Classes

Classes in the OracleUniProvider unit.

Classes

Name Description

TOraUtils

This class class is used for
implementation of specific
Oracle operations, such as
changing a user's password.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.16.1.1 TOraUtils Class

This class class is used for implementation of specific Oracle operations, such as changing

a user's password.

For a list of all members of this type, see TOraUtils members.

Unit

OracleUniProvider

Syntax

TOraUtils = class(System.TObject);

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.16.1.1.1 Members

TOraUtils class overview.

Methods

Name Description

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components850

© 2024 Devart

ChangePassword
Changes the password of an
account to the new
password.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.16.1.1.2 Methods

Methods of the TOraUtils class.

For a complete list of the TOraUtils class members, see the TOraUtils Members topic.

Public

Name Description

ChangePassword
Changes the password of an
account to the new
password.

See Also
TOraUtils Class

TOraUtils Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.16.1.1.2.1 ChangePassw ord Method

Changes the password of an account to the new password.

Class

TOraUtils

Syntax

class procedure ChangePassword(Connection: TCustomDAConnection;

NewPassword: string);

Parameters

Connection

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 851

© 2024 Devart

NewPassword

Takes the new password.

Remarks

Call the ChangePassword method to replace the current password of an account with the

new password.

The previous values must be provided for the Password and UserName properties before

calling ChangePassword.

The ChangePassword method is used mainly when logging in to the user account fails due to

an expired password or any other reason accompanied by an exception with ORA-2800

Oracle error code family (see Oracle Error Messages).

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.17 SQLiteUniProvider

This unit contains the TLiteUtils class that allows you to use features of SQLite database.

Classes

Name Description

TLiteUtils

This class class is used for
implementation of specific
SQLite operations, such as
database encryption or
collation management.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.17.1 Classes

Classes in the SQLiteUniProvider unit.

Classes

Name Description

TLiteUtils This class class is used for
implementation of specific

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components852

© 2024 Devart

SQLite operations, such as
database encryption or
collation management.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.17.1.1 TLiteUtils Class

This class class is used for implementation of specific SQLite operations, such as database

encryption or collation management.

For a list of all members of this type, see TLiteUtils members.

Unit

SQLiteUniProvider

Syntax

TLiteUtils = class(System.TObject);

Remarks

Class that implements SQLite specific methods such as EncryptDatabase,

RegisterCollation, UnRegisterCollation.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.17.1.1.1 Members

TLiteUtils class overview.

Methods

Name Description

EncryptDatabase
Used for setting a new
password or changing an
existing password.

RegisterAnsiCollation
This method is used for
registering a user-defined
non-Unicode collation.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 853

© 2024 Devart

RegisterCollation
This method is used for
registering a user-defined
String collation.

RegisterFunction
This method is used for
registering a user-defined
function.

RegisterWideCollation
This method is used for
registering a user-defined
Unicode collation.

UnRegisterAnsiCollation
This method is used for
unregistering a user-defined
non-Unicode collation.

UnRegisterCollation
This method is used for
unregistering user-defined
collation.

UnRegisterFunction
This method is used for
unregistering a user-defined
function.

UnRegisterWideCollation
This method is used for
unregistering a user-defined
Unicode collation.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.17.1.1.2 Methods

Methods of the TLiteUtils class.

For a complete list of the TLiteUtils class members, see the TLiteUtils Members topic.

Public

Name Description

EncryptDatabase
Used for setting a new
password or changing an
existing password.

RegisterAnsiCollation
This method is used for
registering a user-defined
non-Unicode collation.

RegisterCollation
This method is used for
registering a user-defined
String collation.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components854

© 2024 Devart

RegisterFunction
This method is used for
registering a user-defined
function.

RegisterWideCollation
This method is used for
registering a user-defined
Unicode collation.

UnRegisterAnsiCollation
This method is used for
unregistering a user-defined
non-Unicode collation.

UnRegisterCollation
This method is used for
unregistering user-defined
collation.

UnRegisterFunction
This method is used for
unregistering a user-defined
function.

UnRegisterWideCollation
This method is used for
unregistering a user-defined
Unicode collation.

See Also
TLiteUtils Class

TLiteUtils Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.17.1.1.2.1 EncryptDatabase Method

Used for setting a new password or changing an existing password.

Class

TLiteUtils

Syntax

class procedure EncryptDatabase(Connection: TCustomDAConnection;

NewKey: string);

Parameters

Connection

A pointer for TCustomDAConnection.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 855

© 2024 Devart

NewKey

A new password value.

Remarks

The database connection should be established before using this method. EncryptionKey

value should be set when database is already encrypted. Encoding function will be supported

by SQLite library.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.17.1.1.2.2 RegisterAnsiCollation Method

This method is used for registering a user-defined non-Unicode collation.

Class

TLiteUtils

Syntax

class procedure RegisterAnsiCollation(Connection:

TCustomDAConnection; Name: string; LiteAnsiCollation:

TLiteAnsiCollation);

Parameters

Connection

Connection where user-defined collation should be registered.

Name

User-defined collation name.

LiteAnsiCollation

User-defined non-Unicode collation.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.17.1.1.2.3 RegisterCollation Method

This method is used for registering a user-defined String collation.

Class

TLiteUtils

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components856

© 2024 Devart

Syntax

class procedure RegisterCollation(Connection:

TCustomDAConnection; Name: string; LiteCollation: TLiteCollation);

Parameters

Connection

Connection with database where user-defined collation should be registered.

Name

User-defined collation name.

LiteCollation

User-defined collation.

Remarks

TLiteCollation has String parameters that depend on Delphi version:

Delphi version Parameter data type Description

Delphi 2007 and lower String = AnsiString non-Unicode collation

Delphi 2009 and higher String = WideString Unicode collation

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.17.1.1.2.4 RegisterFunction Method

This method is used for registering a user-defined function.

Class

TLiteUtils

Syntax

class procedure RegisterFunction(Connection: TCustomDAConnection;

const Name: string; ParamCount: Integer; LiteFunction:

TLiteFunction);

Parameters

Connection

Connection where user-defined function should be registered.

Name

User-defined function name.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 857

© 2024 Devart

ParamCount

The number of the input parameters for user-defined function.

LiteFunction

User-defined function to register.

Remarks

If UseUnicode connection specific option is true then input string parameters will be

represented as WideString else input string parameters will be represented as AnsiString.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.17.1.1.2.5 RegisterWideCollation Method

This method is used for registering a user-defined Unicode collation.

Class

TLiteUtils

Syntax

class procedure RegisterWideCollation(Connection:

TCustomDAConnection; Name: string; LiteWideCollation:

TLiteWideCollation);

Parameters

Connection

Connection where user-defined collation should be registered.

Name

User-defined collation name.

LiteWideCollation

User-defined Unicode collation.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.17.1.1.2.6 UnRegisterAnsiCollation Method

This method is used for unregistering a user-defined non-Unicode collation.

Class

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components858

© 2024 Devart

TLiteUtils

Syntax

class procedure UnRegisterAnsiCollation(Connection:

TCustomDAConnection; Name: string);

Parameters

Connection

Connection where user-defined collation should be unregistered.

Name

User-defined collation name.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.17.1.1.2.7 UnRegisterCollation Method

This method is used for unregistering user-defined collation.

Class

TLiteUtils

Syntax

class procedure UnRegisterCollation(Connection:

TCustomDAConnection; Name: string);

Parameters

Connection

Connection with database where user-defined collation should be unregistered.

Name

User-defined collation name.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.17.1.1.2.8 UnRegisterFunction Method

This method is used for unregistering a user-defined function.

Class

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 859

© 2024 Devart

TLiteUtils

Syntax

class procedure UnRegisterFunction(Connection:

TCustomDAConnection; Name: string; ParamCount: Integer);

Parameters

Connection

Connection where the user-defined function should be unregistered.

Name

User-defined function name.

ParamCount

The number of the input parameters for User-defined function.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.17.1.1.2.9 UnRegisterWideCollation Method

This method is used for unregistering a user-defined Unicode collation.

Class

TLiteUtils

Syntax

class procedure UnRegisterWideCollation(Connection:

TCustomDAConnection; Name: string);

Parameters

Connection

Connection where the user-defined collation should be unregistered

Name

User-defined collation name.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components860

© 2024 Devart

6.18 SQLServerUniProvider

This unit contains the TMSSqlUtils class that allows you to use features of SQL Server

database.

Classes

Name Description

TMSSqlUtils

This class class is used for
implementation of specific
SQL Server operations,
such as changing a user's
password.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.18.1 Classes

Classes in the SQLServerUniProvider unit.

Classes

Name Description

TMSSqlUtils

This class class is used for
implementation of specific
SQL Server operations,
such as changing a user's
password.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.18.1.1 TMSSqlUtils Class

This class class is used for implementation of specific SQL Server operations, such as

changing a user's password.

For a list of all members of this type, see TMSSqlUtils members.

Unit

SQLServerUniProvider

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 861

© 2024 Devart

Syntax

TMSSqlUtils = class(System.TObject);

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.18.1.1.1 Members

TMSSqlUtils class overview.

Methods

Name Description

ChangePassword
Changes the password of an
account to the new
password.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.18.1.1.2 Methods

Methods of the TMSSqlUtils class.

For a complete list of the TMSSqlUtils class members, see the TMSSqlUtils Members topic.

Public

Name Description

ChangePassword
Changes the password of an
account to the new
password.

See Also
TMSSqlUtils Class

TMSSqlUtils Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components862

© 2024 Devart

6.18.1.1.2.1 ChangePassw ord Method

Changes the password of an account to the new password.

Class

TMSSqlUtils

Syntax

class procedure ChangePassword(Connection: TCustomDAConnection;

NewPassword: string);

Parameters

Connection

NewPassword

Takes the new password.

Remarks

Call the ChangePassword method to replace an expired user's password with the new

password. In SQL Server versions prior to SQL Server 2005, only the database administrator

has permissions to change an expired user's password. Starting with SQL Server 2005, you

can change the password using the ChangePassword method and SQL Native Client.

Note: Only an expired password can be changed using this method.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19 Uni

This unit contains main components of UniDAC.

Classes

Name Description

TCustomUniDataSet
A base component for
defining functionality for
classes derived from it.

TCustomUniTable
A base class for retrieving
and updating data in a
single table without writing

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 863

© 2024 Devart

SQL statements.

TUniBlob
A class holding value of the
BLOB fields and
parameters.

TUniConnection

A component for setting up
and controlling connection to
such database servers as
Oracle, SQL Server,
MySQL, InterBase, Firebird,
and PostgreSQL.

TUniDataSetOptions Specifies the behaviour of a
TCustomUniDataSet object.

TUniDataSource

TUniDataSource provides
an interface between a
UniDAC dataset
components and data-aware
controls on a form.

TUniEncryptor
The class that performs
encrypting and decrypting of
data.

TUniMacro Holds the Name, Value, and
Condition for a macro.

TUniMacros
Used to manage a list of
TUniMacro objects for a
TUniConnection component.

TUniMetaData

A component for obtaining
metainformation about
database objects from the
server.

TUniParam

A class that is used to set
the values of individual
parameters passed with
queries or stored
procedures.

TUniParams Used to control TUniParam
objects.

TUniQuery

A component for executing
queries and operating
record sets. It also provides
flexible way to update data.

TUniSQL

A component for executing
SQL statements and calling
stored procedures on the
database server.

Universal Data Access Components864

© 2024 Devart

TUniStoredProc
A component for accessing
and executing stored
procedures and functions.

TUniTable

A component for retrieving
and updating data in a
single table without writing
SQL statements.

TUniTransaction
A component for managing
transactions in an
application.

TUniUpdateSQL
A component for tuning
update operations for the
DataSet component.

Constants

Name Description

UniDACVersion
Read this constant to get
current version number for
UniDAC.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1 Classes

Classes in the Uni unit.

Classes

Name Description

TCustomUniDataSet
A base component for
defining functionality for
classes derived from it.

TCustomUniTable

A base class for retrieving
and updating data in a
single table without writing
SQL statements.

TUniBlob
A class holding value of the
BLOB fields and
parameters.

TUniConnection A component for setting up
and controlling connection to

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 865

© 2024 Devart

such database servers as
Oracle, SQL Server,
MySQL, InterBase, Firebird,
and PostgreSQL.

TUniDataSetOptions Specifies the behaviour of a
TCustomUniDataSet object.

TUniDataSource

TUniDataSource provides
an interface between a
UniDAC dataset
components and data-aware
controls on a form.

TUniEncryptor
The class that performs
encrypting and decrypting of
data.

TUniMacro Holds the Name, Value, and
Condition for a macro.

TUniMacros
Used to manage a list of
TUniMacro objects for a
TUniConnection component.

TUniMetaData

A component for obtaining
metainformation about
database objects from the
server.

TUniParam

A class that is used to set
the values of individual
parameters passed with
queries or stored
procedures.

TUniParams Used to control TUniParam
objects.

TUniQuery

A component for executing
queries and operating
record sets. It also provides
flexible way to update data.

TUniSQL

A component for executing
SQL statements and calling
stored procedures on the
database server.

TUniStoredProc
A component for accessing
and executing stored
procedures and functions.

TUniTable
A component for retrieving
and updating data in a
single table without writing

Universal Data Access Components866

© 2024 Devart

SQL statements.

TUniTransaction
A component for managing
transactions in an
application.

TUniUpdateSQL
A component for tuning
update operations for the
DataSet component.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.1 TCustomUniDataSet Class

A base component for defining functionality for classes derived from it.

For a list of all members of this type, see TCustomUniDataSet members.

Unit

Uni

Syntax

TCustomUniDataSet = class(TCustomDADataSet);

Remarks

TCustomUniDataSet is a base dataset component that defines functionality for classes

derived from it. Applications should never use TCustomUniDataSet objects directly. Instead of

TCustomUniDataSet, they should use TCustomUniDataSet descendants, such as

TUniQuery and TUniTable, which inherit its dataset-related properties and methods.

Inheritance Hierarchy

TMemDataSet

 TCustomDADataSet

 TCustomUniDataSet

See Also
TUniQuery

TUniTable

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 867

© 2024 Devart

TUniStoredProc

TUniMetaData

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.1.1 Members

TCustomUniDataSet class overview.

Properties

Name Description

BaseSQL (inherited from TCustomDADataSet)
Used to return SQL text
without any changes
performed by AddWhere,
SetOrderBy, and FilterSQL.

CachedUpdates (inherited from TMemDataSet)
Used to enable or disable
the use of cached updates
for a dataset.

Conditions (inherited from TCustomDADataSet) Used to add WHERE
conditions to a query

Connection (inherited from TCustomDADataSet)
Used to specify a
connection object to use to
connect to a data store.

DataTypeMap (inherited from TCustomDADataSet) Used to set data type
mapping rules

Debug (inherited from TCustomDADataSet)
Used to display the
statement that is being
executed and the values and
types of its parameters.

DetailFields (inherited from TCustomDADataSet)

Used to specify the fields
that correspond to the
foreign key fields from
MasterFields when building
master/detail relationship.

Disconnected (inherited from TCustomDADataSet)
Used to keep dataset
opened after connection is
closed.

DMLRefresh

Used to refresh record by
RETURNING clause when
insert or update is
performed.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components868

© 2024 Devart

FetchRows (inherited from TCustomDADataSet)
Used to define the number
of rows to be transferred
across the network at the
same time.

FilterSQL (inherited from TCustomDADataSet)
Used to change the WHERE
clause of SELECT
statement and reopen a
query.

FinalSQL (inherited from TCustomDADataSet)

Used to return SQL text with
all changes performed by
AddWhere, SetOrderBy,
and FilterSQL, and with
expanded macros.

IndexFieldNames (inherited from TMemDataSet)
Used to get or set the list of
fields on which the recordset
is sorted.

IsQuery (inherited from TCustomDADataSet) Used to check whether SQL
statement returns rows.

KeyExclusive (inherited from TMemDataSet)
Specifies the upper and
lower boundaries for a
range.

KeyFields (inherited from TCustomDADataSet)

Used to build SQL
statements for the
SQLDelete, SQLInsert, and
SQLUpdate properties if
they were empty before
updating the database.

LastInsertId

Can be used with MySQL
and PostgreSQL servers to
get the value of the ID field
after executing INSERT
statement.

LocalConstraints (inherited from TMemDataSet)

Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet)
Used to prevent implicit
update of rows on database
server.

MacroCount (inherited from TCustomDADataSet)
Used to get the number of
macros associated with the
Macros property.

Macros (inherited from TCustomDADataSet) Makes it possible to change
SQL queries easily.

Reference 869

© 2024 Devart

MasterFields (inherited from TCustomDADataSet)

Used to specify the names
of one or more fields that are
used as foreign keys for
dataset when establishing
detail/master relationship
between it and the dataset
specified in MasterSource.

MasterSource (inherited from TCustomDADataSet)
Used to specify the data
source component which
binds current dataset to the
master one.

Options Specifies the behaviour of a
TCustomUniDataSet object.

ParamCheck (inherited from TCustomDADataSet)

Used to specify whether
parameters for the Params
property are generated
automatically after the SQL
property was changed.

ParamCount (inherited from TCustomDADataSet)
Used to indicate how many
parameters are there in the
Params property.

Params Holds the parameters for a
query's SQL statement.

Prepared (inherited from TMemDataSet)
Determines whether a query
is prepared for execution or
not.

Ranged (inherited from TMemDataSet) Indicates whether a range is
applied to a dataset.

ReadOnly (inherited from TCustomDADataSet)
Used to prevent users from
updating, inserting, or
deleting data in the dataset.

RefreshOptions (inherited from TCustomDADataSet) Used to indicate when the
editing record is refreshed.

RowsAffected (inherited from TCustomDADataSet)
Used to indicate the number
of rows which were inserted,
updated, or deleted during
the last query operation.

SpecificOptions
Used to provide extended
settings for each data
provider.

SQL (inherited from TCustomDADataSet)
Used to provide a SQL
statement that a query
component executes when
its Open method is called.

Universal Data Access Components870

© 2024 Devart

SQLDelete (inherited from TCustomDADataSet)
Used to specify a SQL
statement that will be used
when applying a deletion to
a record.

SQLInsert (inherited from TCustomDADataSet)
Used to specify the SQL
statement that will be used
when applying an insertion
to a dataset.

SQLLock (inherited from TCustomDADataSet)
Used to specify a SQL
statement that will be used
to perform a record lock.

SQLRecCount (inherited from TCustomDADataSet)
Used to specify the SQL
statement that is used to get
the record count when
opening a dataset.

SQLRefresh (inherited from TCustomDADataSet)

Used to specify a SQL
statement that will be used
to refresh current record by
calling the
TCustomDADataSet.Refres
hRecord procedure.

SQLUpdate (inherited from TCustomDADataSet)
Used to specify a SQL
statement that will be used
when applying an update to
a dataset.

Transaction

Used to specify the
TUniTransaction object in
the context of which SQL
commands will be executed,
and queries retrieving data
will be opened.

UniDirectional (inherited from TCustomDADataSet)
Used if an application does
not need bidirectional
access to records in the
result set.

UpdateObject

Points to an update object
component which provides
update SQL statements or
update objects for flexible
data update.

UpdateRecordTypes (inherited from TMemDataSet)
Used to indicate the update
status for the current record
when cached updates are
enabled.

Reference 871

© 2024 Devart

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

UpdateTransaction

Used to specify the
TUniTransaction object in
the context of which update
commands will be executed.

Methods

Name Description

AddWhere (inherited from TCustomDADataSet)
Adds condition to the
WHERE clause of SELECT
statement in the SQL
property.

ApplyRange (inherited from TMemDataSet) Applies a range to the
dataset.

ApplyUpdates (inherited from TMemDataSet)
Overloaded. Writes
dataset's pending cached
updates to a database.

BreakExec (inherited from TCustomDADataSet) Breaks execution of the SQL
statement on the server.

CancelRange (inherited from TMemDataSet)
Removes any ranges
currently in effect for a
dataset.

CancelUpdates (inherited from TMemDataSet)
Clears all pending cached
updates from cache and
restores dataset in its prior
state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates
buffer.

CreateBlobStream (inherited from TCustomDADataSet)

Used to obtain a stream for
reading data from or writing
data to a BLOB field,
specified by the Field
parameter.

CreateProcCall

Assigns a command that
calls stored procedure
specified by name to the
SQL property.

DeferredPost (inherited from TMemDataSet) Makes permanent changes
to the database server.

DeleteWhere (inherited from TCustomDADataSet)
Removes WHERE clause
from the SQL property and
assigns the BaseSQL

Universal Data Access Components872

© 2024 Devart

property.

EditRangeEnd (inherited from TMemDataSet)
Enables changing the
ending value for an existing
range.

EditRangeStart (inherited from TMemDataSet)
Enables changing the
starting value for an existing
range.

Execute (inherited from TCustomDADataSet)
Overloaded. Executes a
SQL statement on the
server.

Executing (inherited from TCustomDADataSet)
Indicates whether SQL
statement is still being
executed.

Fetched (inherited from TCustomDADataSet)
Used to find out whether
TCustomDADataSet has
fetched all rows.

Fetching (inherited from TCustomDADataSet)
Used to learn whether
TCustomDADataSet is still
fetching rows.

FetchingAll (inherited from TCustomDADataSet)
Used to learn whether
TCustomDADataSet is
fetching all rows to the end.

FindKey (inherited from TCustomDADataSet)
Searches for a record which
contains specified field
values.

FindMacro (inherited from TCustomDADataSet) Finds a macro with the
specified name.

FindNearest (inherited from TCustomDADataSet)

Moves the cursor to a
specific record or to the first
record in the dataset that
matches or is greater than
the values specified in the
KeyValues parameter.

FindParam
Determines if parameter
with the specified name
exists in a dataset.

GetBlob (inherited from TMemDataSet)

Overloaded. Retrieves
TBlob object for a field or
current record when only its
name or the field itself is
known.

GetDataType (inherited from TCustomDADataSet)
Returns internal field types
defined in the MemData and
accompanying modules.

Reference 873

© 2024 Devart

GetFieldObject (inherited from TCustomDADataSet) Returns a multireference
shared object from field.

GetFieldPrecision (inherited from TCustomDADataSet) Retrieves the precision of a
number field.

GetFieldScale (inherited from TCustomDADataSet) Retrieves the scale of a
number field.

GetKeyFieldNames (inherited from

TCustomDADataSet)
Provides a list of available
key field names.

GetOrderBy (inherited from TCustomDADataSet)
Retrieves an ORDER BY
clause from a SQL
statement.

GotoCurrent (inherited from TCustomDADataSet)
Sets the current record in
this dataset similar to the
current record in another
dataset.

Locate (inherited from TMemDataSet)
Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

LocateEx (inherited from TMemDataSet)

Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

Lock (inherited from TCustomDADataSet) Locks the current record.

MacroByName (inherited from TCustomDADataSet) Finds a macro with the
specified name.

OpenNext
Provides second and other
result sets while executing
multiresult query.

ParamByName
Accesses parameter
information based on a
specified parameter name.

Prepare (inherited from TCustomDADataSet) Allocates, opens, and
parses cursor for a query.

RefreshRecord (inherited from TCustomDADataSet) Actualizes field values for
the current record.

RestoreSQL (inherited from TCustomDADataSet)
Restores the SQL property
modified by AddWhere and
SetOrderBy.

RestoreUpdates (inherited from TMemDataSet) Marks all records in the
cache of updates as

Universal Data Access Components874

© 2024 Devart

unapplied.

RevertRecord (inherited from TMemDataSet)
Cancels changes made to
the current record when
cached updates are
enabled.

SaveSQL (inherited from TCustomDADataSet) Saves the SQL property
value to BaseSQL.

SaveToXML (inherited from TMemDataSet)

Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

SetOrderBy (inherited from TCustomDADataSet) Builds an ORDER BY clause
of a SELECT statement.

SetRange (inherited from TMemDataSet)
Sets the starting and ending
values of a range, and
applies it.

SetRangeEnd (inherited from TMemDataSet)

Indicates that subsequent
assignments to field values
specify the end of the range
of rows to include in the
dataset.

SetRangeStart (inherited from TMemDataSet)

Indicates that subsequent
assignments to field values
specify the start of the range
of rows to include in the
dataset.

SQLSaved (inherited from TCustomDADataSet)
Determines if the SQL
property value was saved to
the BaseSQL property.

UnLock (inherited from TCustomDADataSet) Releases a record lock.

UnPrepare (inherited from TMemDataSet)
Frees the resources
allocated for a previously
prepared query on the
server and client sides.

UpdateResult (inherited from TMemDataSet)

Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are
enabled.

UpdateStatus (inherited from TMemDataSet)
Indicates the current update
status for the dataset when
cached updates are
enabled.

Reference 875

© 2024 Devart

Events

Name Description

AfterExecute (inherited from TCustomDADataSet)
Occurs after a component
has executed a query to
database.

AfterFetch (inherited from TCustomDADataSet) Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute (inherited from

TCustomDADataSet)

Occurs after executing
insert, delete, update, lock
and refresh operations.

BeforeFetch (inherited from TCustomDADataSet)
Occurs before dataset is
going to fetch block of
records from the server.

BeforeUpdateExecute (inherited from

TCustomDADataSet)

Occurs before executing
insert, delete, update, lock,
and refresh operations.

OnUpdateError (inherited from TMemDataSet)

Occurs when an exception is
generated while cached
updates are applied to a
database.

OnUpdateRecord (inherited from TMemDataSet)
Occurs when a single
update component can not
handle the updates.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.1.2 Properties

Properties of the TCustomUniDataSet class.

For a complete list of the TCustomUniDataSet class members, see the

TCustomUniDataSet Members topic.

Public

Name Description

BaseSQL (inherited from TCustomDADataSet)
Used to return SQL text
without any changes
performed by AddWhere,
SetOrderBy, and FilterSQL.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components876

© 2024 Devart

CachedUpdates (inherited from TMemDataSet)
Used to enable or disable
the use of cached updates
for a dataset.

Conditions (inherited from TCustomDADataSet) Used to add WHERE
conditions to a query

Connection (inherited from TCustomDADataSet)
Used to specify a
connection object to use to
connect to a data store.

DataTypeMap (inherited from TCustomDADataSet) Used to set data type
mapping rules

Debug (inherited from TCustomDADataSet)
Used to display the
statement that is being
executed and the values and
types of its parameters.

DetailFields (inherited from TCustomDADataSet)

Used to specify the fields
that correspond to the
foreign key fields from
MasterFields when building
master/detail relationship.

Disconnected (inherited from TCustomDADataSet)
Used to keep dataset
opened after connection is
closed.

DMLRefresh

Used to refresh record by
RETURNING clause when
insert or update is
performed.

FetchRows (inherited from TCustomDADataSet)
Used to define the number
of rows to be transferred
across the network at the
same time.

FilterSQL (inherited from TCustomDADataSet)
Used to change the WHERE
clause of SELECT
statement and reopen a
query.

FinalSQL (inherited from TCustomDADataSet)

Used to return SQL text with
all changes performed by
AddWhere, SetOrderBy,
and FilterSQL, and with
expanded macros.

IndexFieldNames (inherited from TMemDataSet)
Used to get or set the list of
fields on which the recordset
is sorted.

IsQuery (inherited from TCustomDADataSet) Used to check whether SQL
statement returns rows.

Reference 877

© 2024 Devart

KeyExclusive (inherited from TMemDataSet)
Specifies the upper and
lower boundaries for a
range.

KeyFields (inherited from TCustomDADataSet)

Used to build SQL
statements for the
SQLDelete, SQLInsert, and
SQLUpdate properties if
they were empty before
updating the database.

LastInsertId

Can be used with MySQL
and PostgreSQL servers to
get the value of the ID field
after executing INSERT
statement.

LocalConstraints (inherited from TMemDataSet)

Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet)
Used to prevent implicit
update of rows on database
server.

MacroCount (inherited from TCustomDADataSet)
Used to get the number of
macros associated with the
Macros property.

Macros (inherited from TCustomDADataSet) Makes it possible to change
SQL queries easily.

MasterFields (inherited from TCustomDADataSet)

Used to specify the names
of one or more fields that are
used as foreign keys for
dataset when establishing
detail/master relationship
between it and the dataset
specified in MasterSource.

MasterSource (inherited from TCustomDADataSet)
Used to specify the data
source component which
binds current dataset to the
master one.

Options Specifies the behaviour of a
TCustomUniDataSet object.

ParamCheck (inherited from TCustomDADataSet)

Used to specify whether
parameters for the Params
property are generated
automatically after the SQL
property was changed.

Universal Data Access Components878

© 2024 Devart

ParamCount (inherited from TCustomDADataSet)
Used to indicate how many
parameters are there in the
Params property.

Params Holds the parameters for a
query's SQL statement.

Prepared (inherited from TMemDataSet)
Determines whether a query
is prepared for execution or
not.

Ranged (inherited from TMemDataSet) Indicates whether a range is
applied to a dataset.

ReadOnly (inherited from TCustomDADataSet)
Used to prevent users from
updating, inserting, or
deleting data in the dataset.

RefreshOptions (inherited from TCustomDADataSet) Used to indicate when the
editing record is refreshed.

RowsAffected (inherited from TCustomDADataSet)
Used to indicate the number
of rows which were inserted,
updated, or deleted during
the last query operation.

SpecificOptions
Used to provide extended
settings for each data
provider.

SQL (inherited from TCustomDADataSet)
Used to provide a SQL
statement that a query
component executes when
its Open method is called.

SQLDelete (inherited from TCustomDADataSet)
Used to specify a SQL
statement that will be used
when applying a deletion to
a record.

SQLInsert (inherited from TCustomDADataSet)
Used to specify the SQL
statement that will be used
when applying an insertion
to a dataset.

SQLLock (inherited from TCustomDADataSet)
Used to specify a SQL
statement that will be used
to perform a record lock.

SQLRecCount (inherited from TCustomDADataSet)
Used to specify the SQL
statement that is used to get
the record count when
opening a dataset.

SQLRefresh (inherited from TCustomDADataSet)
Used to specify a SQL
statement that will be used
to refresh current record by

Reference 879

© 2024 Devart

calling the
TCustomDADataSet.Refres
hRecord procedure.

SQLUpdate (inherited from TCustomDADataSet)
Used to specify a SQL
statement that will be used
when applying an update to
a dataset.

Transaction

Used to specify the
TUniTransaction object in
the context of which SQL
commands will be executed,
and queries retrieving data
will be opened.

UniDirectional (inherited from TCustomDADataSet)
Used if an application does
not need bidirectional
access to records in the
result set.

UpdateObject

Points to an update object
component which provides
update SQL statements or
update objects for flexible
data update.

UpdateRecordTypes (inherited from TMemDataSet)
Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

UpdateTransaction

Used to specify the
TUniTransaction object in
the context of which update
commands will be executed.

See Also
TCustomUniDataSet Class

TCustomUniDataSet Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components880

© 2024 Devart

6.19.1.1.2.1 DMLRefresh Property

Used to refresh record by RETURNING clause when insert or update is performed.

Class

TCustomUniDataSet

Syntax

property DMLRefresh: boolean;

Remarks

Use the DMLRefresh property to refresh record by RETURNING clause when insert or update

is performed.

The default value is False.

Note: When the DMLRefresh property is set to True, the value of

TCustomDADataSet.RefreshOptions is ignored to avoid refetching field values from the

server.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.1.2.2 LastInsertId Property

Can be used with MySQL and PostgreSQL servers to get the value of the ID field after

executing INSERT statement.

Class

TCustomUniDataSet

Syntax

property LastInsertId: int64;

Remarks

The LastInsertId property can be used with MySQL and PostgreSQL servers to get the value

of the ID field after executing INSERT statement.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 881

© 2024 Devart

For MySQL LastInsertId returns the ID generated for an AUTO_INCREMENT column by the

previous query. Use this property after you have performed an INSERT query into a table that

contains an AUTO_INCREMENT field.

For PostgreSQL LastInsertId returns the OID value generated for an OID column in a table

with OIDs by the previous query.

If the query does not perform insertion into a table that contains field of the types specified

above, the value of LastInsertId won't be defined.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.1.2.3 Options Property

Specifies the behaviour of a TCustomUniDataSet object.

Class

TCustomUniDataSet

Syntax

property Options: TUniDataSetOptions;

Remarks

The TUniDataSetOptions class publishes properties defined in TDADataSetOptions. Set the

properties of Options to specify the behaviour of a TCustomUniDataSet object. Their

descriptions can be found in the TUniDataSetOptions topic.

See Also
TCustomDADataSet.Options

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.1.2.4 Params Property

Holds the parameters for a query's SQL statement.

Class

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components882

© 2024 Devart

TCustomUniDataSet

Syntax

property Params: TUniParams stored False;

Remarks

Contains the parameters for a query's SQL statement.

Access Params at runtime to view and set parameter names, values, and data types

dynamically (at design time use the Parameters editor to set parameter information). Params

is a zero-based array of parameter records. Index specifies the array element to access.

An easier way to set and retrieve parameter values when the name of each parameter is

known is to call ParamByName.

See Also
TUniParam

ParamByName

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.1.2.5 Specif icOptions Property

Used to provide extended settings for each data provider.

Class

TCustomUniDataSet

Syntax

property SpecificOptions: TSpecificOptionsList;

Remarks

Use the SpecificOptions property to provide extended settings for each data provider.

SpecificOptions can be setup both at design time and run time.

At design time call the component editor by double click on it, and select the Options tab in

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 883

© 2024 Devart

the editor. Calling the SpecificOptions editor from the Object Inspector will open the

component editor with Options tab active. Type or select the provider name, and change

values of required properties. Then you can either close the editor, or select another provider

name. Settings for all providers will be saved.

SpecificOptions can be setup at the same time for all providers that supposed to be used.

All options are applied right before opening or executing. If an option name is not recognized,

an exception is raised and the command is not executed.

For example, when you set the SequenceMode option like it is shown in the second example,

you can execute the script with the Oracle provider, but attempt to use it with other providers

will fail.

You can learn more about server specific options of A:OraProv_article, A:SQLProv_article,

A:MySQLProv_article, A:IBProv_article, A:PgSQLProv_article in the corresponding articles.

Example

You can also setup specific options at run time. Either of two formats can be used:

1. Using the provider name in an option name;

2. Not using the provider name in an option name;

In the second case options will be applied to the current provider, namely to the provider

specified in the TUniConnection.ProviderName property of the assigned connection.

Example 1.
UniQuery1.SpecificOptions.Add('Oracle.ScrollableCursor=True')
UniQuery1.SpecificOptions.Add('InterBase.FieldsAsString=True')
Example 2.
UniQuery1.SpecificOptions.Add('SequenceMode=smInsert')

See Also
TUniConnection.ProviderName

Using Oracle data access provider with UniDAC in Delphi

Using SQL Server data access provider with UniDAC in Delphi

Using MySQL data access provider with UniDAC in Delphi

Using InterBase data access provider with UniDAC in Delphi

Using PostgreSQL data access provider with UniDAC in Delphi

Universal Data Access Components884

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.1.2.6 Transaction Property

Used to specify the TUniTransaction object in the context of which SQL commands will be

executed, and queries retrieving data will be opened.

Class

TCustomUniDataSet

Syntax

property Transaction: TUniTransaction stored IsTransactionStored;

Remarks

Use the Transaction property to specify the TUniTransaction object in the context of which

SQL commands will be executed, and queries retrieving data will be opened. If this property is

not specified, the default transaction associated with linked TUniConnection will be used. This

transaction will work in AutoCommit mode.

See Also
TUniTransaction

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.1.2.7 UpdateObject Property

Points to an update object component which provides update SQL statements or update

objects for flexible data update.

Class

TCustomUniDataSet

Syntax

property UpdateObject: TUniUpdateSQL;

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 885

© 2024 Devart

Remarks

The UpdateObject property points to an update object component which provides update SQL

statements or update objects for flexible data update.

See Also
TUniUpdateSQL

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.1.2.8 UpdateTransaction Property

Used to specify the TUniTransaction object in the context of which update commands will be

executed.

Class

TCustomUniDataSet

Syntax

property UpdateTransaction: TUniTransaction;

Remarks

Use the UpdateTransaction property to specify the TUniTransaction object in the context of

which update commands will be executed. Update commands are commands that are

executed automatically, when data is edited in the dataset with Insert/Post, Edit/Post, or with

other similar methods.

If this property is not specified, the transaction object specified in the Transaction property, or

the default transaction associates with linked TUniConnection will be used. This transaction

will wok in AutoCommit mode.

See Also
Transaction

TUniTransaction

© 1997-2024
Devart. All Rights

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components886

© 2024 Devart

Reserved.

6.19.1.1.3 Methods

Methods of the TCustomUniDataSet class.

For a complete list of the TCustomUniDataSet class members, see the

TCustomUniDataSet Members topic.

Public

Name Description

AddWhere (inherited from TCustomDADataSet)
Adds condition to the
WHERE clause of SELECT
statement in the SQL
property.

ApplyRange (inherited from TMemDataSet) Applies a range to the
dataset.

ApplyUpdates (inherited from TMemDataSet)
Overloaded. Writes
dataset's pending cached
updates to a database.

BreakExec (inherited from TCustomDADataSet) Breaks execution of the SQL
statement on the server.

CancelRange (inherited from TMemDataSet)
Removes any ranges
currently in effect for a
dataset.

CancelUpdates (inherited from TMemDataSet)
Clears all pending cached
updates from cache and
restores dataset in its prior
state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates
buffer.

CreateBlobStream (inherited from TCustomDADataSet)

Used to obtain a stream for
reading data from or writing
data to a BLOB field,
specified by the Field
parameter.

CreateProcCall

Assigns a command that
calls stored procedure
specified by name to the
SQL property.

DeferredPost (inherited from TMemDataSet) Makes permanent changes
to the database server.

DeleteWhere (inherited from TCustomDADataSet) Removes WHERE clause
from the SQL property and

Reference 887

© 2024 Devart

assigns the BaseSQL
property.

EditRangeEnd (inherited from TMemDataSet)
Enables changing the
ending value for an existing
range.

EditRangeStart (inherited from TMemDataSet)
Enables changing the
starting value for an existing
range.

Execute (inherited from TCustomDADataSet)
Overloaded. Executes a
SQL statement on the
server.

Executing (inherited from TCustomDADataSet)
Indicates whether SQL
statement is still being
executed.

Fetched (inherited from TCustomDADataSet)
Used to find out whether
TCustomDADataSet has
fetched all rows.

Fetching (inherited from TCustomDADataSet)
Used to learn whether
TCustomDADataSet is still
fetching rows.

FetchingAll (inherited from TCustomDADataSet)
Used to learn whether
TCustomDADataSet is
fetching all rows to the end.

FindKey (inherited from TCustomDADataSet)
Searches for a record which
contains specified field
values.

FindMacro (inherited from TCustomDADataSet) Finds a macro with the
specified name.

FindNearest (inherited from TCustomDADataSet)

Moves the cursor to a
specific record or to the first
record in the dataset that
matches or is greater than
the values specified in the
KeyValues parameter.

FindParam
Determines if parameter
with the specified name
exists in a dataset.

GetBlob (inherited from TMemDataSet)

Overloaded. Retrieves
TBlob object for a field or
current record when only its
name or the field itself is
known.

GetDataType (inherited from TCustomDADataSet) Returns internal field types
defined in the MemData and

Universal Data Access Components888

© 2024 Devart

accompanying modules.

GetFieldObject (inherited from TCustomDADataSet) Returns a multireference
shared object from field.

GetFieldPrecision (inherited from TCustomDADataSet) Retrieves the precision of a
number field.

GetFieldScale (inherited from TCustomDADataSet) Retrieves the scale of a
number field.

GetKeyFieldNames (inherited from

TCustomDADataSet)
Provides a list of available
key field names.

GetOrderBy (inherited from TCustomDADataSet)
Retrieves an ORDER BY
clause from a SQL
statement.

GotoCurrent (inherited from TCustomDADataSet)
Sets the current record in
this dataset similar to the
current record in another
dataset.

Locate (inherited from TMemDataSet)
Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

LocateEx (inherited from TMemDataSet)

Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

Lock (inherited from TCustomDADataSet) Locks the current record.

MacroByName (inherited from TCustomDADataSet) Finds a macro with the
specified name.

OpenNext
Provides second and other
result sets while executing
multiresult query.

ParamByName
Accesses parameter
information based on a
specified parameter name.

Prepare (inherited from TCustomDADataSet) Allocates, opens, and
parses cursor for a query.

RefreshRecord (inherited from TCustomDADataSet) Actualizes field values for
the current record.

RestoreSQL (inherited from TCustomDADataSet)
Restores the SQL property
modified by AddWhere and
SetOrderBy.

Reference 889

© 2024 Devart

RestoreUpdates (inherited from TMemDataSet)
Marks all records in the
cache of updates as
unapplied.

RevertRecord (inherited from TMemDataSet)
Cancels changes made to
the current record when
cached updates are
enabled.

SaveSQL (inherited from TCustomDADataSet) Saves the SQL property
value to BaseSQL.

SaveToXML (inherited from TMemDataSet)

Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

SetOrderBy (inherited from TCustomDADataSet) Builds an ORDER BY clause
of a SELECT statement.

SetRange (inherited from TMemDataSet)
Sets the starting and ending
values of a range, and
applies it.

SetRangeEnd (inherited from TMemDataSet)

Indicates that subsequent
assignments to field values
specify the end of the range
of rows to include in the
dataset.

SetRangeStart (inherited from TMemDataSet)

Indicates that subsequent
assignments to field values
specify the start of the range
of rows to include in the
dataset.

SQLSaved (inherited from TCustomDADataSet)
Determines if the SQL
property value was saved to
the BaseSQL property.

UnLock (inherited from TCustomDADataSet) Releases a record lock.

UnPrepare (inherited from TMemDataSet)
Frees the resources
allocated for a previously
prepared query on the
server and client sides.

UpdateResult (inherited from TMemDataSet)

Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are
enabled.

UpdateStatus (inherited from TMemDataSet) Indicates the current update
status for the dataset when

Universal Data Access Components890

© 2024 Devart

cached updates are
enabled.

See Also
TCustomUniDataSet Class

TCustomUniDataSet Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.1.3.1 CreateProcCall Method

Assigns a command that calls stored procedure specified by name to the SQL property.

Class

TCustomUniDataSet

Syntax

procedure CreateProcCall(const Name: string);

Parameters

Name

Holds the stored procedure name.

Remarks

Call the CreateProcCall method to assign a command that calls stored procedure specified

by Name to the SQL property. The Overload parameter must contain the number of

overloaded procedures. Retrieves the information about parameters of the procedure from

server. After calling CreateProcCall you can execute stored procedure by the Execute

method.

See Also
TCustomDADataSet.Execute

TCustomDAConnection.ExecProc

TUniStoredProc

© 1997-2024 Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 891

© 2024 Devart

Devart. All Rights
Reserved.

6.19.1.1.3.2 FindParam Method

Determines if parameter with the specified name exists in a dataset.

Class

TCustomUniDataSet

Syntax

function FindParam(const Value: string): TUniParam;

Parameters

Value

Holds the name of the param for which to search.

Return Value

the TUniParam object for the specified Name.

Remarks

Call the FindParam method to determine if parameter with the specified name exists in a

dataset. Name is the name of the parameter for which to search. If FindParam finds a

parameter with a matching name, it returns the TUniParam object for the specified Name.

Otherwise it returns nil.

See Also
Params

ParamByName

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.1.3.3 OpenNext Method

Provides second and other result sets while executing multiresult query.

Class

TCustomUniDataSet

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components892

© 2024 Devart

Syntax

function OpenNext: boolean;

Return Value

True, if DataSet opens. If there are no record sets to be represented, it will return False and
the current record set will be closed.

Remarks

Call the OpenNext method to get second and other result sets while executing multiresult

query. If DataSet opens, it returns True. If there are no record sets to be represented, it will

return False and the current record set will be closed.

Example

Here is a small piece of code that demonstrates the approach of working with multiple

datasets returned by a multi-statement query:

 UniQuery.SQL.Clear;
 UniQuery.SQL.Add('SELECT * FROM Table1;');
 UniQuery.SQL.Add('SELECT * FROM Table2;');
 UniQuery.SQL.Add('SELECT * FROM Table3;');
 UniQuery.SQL.Add('SELECT * FROM Table4;');
 UniQuery.SQL.Add('SELECT * FROM Table5;');
 UniQuery.FetchAll := False;
 UniQuery.Open;
 repeat
 // < do something >
 until not UniQuery.OpenNext;

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.1.3.4 ParamByName Method

Accesses parameter information based on a specified parameter name.

Class

TCustomUniDataSet

Syntax

function ParamByName(const Value: string): TUniParam;

Parameters

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 893

© 2024 Devart

Value

Holds the name of the parameter for which to retrieve information.

Return Value

a TUniParam object.

Remarks

Call the ParamByName method to set or use parameter information for a specific parameter

based on its name. Name is the name of the parameter for which to retrieve information.

ParamByName is used to set an parameter's value at runtime and returns TUniParam object.

Example

For example, the following statement retrieves the current value of a parameter called

"Contact" into an edit box:

Edit1.Text := Query1.ParamsByName('Contact').AsString;

See Also
TUniParam

Params

FindParam

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.2 TCustomUniTable Class

A base class for retrieving and updating data in a single table without writing SQL statements.

For a list of all members of this type, see TCustomUniTable members.

Unit

Uni

Syntax

TCustomUniTable = class(TCustomUniDataSet);

Remarks

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components894

© 2024 Devart

TCustomUniTable is a base component that defines functionality for classes derived from it.

Applications should never use TCustomUniTable objects directly. Instead, they should use

TUniTable, which inherits all table-related properties and methods of TCustomUniTable.

Inheritance Hierarchy

TMemDataSet

 TCustomDADataSet

 TCustomUniDataSet

 TCustomUniTable

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.2.1 Members

TCustomUniTable class overview.

Properties

Name Description

BaseSQL (inherited from TCustomDADataSet)
Used to return SQL text
without any changes
performed by AddWhere,
SetOrderBy, and FilterSQL.

CachedUpdates (inherited from TMemDataSet)
Used to enable or disable
the use of cached updates
for a dataset.

Conditions (inherited from TCustomDADataSet) Used to add WHERE
conditions to a query

Connection (inherited from TCustomDADataSet)
Used to specify a
connection object to use to
connect to a data store.

DataTypeMap (inherited from TCustomDADataSet) Used to set data type
mapping rules

Debug (inherited from TCustomDADataSet)
Used to display the
statement that is being
executed and the values and
types of its parameters.

DetailFields (inherited from TCustomDADataSet)
Used to specify the fields
that correspond to the
foreign key fields from

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 895

© 2024 Devart

MasterFields when building
master/detail relationship.

Disconnected (inherited from TCustomDADataSet)
Used to keep dataset
opened after connection is
closed.

DMLRefresh (inherited from TCustomUniDataSet)
Used to refresh record by
RETURNING clause when
insert or update is
performed.

FetchRows (inherited from TCustomDADataSet)
Used to define the number
of rows to be transferred
across the network at the
same time.

FilterSQL (inherited from TCustomDADataSet)
Used to change the WHERE
clause of SELECT
statement and reopen a
query.

FinalSQL (inherited from TCustomDADataSet)

Used to return SQL text with
all changes performed by
AddWhere, SetOrderBy,
and FilterSQL, and with
expanded macros.

IndexFieldNames (inherited from TMemDataSet)
Used to get or set the list of
fields on which the recordset
is sorted.

IsQuery (inherited from TCustomDADataSet) Used to check whether SQL
statement returns rows.

KeyExclusive (inherited from TMemDataSet)
Specifies the upper and
lower boundaries for a
range.

KeyFields (inherited from TCustomDADataSet)

Used to build SQL
statements for the
SQLDelete, SQLInsert, and
SQLUpdate properties if
they were empty before
updating the database.

LastInsertId (inherited from TCustomUniDataSet)

Can be used with MySQL
and PostgreSQL servers to
get the value of the ID field
after executing INSERT
statement.

LocalConstraints (inherited from TMemDataSet)

Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of

Universal Data Access Components896

© 2024 Devart

opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet)
Used to prevent implicit
update of rows on database
server.

MacroCount (inherited from TCustomDADataSet)
Used to get the number of
macros associated with the
Macros property.

Macros (inherited from TCustomDADataSet) Makes it possible to change
SQL queries easily.

MasterFields (inherited from TCustomDADataSet)

Used to specify the names
of one or more fields that are
used as foreign keys for
dataset when establishing
detail/master relationship
between it and the dataset
specified in MasterSource.

MasterSource (inherited from TCustomDADataSet)
Used to specify the data
source component which
binds current dataset to the
master one.

Options (inherited from TCustomUniDataSet) Specifies the behaviour of a
TCustomUniDataSet object.

ParamCheck (inherited from TCustomDADataSet)

Used to specify whether
parameters for the Params
property are generated
automatically after the SQL
property was changed.

ParamCount (inherited from TCustomDADataSet)
Used to indicate how many
parameters are there in the
Params property.

Params (inherited from TCustomUniDataSet) Holds the parameters for a
query's SQL statement.

Prepared (inherited from TMemDataSet)
Determines whether a query
is prepared for execution or
not.

Ranged (inherited from TMemDataSet) Indicates whether a range is
applied to a dataset.

ReadOnly (inherited from TCustomDADataSet)
Used to prevent users from
updating, inserting, or
deleting data in the dataset.

RefreshOptions (inherited from TCustomDADataSet) Used to indicate when the
editing record is refreshed.

RowsAffected (inherited from TCustomDADataSet) Used to indicate the number
of rows which were inserted,

Reference 897

© 2024 Devart

updated, or deleted during
the last query operation.

SpecificOptions (inherited from TCustomUniDataSet)
Used to provide extended
settings for each data
provider.

SQL (inherited from TCustomDADataSet)
Used to provide a SQL
statement that a query
component executes when
its Open method is called.

SQLDelete (inherited from TCustomDADataSet)
Used to specify a SQL
statement that will be used
when applying a deletion to
a record.

SQLInsert (inherited from TCustomDADataSet)
Used to specify the SQL
statement that will be used
when applying an insertion
to a dataset.

SQLLock (inherited from TCustomDADataSet)
Used to specify a SQL
statement that will be used
to perform a record lock.

SQLRecCount (inherited from TCustomDADataSet)
Used to specify the SQL
statement that is used to get
the record count when
opening a dataset.

SQLRefresh (inherited from TCustomDADataSet)

Used to specify a SQL
statement that will be used
to refresh current record by
calling the
TCustomDADataSet.Refres
hRecord procedure.

SQLUpdate (inherited from TCustomDADataSet)
Used to specify a SQL
statement that will be used
when applying an update to
a dataset.

Transaction (inherited from TCustomUniDataSet)

Used to specify the
TUniTransaction object in
the context of which SQL
commands will be executed,
and queries retrieving data
will be opened.

UniDirectional (inherited from TCustomDADataSet)
Used if an application does
not need bidirectional
access to records in the
result set.

Universal Data Access Components898

© 2024 Devart

UpdateObject (inherited from TCustomUniDataSet)

Points to an update object
component which provides
update SQL statements or
update objects for flexible
data update.

UpdateRecordTypes (inherited from TMemDataSet)
Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

UpdateTransaction (inherited from

TCustomUniDataSet)

Used to specify the
TUniTransaction object in
the context of which update
commands will be executed.

Methods

Name Description

AddWhere (inherited from TCustomDADataSet)
Adds condition to the
WHERE clause of SELECT
statement in the SQL
property.

ApplyRange (inherited from TMemDataSet) Applies a range to the
dataset.

ApplyUpdates (inherited from TMemDataSet)
Overloaded. Writes
dataset's pending cached
updates to a database.

BreakExec (inherited from TCustomDADataSet) Breaks execution of the SQL
statement on the server.

CancelRange (inherited from TMemDataSet)
Removes any ranges
currently in effect for a
dataset.

CancelUpdates (inherited from TMemDataSet)
Clears all pending cached
updates from cache and
restores dataset in its prior
state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates
buffer.

CreateBlobStream (inherited from TCustomDADataSet)

Used to obtain a stream for
reading data from or writing
data to a BLOB field,
specified by the Field
parameter.

Reference 899

© 2024 Devart

CreateProcCall (inherited from TCustomUniDataSet)
Assigns a command that
calls stored procedure
specified by name to the
SQL property.

DeferredPost (inherited from TMemDataSet) Makes permanent changes
to the database server.

DeleteWhere (inherited from TCustomDADataSet)
Removes WHERE clause
from the SQL property and
assigns the BaseSQL
property.

EditRangeEnd (inherited from TMemDataSet)
Enables changing the
ending value for an existing
range.

EditRangeStart (inherited from TMemDataSet)
Enables changing the
starting value for an existing
range.

Execute (inherited from TCustomDADataSet)
Overloaded. Executes a
SQL statement on the
server.

Executing (inherited from TCustomDADataSet)
Indicates whether SQL
statement is still being
executed.

Fetched (inherited from TCustomDADataSet)
Used to find out whether
TCustomDADataSet has
fetched all rows.

Fetching (inherited from TCustomDADataSet)
Used to learn whether
TCustomDADataSet is still
fetching rows.

FetchingAll (inherited from TCustomDADataSet)
Used to learn whether
TCustomDADataSet is
fetching all rows to the end.

FindKey (inherited from TCustomDADataSet)
Searches for a record which
contains specified field
values.

FindMacro (inherited from TCustomDADataSet) Finds a macro with the
specified name.

FindNearest (inherited from TCustomDADataSet)

Moves the cursor to a
specific record or to the first
record in the dataset that
matches or is greater than
the values specified in the
KeyValues parameter.

FindParam (inherited from TCustomUniDataSet) Determines if parameter
with the specified name

Universal Data Access Components900

© 2024 Devart

exists in a dataset.

GetBlob (inherited from TMemDataSet)

Overloaded. Retrieves
TBlob object for a field or
current record when only its
name or the field itself is
known.

GetDataType (inherited from TCustomDADataSet)
Returns internal field types
defined in the MemData and
accompanying modules.

GetFieldObject (inherited from TCustomDADataSet) Returns a multireference
shared object from field.

GetFieldPrecision (inherited from TCustomDADataSet) Retrieves the precision of a
number field.

GetFieldScale (inherited from TCustomDADataSet) Retrieves the scale of a
number field.

GetKeyFieldNames (inherited from

TCustomDADataSet)
Provides a list of available
key field names.

GetOrderBy (inherited from TCustomDADataSet)
Retrieves an ORDER BY
clause from a SQL
statement.

GotoCurrent (inherited from TCustomDADataSet)
Sets the current record in
this dataset similar to the
current record in another
dataset.

Locate (inherited from TMemDataSet)
Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

LocateEx (inherited from TMemDataSet)

Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

Lock (inherited from TCustomDADataSet) Locks the current record.

MacroByName (inherited from TCustomDADataSet) Finds a macro with the
specified name.

OpenNext (inherited from TCustomUniDataSet)
Provides second and other
result sets while executing
multiresult query.

ParamByName (inherited from TCustomUniDataSet)
Accesses parameter
information based on a
specified parameter name.

Reference 901

© 2024 Devart

Prepare (inherited from TCustomDADataSet) Allocates, opens, and
parses cursor for a query.

PrepareSQL
Used to determine
KeyFields and build query
for TUniTable.

RefreshRecord (inherited from TCustomDADataSet) Actualizes field values for
the current record.

RestoreSQL (inherited from TCustomDADataSet)
Restores the SQL property
modified by AddWhere and
SetOrderBy.

RestoreUpdates (inherited from TMemDataSet)
Marks all records in the
cache of updates as
unapplied.

RevertRecord (inherited from TMemDataSet)
Cancels changes made to
the current record when
cached updates are
enabled.

SaveSQL (inherited from TCustomDADataSet) Saves the SQL property
value to BaseSQL.

SaveToXML (inherited from TMemDataSet)

Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

SetOrderBy (inherited from TCustomDADataSet) Builds an ORDER BY clause
of a SELECT statement.

SetRange (inherited from TMemDataSet)
Sets the starting and ending
values of a range, and
applies it.

SetRangeEnd (inherited from TMemDataSet)

Indicates that subsequent
assignments to field values
specify the end of the range
of rows to include in the
dataset.

SetRangeStart (inherited from TMemDataSet)

Indicates that subsequent
assignments to field values
specify the start of the range
of rows to include in the
dataset.

SQLSaved (inherited from TCustomDADataSet)
Determines if the SQL
property value was saved to
the BaseSQL property.

UnLock (inherited from TCustomDADataSet) Releases a record lock.

Universal Data Access Components902

© 2024 Devart

UnPrepare (inherited from TMemDataSet)
Frees the resources
allocated for a previously
prepared query on the
server and client sides.

UpdateResult (inherited from TMemDataSet)

Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are
enabled.

UpdateStatus (inherited from TMemDataSet)
Indicates the current update
status for the dataset when
cached updates are
enabled.

Events

Name Description

AfterExecute (inherited from TCustomDADataSet)
Occurs after a component
has executed a query to
database.

AfterFetch (inherited from TCustomDADataSet) Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute (inherited from

TCustomDADataSet)

Occurs after executing
insert, delete, update, lock
and refresh operations.

BeforeFetch (inherited from TCustomDADataSet)
Occurs before dataset is
going to fetch block of
records from the server.

BeforeUpdateExecute (inherited from

TCustomDADataSet)

Occurs before executing
insert, delete, update, lock,
and refresh operations.

OnUpdateError (inherited from TMemDataSet)

Occurs when an exception is
generated while cached
updates are applied to a
database.

OnUpdateRecord (inherited from TMemDataSet)
Occurs when a single
update component can not
handle the updates.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 903

© 2024 Devart

6.19.1.2.2 Methods

Methods of the TCustomUniTable class.

For a complete list of the TCustomUniTable class members, see the TCustomUniTable

Members topic.

Public

Name Description

AddWhere (inherited from TCustomDADataSet)
Adds condition to the
WHERE clause of SELECT
statement in the SQL
property.

ApplyRange (inherited from TMemDataSet) Applies a range to the
dataset.

ApplyUpdates (inherited from TMemDataSet)
Overloaded. Writes
dataset's pending cached
updates to a database.

BreakExec (inherited from TCustomDADataSet) Breaks execution of the SQL
statement on the server.

CancelRange (inherited from TMemDataSet)
Removes any ranges
currently in effect for a
dataset.

CancelUpdates (inherited from TMemDataSet)
Clears all pending cached
updates from cache and
restores dataset in its prior
state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates
buffer.

CreateBlobStream (inherited from TCustomDADataSet)

Used to obtain a stream for
reading data from or writing
data to a BLOB field,
specified by the Field
parameter.

CreateProcCall (inherited from TCustomUniDataSet)
Assigns a command that
calls stored procedure
specified by name to the
SQL property.

DeferredPost (inherited from TMemDataSet) Makes permanent changes
to the database server.

DeleteWhere (inherited from TCustomDADataSet)
Removes WHERE clause
from the SQL property and
assigns the BaseSQL

Universal Data Access Components904

© 2024 Devart

property.

EditRangeEnd (inherited from TMemDataSet)
Enables changing the
ending value for an existing
range.

EditRangeStart (inherited from TMemDataSet)
Enables changing the
starting value for an existing
range.

Execute (inherited from TCustomDADataSet)
Overloaded. Executes a
SQL statement on the
server.

Executing (inherited from TCustomDADataSet)
Indicates whether SQL
statement is still being
executed.

Fetched (inherited from TCustomDADataSet)
Used to find out whether
TCustomDADataSet has
fetched all rows.

Fetching (inherited from TCustomDADataSet)
Used to learn whether
TCustomDADataSet is still
fetching rows.

FetchingAll (inherited from TCustomDADataSet)
Used to learn whether
TCustomDADataSet is
fetching all rows to the end.

FindKey (inherited from TCustomDADataSet)
Searches for a record which
contains specified field
values.

FindMacro (inherited from TCustomDADataSet) Finds a macro with the
specified name.

FindNearest (inherited from TCustomDADataSet)

Moves the cursor to a
specific record or to the first
record in the dataset that
matches or is greater than
the values specified in the
KeyValues parameter.

FindParam (inherited from TCustomUniDataSet)
Determines if parameter
with the specified name
exists in a dataset.

GetBlob (inherited from TMemDataSet)

Overloaded. Retrieves
TBlob object for a field or
current record when only its
name or the field itself is
known.

GetDataType (inherited from TCustomDADataSet)
Returns internal field types
defined in the MemData and
accompanying modules.

Reference 905

© 2024 Devart

GetFieldObject (inherited from TCustomDADataSet) Returns a multireference
shared object from field.

GetFieldPrecision (inherited from TCustomDADataSet) Retrieves the precision of a
number field.

GetFieldScale (inherited from TCustomDADataSet) Retrieves the scale of a
number field.

GetKeyFieldNames (inherited from

TCustomDADataSet)
Provides a list of available
key field names.

GetOrderBy (inherited from TCustomDADataSet)
Retrieves an ORDER BY
clause from a SQL
statement.

GotoCurrent (inherited from TCustomDADataSet)
Sets the current record in
this dataset similar to the
current record in another
dataset.

Locate (inherited from TMemDataSet)
Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

LocateEx (inherited from TMemDataSet)

Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

Lock (inherited from TCustomDADataSet) Locks the current record.

MacroByName (inherited from TCustomDADataSet) Finds a macro with the
specified name.

OpenNext (inherited from TCustomUniDataSet)
Provides second and other
result sets while executing
multiresult query.

ParamByName (inherited from TCustomUniDataSet)
Accesses parameter
information based on a
specified parameter name.

Prepare (inherited from TCustomDADataSet) Allocates, opens, and
parses cursor for a query.

PrepareSQL
Used to determine
KeyFields and build query
for TUniTable.

RefreshRecord (inherited from TCustomDADataSet) Actualizes field values for
the current record.

RestoreSQL (inherited from TCustomDADataSet) Restores the SQL property
modified by AddWhere and

Universal Data Access Components906

© 2024 Devart

SetOrderBy.

RestoreUpdates (inherited from TMemDataSet)
Marks all records in the
cache of updates as
unapplied.

RevertRecord (inherited from TMemDataSet)
Cancels changes made to
the current record when
cached updates are
enabled.

SaveSQL (inherited from TCustomDADataSet) Saves the SQL property
value to BaseSQL.

SaveToXML (inherited from TMemDataSet)

Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

SetOrderBy (inherited from TCustomDADataSet) Builds an ORDER BY clause
of a SELECT statement.

SetRange (inherited from TMemDataSet)
Sets the starting and ending
values of a range, and
applies it.

SetRangeEnd (inherited from TMemDataSet)

Indicates that subsequent
assignments to field values
specify the end of the range
of rows to include in the
dataset.

SetRangeStart (inherited from TMemDataSet)

Indicates that subsequent
assignments to field values
specify the start of the range
of rows to include in the
dataset.

SQLSaved (inherited from TCustomDADataSet)
Determines if the SQL
property value was saved to
the BaseSQL property.

UnLock (inherited from TCustomDADataSet) Releases a record lock.

UnPrepare (inherited from TMemDataSet)
Frees the resources
allocated for a previously
prepared query on the
server and client sides.

UpdateResult (inherited from TMemDataSet)

Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are
enabled.

Reference 907

© 2024 Devart

UpdateStatus (inherited from TMemDataSet)
Indicates the current update
status for the dataset when
cached updates are
enabled.

See Also
TCustomUniTable Class

TCustomUniTable Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.2.2.1 PrepareSQL Method

Used to determine KeyFields and build query for TUniTable.

Class

TCustomUniTable

Syntax

procedure PrepareSQL;

Remarks

Use the PrepareSQL property to determine KeyFields and build a query for TUniTable.

PrepareSQL is called implicitly when TUniTable is being opened.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.3 TUniBlob Class

A class holding value of the BLOB fields and parameters.

For a list of all members of this type, see TUniBlob members.

Unit

Uni

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components908

© 2024 Devart

Syntax

TUniBlob = class(TCompressedBlob);

Remarks

TUniBlob is a descendant of TCompressedBlob class. It holds value of the BLOB fields and

parameters.

Note: You can affect performance of reading/writing BLOBs by changing

MemData.DefaultPieceSize variable to different value. DefaultPieceSize defines size of data

portion transferred through network at the single call.

Inheritance Hierarchy

TSharedObject

 TBlob

 TCompressedBlob

 TUniBlob

See Also
TCompressedBlob

TMemDataSet.GetBlob

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.3.1 Members

TUniBlob class overview.

Properties

Name Description

AsString (inherited from TBlob) Used to manipulate BLOB
value as string.

AsWideString (inherited from TBlob) Used to manipulate BLOB
value as Unicode string.

Compressed (inherited from TCompressedBlob) Used to indicate if the Blob
is compressed.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 909

© 2024 Devart

CompressedSize (inherited from TCompressedBlob)
Used to indicate
compressed size of the Blob
data.

IsUnicode (inherited from TBlob)
Gives choice of making
TBlob store and process
data in Unicode format or
not.

RefCount (inherited from TSharedObject)
Used to return the count of
reference to a
TSharedObject object.

Size (inherited from TBlob) Used to learn the size of the
TBlob value in bytes.

Methods

Name Description

AddRef (inherited from TSharedObject)

Increments the reference
count for the number of
references dependent on the
TSharedObject object.

Assign (inherited from TBlob) Sets BLOB value from
another TBlob object.

Clear (inherited from TBlob) Deletes the current value in
TBlob object.

LoadFromFile (inherited from TBlob) Loads the contents of a file
into a TBlob object.

LoadFromStream (inherited from TBlob) Copies the contents of a
stream into the TBlob object.

Read (inherited from TBlob)
Acquires a raw sequence of
bytes from the data stored in
TBlob.

Release (inherited from TSharedObject) Decrements the reference
count.

SaveToFile (inherited from TBlob) Saves the contents of the
TBlob object to a file.

SaveToStream (inherited from TBlob) Copies the contents of a
TBlob object to a stream.

Truncate (inherited from TBlob) Sets new TBlob size and
discards all data over it.

Write (inherited from TBlob) Stores a raw sequence of
bytes into a TBlob object.

© 1997-2024
Devart. All Rights

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components910

© 2024 Devart

Reserved.

6.19.1.4 TUniConnection Class

A component for setting up and controlling connection to such database servers as Oracle,

SQL Server, MySQL, InterBase, Firebird, and PostgreSQL.

For a list of all members of this type, see TUniConnection members.

Unit

Uni

Syntax

TUniConnection = class(TCustomDAConnection);

Remarks

TUniConnection component is used to maintain connection to databases such as Oracle,

SQL Server, MySQL, InterBase, Firebird, and PostgreSQL. Before connect you should

provide connection settings such as ProviderName, Server, Username, Password, Port, and

Database. Some extended connection options can be specified with the

TUniConnection.SpecificOptions. Set of properties that have to be assigned vary depending

on used provider (the ProviderName property). To establish a database connection, it is

necessary to call the TCustomDAConnection.Connect method or set the Connect property to

True. There are also many properties at the connection level that affect default behavior of the

queries executed within this session. Furthermore, you can control transactions using

methods of this class.

All components which are dedicated to perform data access, such as TUniQuery, TUniSQL,

TUniScript, must have their Connection property assigned with one of TUniConnection

instances.

Inheritance Hierarchy

TCustomDAConnection

 TUniConnection

See Also
TCustomDADataSet.Connection

Reference 911

© 2024 Devart

TUniSQL.Connection

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.4.1 Members

TUniConnection class overview.

Properties

Name Description

AutoCommit

Used to permit or prevent
permanent updates,
insertions, and deletions of
data against the database
server.

ConnectDialog (inherited from TCustomDAConnection)
Allows to link a
TCustomConnectDialog
component.

ConnectString (inherited from TCustomDAConnection)
Used to specify the
connection information, such
as: UserName, Password,
Server, etc.

ConvertEOL (inherited from TCustomDAConnection)
Allows customizing line
breaks in string fields and
parameters.

Database

Used to specify the
database name that is a
default source of data for
SQL queries once a
connection is established.

DefaultTransaction
Used to access default
database connection
transaction.

InTransaction (inherited from TCustomDAConnection) Indicates whether the
transaction is active.

LoginPrompt (inherited from TCustomDAConnection)
Specifies whether a login
dialog appears immediately
before opening a new
connection.

Macros
Holds a collection of macros
that can be used in Unified
SQL statements.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components912

© 2024 Devart

Options (inherited from TCustomDAConnection) Specifies the connection
behavior.

Password (inherited from TCustomDAConnection) Serves to supply a
password for login.

Pooling (inherited from TCustomDAConnection) Enables or disables using
connection pool.

PoolingOptions (inherited from

TCustomDAConnection)
Specifies the behaviour of
connection pool.

Port
Used to specify the port
number for TCP/IP
connection.

ProviderName Used to switch the current
data access provider.

Server (inherited from TCustomDAConnection) Serves to supply the server
name for login.

SpecificOptions
Used to provide extended
settings for each data
provider.

Username (inherited from TCustomDAConnection) Used to supply a user name
for login.

Methods

Name Description

ActiveMacroValueByName
Returns the value of the
specified macro for the
current provider.

ApplyUpdates (inherited from TCustomDAConnection) Overloaded. Applies
changes in datasets.

AssignConnect

Shares database
connection between the
TUniConnection
components.

Commit (inherited from TCustomDAConnection) Commits current transaction.

CommitRetaining

Permanently stores all
changes of data associated
with the default database
transaction to the database
and then retains the
transaction context.

Connect (inherited from TCustomDAConnection) Establishes a connection to
the server.

Reference 913

© 2024 Devart

CreateDataSet

Creates an instance of the
TCustomUniDataSet class
and assigns its
TCustomDADataSet.Conne
ction property.

CreateSQL

Creates an instance of the
TUniSQL class and assigns
its TUniSQL.Connection
property.

CreateTransaction

Creates an instance of the
TUniTransaction class and
adds itself to its
TUniTransaction.Connection
s.

Disconnect (inherited from TCustomDAConnection) Performs disconnect.

ExecProc (inherited from TCustomDAConnection)
Allows to execute stored
procedure or function
providing its name and
parameters.

ExecProcEx (inherited from TCustomDAConnection) Allows to execute a stored
procedure or function.

ExecSQL (inherited from TCustomDAConnection) Executes a SQL statement
with parameters.

ExecSQLEx (inherited from TCustomDAConnection)
Executes any SQL
statement outside the
TQuery or TSQL
components.

GetDatabaseNames (inherited from

TCustomDAConnection)
Returns a database list from
the server.

GetKeyFieldNames (inherited from

TCustomDAConnection)
Provides a list of available
key field names.

GetStoredProcNames (inherited from

TCustomDAConnection)
Returns a list of stored
procedures from the server.

GetTableNames (inherited from

TCustomDAConnection)
Provides a list of available
tables names.

MonitorMessage (inherited from

TCustomDAConnection)

Sends a specified message
through the
TCustomDASQLMonitor
component.

Universal Data Access Components914

© 2024 Devart

ParamByName

Provides access to output
parameters and their values
after executing an SQL
statement with the
TCustomDAConnection.Exe
cSQL method.

Ping (inherited from TCustomDAConnection) Used to check state of
connection to the server.

ReleaseSavepoint

Destroys the specified
savepoint without affecting
any work that has been
performed after its creation.

RemoveFromPool (inherited from

TCustomDAConnection)

Marks the connection that
should not be returned to the
pool after disconnect.

Rollback (inherited from TCustomDAConnection)
Discards all current data
changes and ends
transaction.

RollbackRetaining

Used to roll back all changes
of data associated with the
transaction and retain the
transaction context.

RollbackToSavepoint Cancels all updates for the
current transaction.

Savepoint
Defines a point in the
transaction to which you can
later roll back.

StartTransaction Overloaded. Starts a new
transaction at the server.

Events

Name Description

OnConnectionLost (inherited from

TCustomDAConnection)
This event occurs when
connection was lost.

OnError (inherited from TCustomDAConnection)
This event occurs when an
error has arisen in the
connection.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 915

© 2024 Devart

6.19.1.4.2 Properties

Properties of the TUniConnection class.

For a complete list of the TUniConnection class members, see the TUniConnection

Members topic.

Public

Name Description

ConnectDialog (inherited from TCustomDAConnection)
Allows to link a
TCustomConnectDialog
component.

ConnectString (inherited from TCustomDAConnection)

Used to specify the
connection information, such
as: UserName, Password,
Server, etc.

ConvertEOL (inherited from TCustomDAConnection)
Allows customizing line
breaks in string fields and
parameters.

InTransaction (inherited from TCustomDAConnection) Indicates whether the
transaction is active.

LoginPrompt (inherited from TCustomDAConnection)

Specifies whether a login
dialog appears immediately
before opening a new
connection.

Options (inherited from TCustomDAConnection) Specifies the connection
behavior.

Password (inherited from TCustomDAConnection) Serves to supply a
password for login.

Pooling (inherited from TCustomDAConnection) Enables or disables using
connection pool.

PoolingOptions (inherited from

TCustomDAConnection)
Specifies the behaviour of
connection pool.

Server (inherited from TCustomDAConnection) Serves to supply the server
name for login.

Username (inherited from TCustomDAConnection) Used to supply a user name
for login.

Published

Name Description

Universal Data Access Components916

© 2024 Devart

AutoCommit

Used to permit or prevent
permanent updates,
insertions, and deletions of
data against the database
server.

Database

Used to specify the
database name that is a
default source of data for
SQL queries once a
connection is established.

DefaultTransaction
Used to access default
database connection
transaction.

Macros
Holds a collection of macros
that can be used in Unified
SQL statements.

Port
Used to specify the port
number for TCP/IP
connection.

ProviderName Used to switch the current
data access provider.

SpecificOptions
Used to provide extended
settings for each data
provider.

See Also
TUniConnection Class

TUniConnection Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.4.2.1 AutoCommit Property

Used to permit or prevent permanent updates, insertions, and deletions of data against the

database server.

Class

TUniConnection

Syntax

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 917

© 2024 Devart

property AutoCommit: boolean;

Remarks

Use the AutoCommit property to permit or prevent permanent updates, insertions, and

deletions of data against the database server without explicit calls to Commit or Rollback

methods.

Set AutoCommit to True to permit implicit call to Commit method after every database

access. The default value is True.

Note: The AutoCommit property in TUniConnection globally specifies whether all queries to

modify database are implicitly committed or not. When using the InterBase provider,

TUniTable, TUniQuery, TUniStoredProc, TUniSQL and TUniLoader components have their

own AutoCommit specific options. This allows them to selectively specify their implicit

transaction committing behavior after each data modifying access. The AutoCommit specific

option behaviour is described in the UniDAC and InterBase/Firebird article.

Example

This procedure removes all records from Dept table and makes this change permanent.

procedure TForm1.DeleteClick(Sender: TObject);
begin
 UniSQL.Connection := UniConnection;
 UniConnection.AutoCommit := False;
 UniSQL.SQL.Text := 'DELETE FROM Dept';
 UniSQL.Execute; // delete all records, commit is not performed
 UniConnection.Rollback; // restore deleted records
 UniConnection.AutoCommit := True;
 UniSQL.SQL.Text := 'DELETE FROM Dept';
 UniSQL.Execute; // delete all records, commit is performed
 UniConnection.Rollback; // couldn't restore deleted records
end;

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.4.2.2 Database Property

Used to specify the database name that is a default source of data for SQL queries once a

connection is established.

Class

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components918

© 2024 Devart

TUniConnection

Syntax

property Database: string;

Remarks

Use the Database property to specify the database name that is a default source of data for

SQL queries once a connection is established.

Altering the Database property makes new database name take effect immediately.

This property is available for Access, Advantage, SAP Sybase ASE, DB2, DBF, InterBase,

MySQL, NexusDB, PostgreSQL, SQL Server, and SQLite providers.

SQL Server provider note:

When Database is not assigned, the SQL Server provider will use the default database for the

current SQL Server login specified in the TCustomDAConnection.Username property.

See Also
TCustomDAConnection.Server

TCustomDAConnection.Username

TCustomDAConnection.Password

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.4.2.3 DefaultTransaction Property

Used to access default database connection transaction.

Class

TUniConnection

Syntax

property DefaultTransaction: TUniTransaction;

Remarks

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 919

© 2024 Devart

Use the DefaultTransaction property to access default database connection transaction. By

default this is internal connection transaction. You can set it to external transaction

component. To restore internal transaction set this property to nil.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.4.2.4 Macros Property

Holds a collection of macros that can be used in Unified SQL statements.

Class

TUniConnection

Syntax

property Macros: TUniMacros stored IsMacrosStored;

Remarks

The Macros property holds a collection of macros that can be used in Unified SQL

statements.

Connection Macros are defined by "{MacroName}" and affect all associated datasets.

To work with Macros you can use traditional or "predefined" way.

For detailed information on using macros refer to article Unified SQL .

Example

Here is the traditional way to work with macros:

if UniConnection.ProviderName = 'Oracle' then
 UniConnection.MacroByName('tablename').Value := 'dept'
else
if UniConnection.ProviderName = 'MySql' then
 UniConnection.MacroByName('tablename').Value := 'test.dept';

See Also
Unified SQL

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components920

© 2024 Devart

6.19.1.4.2.5 Port Property

Used to specify the port number for TCP/IP connection.

Class

TUniConnection

Syntax

property Port: integer default DefValPort;

Remarks

Use the Port property to specify the port number for TCP/IP connection. This property is

available only for the MySQL provider.

The default value is 0.

See Also
TCustomDAConnection.Server

Database

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.4.2.6 ProviderName Property

Used to switch the current data access provider.

Class

TUniConnection

Syntax

property ProviderName: string;

Remarks

UniDAC consists of two constituents. The first constituent is the general UniDAC Engine that

provides unified programming interface for developers. The second constituent is the data

access layer which consists of data access providers. These provides are intended for

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 921

© 2024 Devart

interacting between UniDAC Engine and database servers.

The ProviderName property is intended to switch the current data access provider. If the

value of ProviderName is changed while a connection is active, the connection will be forced

to close. The following four providers names are acceptable:

Oracle - provider for Oracle;

SQL Server - provider for Microsoft SQL Server;

MySQL - provider for MySQL;

InterBase - provider for InterBase, Firebird, and Yaffil database servers.

PostgreSQL - provider for PostgreSQL.

See Also
TCustomDAConnection.Server

Database

Port

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.4.2.7 Specif icOptions Property

Used to provide extended settings for each data provider.

Class

TUniConnection

Syntax

property SpecificOptions: TSpecificOptionsList;

Remarks

Use the SpecificOptions property to provide extended settings for each data provider.

SpecificOptions can be setup both in design time and run time.

At design time call the component editor by double click on it, and select the Options tab in

the editor. Calling the SpecificOptions editor from the Object Inspector will open the

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components922

© 2024 Devart

component editor with Options tab active. Type or select the provider name, and change

values of required properties. Then you can either close the editor, or select another provider

name. Settings for all providers will be saved.

SpecificOptions can be setup at the same time for all providers that supposed to be used.

All options are applied at the connect time. If an option name is not recognized, an exception

is raised and connection is not established.

For example, when you set the Direct option like it is shown in the second example, you can

connect with the Oracle and MySQL provider, but attempt to connect with SQL Server and

InterBase providers will fail.

Example

You can also setup specific options at run time. Either of two formats can be used:

1. Using the provider name in an option name;

2. Not using the provider name in an option name;

In the second case options will be applied to the current provider, namely to the provider

specified in the ProviderName property.

Example 1.
UniConnection1.SpecificOptions.Add('Oracle.Direct=True')
UniConnection1.SpecificOptions.Add('InterBase.CharLength=0')
Example 2.
UniConnection1.SpecificOptions.Add('Direct=True')

See Also
ProviderName

Using Oracle data access provider with UniDAC in Delphi

Using SQL Server data access provider with UniDAC in Delphi

Using MySQL data access provider with UniDAC in Delphi

Using InterBase data access provider with UniDAC in Delphi

Using PostgreSQL data access provider with UniDAC in Delphi

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 923

© 2024 Devart

6.19.1.4.3 Methods

Methods of the TUniConnection class.

For a complete list of the TUniConnection class members, see the TUniConnection

Members topic.

Public

Name Description

ActiveMacroValueByName
Returns the value of the
specified macro for the
current provider.

ApplyUpdates (inherited from TCustomDAConnection) Overloaded. Applies
changes in datasets.

AssignConnect

Shares database
connection between the
TUniConnection
components.

Commit (inherited from TCustomDAConnection) Commits current transaction.

CommitRetaining

Permanently stores all
changes of data associated
with the default database
transaction to the database
and then retains the
transaction context.

Connect (inherited from TCustomDAConnection) Establishes a connection to
the server.

CreateDataSet

Creates an instance of the
TCustomUniDataSet class
and assigns its
TCustomDADataSet.Conne
ction property.

CreateSQL

Creates an instance of the
TUniSQL class and assigns
its TUniSQL.Connection
property.

CreateTransaction

Creates an instance of the
TUniTransaction class and
adds itself to its
TUniTransaction.Connection
s.

Disconnect (inherited from TCustomDAConnection) Performs disconnect.

Universal Data Access Components924

© 2024 Devart

ExecProc (inherited from TCustomDAConnection)
Allows to execute stored
procedure or function
providing its name and
parameters.

ExecProcEx (inherited from TCustomDAConnection) Allows to execute a stored
procedure or function.

ExecSQL (inherited from TCustomDAConnection) Executes a SQL statement
with parameters.

ExecSQLEx (inherited from TCustomDAConnection)
Executes any SQL
statement outside the
TQuery or TSQL
components.

GetDatabaseNames (inherited from

TCustomDAConnection)
Returns a database list from
the server.

GetKeyFieldNames (inherited from

TCustomDAConnection)
Provides a list of available
key field names.

GetStoredProcNames (inherited from

TCustomDAConnection)
Returns a list of stored
procedures from the server.

GetTableNames (inherited from

TCustomDAConnection)
Provides a list of available
tables names.

MonitorMessage (inherited from

TCustomDAConnection)

Sends a specified message
through the
TCustomDASQLMonitor
component.

ParamByName

Provides access to output
parameters and their values
after executing an SQL
statement with the
TCustomDAConnection.Exe
cSQL method.

Ping (inherited from TCustomDAConnection) Used to check state of
connection to the server.

ReleaseSavepoint

Destroys the specified
savepoint without affecting
any work that has been
performed after its creation.

RemoveFromPool (inherited from

TCustomDAConnection)

Marks the connection that
should not be returned to the
pool after disconnect.

Reference 925

© 2024 Devart

Rollback (inherited from TCustomDAConnection)
Discards all current data
changes and ends
transaction.

RollbackRetaining

Used to roll back all changes
of data associated with the
transaction and retain the
transaction context.

RollbackToSavepoint Cancels all updates for the
current transaction.

Savepoint
Defines a point in the
transaction to which you can
later roll back.

StartTransaction Overloaded. Starts a new
transaction at the server.

See Also
TUniConnection Class

TUniConnection Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.4.3.1 ActiveMacroValueByName Method

Returns the value of the specified macro for the current provider.

Class

TUniConnection

Syntax

function ActiveMacroValueByName(const Name: string): Variant;

Parameters

Name

The name of the macro.

Return Value

The value of the specified macro.

See Also

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components926

© 2024 Devart

Unified SQL

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.4.3.2 AssignConnect Method

Shares database connection between the TUniConnection components.

Class

TUniConnection

Syntax

procedure AssignConnect(Source: TUniConnection);

Parameters

Source

Preconnected TUniConnection component which connection is to be shared with the
current TUniConnection component.

Remarks

Use the AssignConnect method to share database connection between the TUniConnection

components.

AssignConnect assumes that the Source parameter points to a preconnected

TUniConnection component which connection is to be shared with the current

TUniConnection component. Note that AssignConnect doesn't make any references to the

Source TUniConnection component. So before disconnecting parent TUniConnection

component call AssignConnect(Nil) or the Disconnect method for all assigned connections.

See Also
TCustomDAConnection.Connect

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.4.3.3 CommitRetaining Method

Permanently stores all changes of data associated with the default database transaction to

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 927

© 2024 Devart

the database and then retains the transaction context.

Class

TUniConnection

Syntax

procedure CommitRetaining;

Remarks

Call the CommitRetaining method to permanently store to the database server all changes of

data associated with the default database transaction and then retain the transaction context.

See Also
TCustomDAConnection.Commit

TCustomDAConnection.StartTransaction

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.4.3.4 CreateDataSet Method

Creates an instance of the TCustomUniDataSet class and assigns its

TCustomDADataSet.Connection property.

Class

TUniConnection

Syntax

function CreateDataSet(AOwner: TComponent = nil):

TCustomDADataSet; override;

Return Value

an instance of the class.

Remarks

Call the CreateDataSet method to create an instance of the TCustomUniDataSet class and

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components928

© 2024 Devart

assign its TCustomDADataSet.Connection property.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.4.3.5 CreateSQL Method

Creates an instance of the TUniSQL class and assigns its TUniSQL.Connection property.

Class

TUniConnection

Syntax

function CreateSQL: TCustomDASQL; override;

Return Value

an instance of the class.

Remarks

Call the CreateSQL method creates an instance of the TUniSQL class and assign its

TUniSQL.Connection property.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.4.3.6 CreateTransaction Method

Creates an instance of the TUniTransaction class and adds itself to its

TUniTransaction.Connections.

Class

TUniConnection

Syntax

function CreateTransaction: TDATransaction; override;

Return Value

an instance of the class.

Remarks

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 929

© 2024 Devart

Call the CreateTransaction method to create an instance of the TUniTransaction class and

add itself to its TUniTransaction.Connections.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.4.3.7 ParamByName Method

Provides access to output parameters and their values after executing an SQL statement

with the TCustomDAConnection.ExecSQL method.

Class

TUniConnection

Syntax

function ParamByName(const Name: string): TUniParam;

Parameters

Name

Holds the parameter name (should be equal to the one that occurred in the SQL statement).

Return Value

a reference for the matching parameter.

Remarks

Call the ParamByName method to get access to output parameters and their values after

executing an SQL statement with the TCustomDAConnection.ExecSQL method. The Name

parameter should equal to the parameter name as it occurred in the SQL statement.

This method implicitly calls the TUniSQL.ParamByName method of TUniSQL.

See Also
TCustomDAConnection.ExecSQL

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components930

© 2024 Devart

6.19.1.4.3.8 ReleaseSavepoint Method

Destroys the specified savepoint without affecting any work that has been performed after its

creation.

Class

TUniConnection

Syntax

procedure ReleaseSavepoint(const Name: string);

Parameters

Name

Holds the savepoint name.

Remarks

Call the ReleaseSavepoint method to destroy the specified savepoint without affecting any

work that has been performed after its creation.

See Also
Savepoint

RollbackToSavepoint

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.4.3.9 RollbackRetaining Method

Used to roll back all changes of data associated with the transaction and retain the

transaction context.

Class

TUniConnection

Syntax

procedure RollbackRetaining;

Remarks

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 931

© 2024 Devart

Use the RollbackRetaining method to roll back all changes of data associated with the

transaction and retain the transaction context.

Note: this method is only supported for the InterBase provider.

See Also
TCustomDAConnection.Rollback

TCustomDAConnection.StartTransaction

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.4.3.10 RollbackToSavepoint Method

Cancels all updates for the current transaction.

Class

TUniConnection

Syntax

procedure RollbackToSavepoint(const Name: string);

Parameters

Name

Holds the savepoint name.

Remarks

Call the RollbackToSavepoint method to cancel all updates for the current transaction and

restore its state up to the moment of the last defined savepoint.

See Also
ReleaseSavepoint

Savepoint

TCustomDAConnection.Rollback

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components932

© 2024 Devart

6.19.1.4.3.11 Savepoint Method

Defines a point in the transaction to which you can later roll back.

Class

TUniConnection

Syntax

procedure Savepoint(const Name: string);

Parameters

Name

Holds a valid name for identifying a savepoint.

Remarks

Call the Savepoint method to define a point in the transaction to which you can later roll back.

As the parameter, you can pass any valid name to identify the savepoint.

To roll back to the last savepoint, call RollbackToSavepoint.

See Also
ReleaseSavepoint

RollbackToSavepoint

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.4.3.12 StartTransaction Method

Starts a new transaction at the server.

Class

TUniConnection

Overload List

Name Description

StartTransaction Call the StartTransaction method to begin a
new transaction at the server.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 933

© 2024 Devart

StartTransaction(IsolationLevel:
TCRIsolationLevel; ReadOnly: boolean)

Starts a new transaction at the server, and
specifies whether the transaction is read-
only and how database modifications
should be handled.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

Call the StartTransaction method to begin a new transaction at the server.

Class

TUniConnection

Syntax

procedure StartTransaction; overload; override;

Remarks

Call the StartTransaction method to begin a new transaction at the server. Before calling

StartTransaction, an application should check the value of the

TCustomDAConnection.InTransaction property. If the result is True, it means that a

transaction is already in progress, a subsequent call to StartTransaction without first calling

TCustomDAConnection.Commit or TCustomDAConnection.Rollback to end the current

transaction raises Exception. Calling StartTransaction when connection is closed also raises

Exception.

Updates, insertions, and deletions that take place after a call to StartTransaction are held by

the server until an application calls Commit to save the changes or Rollback to cancel them.

Use the IsolationLevel property to specify how transactions containing database modifications

are handled.

Values of the TCRIsolationLevel enumeration correspond to the following isolation levels of

supported database servers:

SQL
standard

Oracle SQL Server MySQL
InterBase/
Firebird

ilReadCommi
tted

ReadCommitt
ed

ilReadCommi
tted

ilReadCommi
tted

ilReadCommi
tted

iblReadCom
mitted

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components934

© 2024 Devart

ilReadUnCo
mmitted

ReadUnCom
mitted

- ilReadUnCom
mitted

ilReadUnCom
mitted

-

ilRepeatable
Read

RepeatableR
ead

- ilRepeatable
Read

ilRepeatable
Read

-

ilIsolated Serializable - ilIsolated ilSerializable iblTableStabil
ity

ilSnapshot Serializable
without locks

ilSerializable ilSnapshot - iblSnapshot

ilCustom This value is introduced for future needs. Currently not implemented.

The ReadOnly parameter determines that a read-only transaction will be started. It means

that data within the transaction can not be modified. You will get an exception on attempt to

post any changes.

The ReadOnly parameter has sense only for Oracle and InterBase providers.

See Also
TCustomDAConnection.Commit

TCustomDAConnection.Rollback

TCustomDAConnection.InTransaction

StartTransaction

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

Starts a new transaction at the server, and specifies whether the transaction is read-only and

how database modifications should be handled.

Class

TUniConnection

Syntax

procedure StartTransaction(IsolationLevel: TCRIsolationLevel;

ReadOnly: boolean = False); reintroduce; overload;

Parameters

IsolationLevel

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 935

© 2024 Devart

Specifies how transactions containing database modifications are handled.

ReadOnly

if True, a read-only transaction will be started.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.5 TUniDataSetOptions Class

Specifies the behaviour of a TCustomUniDataSet object.

For a list of all members of this type, see TUniDataSetOptions members.

Unit

Uni

Syntax

TUniDataSetOptions = class(TDADataSetOptions);

Remarks

The TUniDataSetOptions class publishes properties defined in TDADataSetOptions. Set the

properties of Options to specify the behaviour of a TCustomUniDataSet object.

Inheritance Hierarchy

TDADataSetOptions

 TUniDataSetOptions

See Also
TCustomDADataSet.Options

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.5.1 Members

TUniDataSetOptions class overview.

Properties

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components936

© 2024 Devart

Name Description

AutoPrepare (inherited from TDADataSetOptions)
Used to execute automatic
TCustomDADataSet.Prepar
e on the query execution.

CacheCalcFields (inherited from TDADataSetOptions)
Used to enable caching of
the TField.Calculated and
TField.Lookup fields.

CompressBlobMode (inherited from

TDADataSetOptions)

Used to store values of the
BLOB fields in compressed
form.

DefaultValues (inherited from TDADataSetOptions)

Used to request default
values/expressions from the
server and assign them to
the DefaultExpression
property.

DetailDelay (inherited from TDADataSetOptions)

Used to get or set a delay in
milliseconds before
refreshing detail dataset
while navigating master
dataset.

EnableBCD
Used to enable currency
type. Default value of this
option is False.

EnableFMTBCD

Used to enable using
FMTBCD instead of float for
large integer numbers to
keep precision.

FieldsOrigin (inherited from TDADataSetOptions)

Used for
TCustomDADataSet to fill
the Origin property of the
TField objects by
appropriate value when
opening a dataset.

FlatBuffers (inherited from TDADataSetOptions)
Used to control how a
dataset treats data of the
ftString and ftVarBytes
fields.

FullRefresh

Used to specify the fields to
include in the automatically
generated SQL statement
when calling the method.

InsertAllSetFields (inherited from TDADataSetOptions)
Used to include all set
dataset fields in the
generated INSERT

Reference 937

© 2024 Devart

statement

LocalMasterDetail (inherited from TDADataSetOptions)

Used for
TCustomDADataSet to use
local filtering to establish
master/detail relationship for
detail dataset and does not
refer to the server.

LongStrings (inherited from TDADataSetOptions)
Used to represent string
fields with the length that is
greater than 255 as
TStringField.

MasterFieldsNullable (inherited from

TDADataSetOptions)

Allows to use NULL values
in the fields by which the
relation is built, when
generating the query for the
Detail tables (when this
option is enabled, the
performance can get worse).

NumberRange (inherited from TDADataSetOptions)

Used to set the MaxValue
and MinValue properties of
TIntegerField and
TFloatField to appropriate
values.

QueryRecCount (inherited from TDADataSetOptions)

Used for
TCustomDADataSet to
perform additional query to
get the record count for this
SELECT, so the
RecordCount property
reflects the actual number of
records.

QuoteNames (inherited from TDADataSetOptions)

Used for
TCustomDADataSet to
quote all database object
names in autogenerated
SQL statements such as
update SQL.

RemoveOnRefresh (inherited from TDADataSetOptions)
Used for a dataset to locally
remove a record that can not
be found on the server.

RequiredFields (inherited from TDADataSetOptions)

Used for
TCustomDADataSet to set
the Required property of the
TField objects for the NOT
NULL fields.

Universal Data Access Components938

© 2024 Devart

ReturnParams (inherited from TDADataSetOptions)
Used to return the new value
of fields to dataset after
insert or update.

SetEmptyStrToNull

Force replace of empty
strings with NULL values in
data. The default value is
False.

SetFieldsReadOnly (inherited from

TDADataSetOptions)

Used for a dataset to set the
ReadOnly property to True
for all fields that do not
belong to UpdatingTable or
can not be updated.

StrictUpdate (inherited from TDADataSetOptions)

Used for
TCustomDADataSet to
raise an exception when the
number of updated or
deleted records is not equal
1.

TrimFixedChar (inherited from TDADataSetOptions)
Specifies whether to discard
all trailing spaces in the
string fields of a dataset.

TrimVarChar

Used to specify whether to
discard all trailing spaces in
the variable-length string
fields of a dataset.

UpdateAllFields (inherited from TDADataSetOptions)
Used to include all dataset
fields in the generated
UPDATE and INSERT
statements.

UpdateBatchSize (inherited from TDADataSetOptions)

Used to get or set a value
that enables or disables
batch processing support,
and specifies the number of
commands that can be
executed in a batch.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.5.2 Properties

Properties of the TUniDataSetOptions class.

For a complete list of the TUniDataSetOptions class members, see the

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 939

© 2024 Devart

TUniDataSetOptions Members topic.

Public

Name Description

AutoPrepare (inherited from TDADataSetOptions)
Used to execute automatic
TCustomDADataSet.Prepar
e on the query execution.

CacheCalcFields (inherited from TDADataSetOptions)
Used to enable caching of
the TField.Calculated and
TField.Lookup fields.

CompressBlobMode (inherited from

TDADataSetOptions)

Used to store values of the
BLOB fields in compressed
form.

DefaultValues (inherited from TDADataSetOptions)

Used to request default
values/expressions from the
server and assign them to
the DefaultExpression
property.

DetailDelay (inherited from TDADataSetOptions)

Used to get or set a delay in
milliseconds before
refreshing detail dataset
while navigating master
dataset.

FieldsOrigin (inherited from TDADataSetOptions)

Used for
TCustomDADataSet to fill
the Origin property of the
TField objects by
appropriate value when
opening a dataset.

FlatBuffers (inherited from TDADataSetOptions)
Used to control how a
dataset treats data of the
ftString and ftVarBytes
fields.

InsertAllSetFields (inherited from TDADataSetOptions)
Used to include all set
dataset fields in the
generated INSERT
statement

LocalMasterDetail (inherited from TDADataSetOptions)

Used for
TCustomDADataSet to use
local filtering to establish
master/detail relationship for
detail dataset and does not
refer to the server.

Universal Data Access Components940

© 2024 Devart

LongStrings (inherited from TDADataSetOptions)
Used to represent string
fields with the length that is
greater than 255 as
TStringField.

MasterFieldsNullable (inherited from

TDADataSetOptions)

Allows to use NULL values
in the fields by which the
relation is built, when
generating the query for the
Detail tables (when this
option is enabled, the
performance can get worse).

NumberRange (inherited from TDADataSetOptions)

Used to set the MaxValue
and MinValue properties of
TIntegerField and
TFloatField to appropriate
values.

QueryRecCount (inherited from TDADataSetOptions)

Used for
TCustomDADataSet to
perform additional query to
get the record count for this
SELECT, so the
RecordCount property
reflects the actual number of
records.

QuoteNames (inherited from TDADataSetOptions)

Used for
TCustomDADataSet to
quote all database object
names in autogenerated
SQL statements such as
update SQL.

RemoveOnRefresh (inherited from TDADataSetOptions)
Used for a dataset to locally
remove a record that can not
be found on the server.

RequiredFields (inherited from TDADataSetOptions)

Used for
TCustomDADataSet to set
the Required property of the
TField objects for the NOT
NULL fields.

ReturnParams (inherited from TDADataSetOptions)
Used to return the new value
of fields to dataset after
insert or update.

SetFieldsReadOnly (inherited from

TDADataSetOptions)

Used for a dataset to set the
ReadOnly property to True
for all fields that do not
belong to UpdatingTable or

Reference 941

© 2024 Devart

can not be updated.

StrictUpdate (inherited from TDADataSetOptions)

Used for
TCustomDADataSet to
raise an exception when the
number of updated or
deleted records is not equal
1.

TrimFixedChar (inherited from TDADataSetOptions)
Specifies whether to discard
all trailing spaces in the
string fields of a dataset.

UpdateAllFields (inherited from TDADataSetOptions)
Used to include all dataset
fields in the generated
UPDATE and INSERT
statements.

UpdateBatchSize (inherited from TDADataSetOptions)

Used to get or set a value
that enables or disables
batch processing support,
and specifies the number of
commands that can be
executed in a batch.

Published

Name Description

EnableBCD
Used to enable currency
type. Default value of this
option is False.

EnableFMTBCD

Used to enable using
FMTBCD instead of float for
large integer numbers to
keep precision.

FullRefresh

Used to specify the fields to
include in the automatically
generated SQL statement
when calling the method.

SetEmptyStrToNull

Force replace of empty
strings with NULL values in
data. The default value is
False.

TrimVarChar

Used to specify whether to
discard all trailing spaces in
the variable-length string
fields of a dataset.

Universal Data Access Components942

© 2024 Devart

See Also
TUniDataSetOptions Class

TUniDataSetOptions Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.5.2.1 EnableBCD Property

Used to enable currency type. Default value of this option is False.

Class

TUniDataSetOptions

Syntax

property EnableBCD: boolean;

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.5.2.2 EnableFMTBCD Property

Used to enable using FMTBCD instead of float for large integer numbers to keep precision.

Class

TUniDataSetOptions

Syntax

property EnableFMTBCD: boolean;

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.5.2.3 FullRefresh Property

Used to specify the fields to include in the automatically generated SQL statement when

calling the method.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 943

© 2024 Devart

Class

TUniDataSetOptions

Syntax

property FullRefresh: boolean;

Remarks

Use the FullRefresh property to specify what fields to include in the automatically generated

SQL statement when calling the TCustomDADataSet.RefreshRecord method. If the

FullRefresh property is True, all fields from a query are included into SQL statement to

refresh a single record. If FullRefresh is False, only fields from TUniQuery.UpdatingTable are

included.

Note: If FullRefresh is True, the refresh of SQL statement for complex queries and views

may be generated with errors. The default value is False.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.5.2.4 SetEmptyStrToNull Property

Force replace of empty strings with NULL values in data. The default value is False.

Class

TUniDataSetOptions

Syntax

property SetEmptyStrToNull: boolean;

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.5.2.5 TrimVarChar Property

Used to specify whether to discard all trailing spaces in the variable-length string fields of a

dataset.

Class

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components944

© 2024 Devart

TUniDataSetOptions

Syntax

property TrimVarChar: boolean;

Remarks

Use the TrimVarChar property to specify whether to discard all trailing spaces in the variable-

length string fields of a dataset. The default value is False.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.6 TUniDataSource Class

TUniDataSource provides an interface between a UniDAC dataset components and data-

aware controls on a form.

For a list of all members of this type, see TUniDataSource members.

Unit

Uni

Syntax

TUniDataSource = class(TCRDataSource);

Remarks

TUniDataSource provides an interface between a UniDAC dataset components and data-

aware controls on a form.

TUniDataSource inherits its functionality directly from the TDataSource component.

At design-time assign individual data-aware components' DataSource properties from their

drop-down listboxes.

If you place onto a form a TUniDataSource component close to a dataset, this dataset will be

linked to it automatically.

Inheritance Hierarchy

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 945

© 2024 Devart

TCRDataSource

 TUniDataSource

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.6.1 Members

TUniDataSource class overview.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.7 TUniEncryptor Class

The class that performs encrypting and decrypting of data.

For a list of all members of this type, see TUniEncryptor members.

Unit

Uni

Syntax

TUniEncryptor = class(TCREncryptor);

Inheritance Hierarchy

TCREncryptor

 TUniEncryptor

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.7.1 Members

TUniEncryptor class overview.

Properties

Name Description

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components946

© 2024 Devart

DataHeader (inherited from TCREncryptor)
Specifies whether the
additional information is
stored with the encrypted
data.

EncryptionAlgorithm (inherited from TCREncryptor) Specifies the algorithm of
data encryption.

HashAlgorithm (inherited from TCREncryptor) Specifies the algorithm of
generating hash data.

InvalidHashAction (inherited from TCREncryptor)
Specifies the action to
perform on data fetching
when hash data is invalid.

Password (inherited from TCREncryptor)
Used to set a password that
is used to generate a key for
encryption.

Methods

Name Description

SetKey (inherited from TCREncryptor) Sets a key, using which data
is encrypted.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.8 TUniMacro Class

Holds the Name, Value, and Condition for a macro.

For a list of all members of this type, see TUniMacro members.

Unit

Uni

Syntax

TUniMacro = class(TCollectionItem);

Remarks

A TUniMacro object holds the Name, Value, and Condition for a macro. This macro can be

used in Unified SQL statements.

For detailed information on using macros refer to article Unified SQL .

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 947

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.8.1 Members

TUniMacro class overview.

Properties

Name Description

Condition

Holds a condition for the
macro, which determines
whether macro is evaluated
to its Value or an empty
string.

Name
Used to refer to this macro
in Unified SQL statements
and other macros.

Value
Holds a string expression
that macro evaluates to if
Condition is enabled.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.8.2 Properties

Properties of the TUniMacro class.

For a complete list of the TUniMacro class members, see the TUniMacro Members topic.

Published

Name Description

Condition

Holds a condition for the
macro, which determines
whether macro is evaluated
to its Value or an empty
string.

Name
Used to refer to this macro
in Unified SQL statements
and other macros.

Value Holds a string expression

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components948

© 2024 Devart

that macro evaluates to if
Condition is enabled.

See Also
TUniMacro Class

TUniMacro Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.8.2.1 Condition Property

Holds a condition for the macro, which determines whether macro is evaluated to its Value or

an empty string.

Class

TUniMacro

Syntax

property Condition: string;

Remarks

The Condition property holds a condition for the macro, which determines whether macro is

evaluated to its Value or an empty string.

Macro condition is name of another custom TUniMacro or predefined macro like MySQL,

Oracle, etc. If the condition macro is defined, the current macro evaluates to what is specified

in the Value property, otherwise it returns empty string.

If the condition is not specified (represents empty string), then macro always evaluates to

Value.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 949

© 2024 Devart

6.19.1.8.2.2 Name Property

Used to refer to this macro in Unified SQL statements and other macros.

Class

TUniMacro

Syntax

property Name: string;

Remarks

Macro identifier to be used in Unified SQL statements.

The Name property is used to refer to this macro in Unified SQL statements and other

macros. If there are several macros with same name in Macros of TUniConnection, the one

that has valid condition is used.

When the macro is used in statements or as part of value of another macro, you should

enclose the Name in braces {...}. When used as condition for another macro, the braces are

not required.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.8.2.3 Value Property

Holds a string expression that macro evaluates to if Condition is enabled.

Class

TUniMacro

Syntax

property Value: string;

Remarks

The Value property holds a string expression that macro evaluates to if Condition is enabled.

© 1997-2024
Devart. All Rights

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components950

© 2024 Devart

Reserved.

6.19.1.9 TUniMacros Class

Used to manage a list of TUniMacro objects for a TUniConnection component.

For a list of all members of this type, see TUniMacros members.

Unit

Uni

Syntax

TUniMacros = class(TOwnedCollection);

Remarks

Use TUniMacros to manage a list of TUniMacro objects for a TUniConnection component.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.9.1 Members

TUniMacros class overview.

Properties

Name Description

Items Used to interate through all
macros.

Methods

Name Description

Add Used to add a macro.

FindMacro Searches for a TUniMacro
object by its name.

MacroByName Used to search for a macro
with the specified name.

© 1997-2024
Devart. All Rights

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 951

© 2024 Devart

Reserved.

6.19.1.9.2 Properties

Properties of the TUniMacros class.

For a complete list of the TUniMacros class members, see the TUniMacros Members topic.

Public

Name Description

Items Used to interate through all
macros.

See Also
TUniMacros Class

TUniMacros Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.9.2.1 Items Property(Indexer)

Used to interate through all macros.

Class

TUniMacros

Syntax

property Items[Index: integer]: TUniMacro; default;

Parameters

Index

Holds an index in the range 0..Count - 1.

Remarks

Use the Items property to iterate through all macros. Index identifies the index in the range

0..Count - 1. Items can reference a particular macro by its index, but the MacroByName

method is preferred in order to avoid depending on the order of the macros.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components952

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.9.3 Methods

Methods of the TUniMacros class.

For a complete list of the TUniMacros class members, see the TUniMacros Members topic.

Public

Name Description

Add Used to add a macro.

FindMacro Searches for a TUniMacro
object by its name.

MacroByName Used to search for a macro
with the specified name.

See Also
TUniMacros Class

TUniMacros Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.9.3.1 Add Method

Used to add a macro.

Class

TUniMacros

Syntax

procedure Add(const Name: string; const Value: string; const

Condition: string = '');

Parameters

Name

Holds the name of the macro

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 953

© 2024 Devart

Value

Holds the value of the macro

Condition

Specifies the provider that the condition is applied to.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.9.3.2 FindMacro Method

Searches for a TUniMacro object by its name.

Class

TUniMacros

Syntax

function FindMacro(const Name: string): TUniMacro;

Parameters

Name

Holds the name of a macro to search for.

Return Value

TMacro object if a match was found, nil otherwise.

Remarks

Call the FindMacro method to find a macro with the name passed in Name. If a match is

found, FindMacro returns the macro. Otherwise, it returns nil. Use this method rather than a

direct reference to the Items property to avoid depending on the order of the entries.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.9.3.3 MacroByName Method

Used to search for a macro with the specified name.

Class

TUniMacros

Syntax

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components954

© 2024 Devart

function MacroByName(const Name: string): TUniMacro;

Parameters

Name

Call the MacroByName method to find a Macro with the name passed in Value. If a match is
found, MacroByName returns the Macro. Otherwise, an exception is raised. Use this
method rather than a direct reference to the Items property to avoid depending on the order
of the entries.

To locate a macro by name without raising an exception if the parameter is not found, use

the FindMacro method.

Return Value

TUniMacro object, if a macro with specified name was found.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.10 TUniMetaData Class

A component for obtaining metainformation about database objects from the server.

For a list of all members of this type, see TUniMetaData members.

Unit

Uni

Syntax

TUniMetaData = class(TDAMetaData);

Remarks

The TUniMetaData component is used to obtain metainformation from the server about

objects in the database, such as tables, table columns, stored procedures, etc.

Inheritance Hierarchy

TMemDataSet

 TDAMetaData

 TUniMetaData

See Also

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 955

© 2024 Devart

TCustomDADataSet.Debug

TCustomDASQL.Debug

DBMonitor

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.10.1 Members

TUniMetaData class overview.

Properties

Name Description

CachedUpdates (inherited from TMemDataSet)
Used to enable or disable
the use of cached updates
for a dataset.

Connection

Used to specify the
connection which will be
used by TUniMetaData to
request metadata from
server.

IndexFieldNames (inherited from TMemDataSet)
Used to get or set the list of
fields on which the recordset
is sorted.

KeyExclusive (inherited from TMemDataSet)
Specifies the upper and
lower boundaries for a
range.

LocalConstraints (inherited from TMemDataSet)

Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet)
Used to prevent implicit
update of rows on database
server.

MetaDataKind (inherited from TDAMetaData) Used to specify which kind
of metainformation to show.

Prepared (inherited from TMemDataSet)
Determines whether a query
is prepared for execution or
not.

Ranged (inherited from TMemDataSet) Indicates whether a range is
applied to a dataset.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components956

© 2024 Devart

Restrictions (inherited from TDAMetaData)
Used to provide one or more
conditions restricting the list
of objects to be described.

Transaction
Used to set or return the
transaction to be used by the
component.

UpdateRecordTypes (inherited from TMemDataSet)
Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

Methods

Name Description

ApplyRange (inherited from TMemDataSet) Applies a range to the
dataset.

ApplyUpdates (inherited from TMemDataSet)
Overloaded. Writes
dataset's pending cached
updates to a database.

CancelRange (inherited from TMemDataSet)
Removes any ranges
currently in effect for a
dataset.

CancelUpdates (inherited from TMemDataSet)
Clears all pending cached
updates from cache and
restores dataset in its prior
state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates
buffer.

DeferredPost (inherited from TMemDataSet) Makes permanent changes
to the database server.

EditRangeEnd (inherited from TMemDataSet)
Enables changing the
ending value for an existing
range.

EditRangeStart (inherited from TMemDataSet)
Enables changing the
starting value for an existing
range.

GetBlob (inherited from TMemDataSet)

Overloaded. Retrieves
TBlob object for a field or
current record when only its
name or the field itself is
known.

Reference 957

© 2024 Devart

GetMetaDataKinds (inherited from TDAMetaData)
Used to get values
acceptable in the
MetaDataKind property.

GetRestrictions (inherited from TDAMetaData)
Used to find out which
restrictions are applicable to
a certain MetaDataKind.

Locate (inherited from TMemDataSet)
Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

LocateEx (inherited from TMemDataSet)

Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

Prepare (inherited from TMemDataSet)
Allocates resources and
creates field components for
a dataset.

RestoreUpdates (inherited from TMemDataSet)
Marks all records in the
cache of updates as
unapplied.

RevertRecord (inherited from TMemDataSet)
Cancels changes made to
the current record when
cached updates are
enabled.

SaveToXML (inherited from TMemDataSet)

Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

SetRange (inherited from TMemDataSet)
Sets the starting and ending
values of a range, and
applies it.

SetRangeEnd (inherited from TMemDataSet)

Indicates that subsequent
assignments to field values
specify the end of the range
of rows to include in the
dataset.

SetRangeStart (inherited from TMemDataSet)

Indicates that subsequent
assignments to field values
specify the start of the range
of rows to include in the
dataset.

UnPrepare (inherited from TMemDataSet) Frees the resources
allocated for a previously

Universal Data Access Components958

© 2024 Devart

prepared query on the
server and client sides.

UpdateResult (inherited from TMemDataSet)

Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are
enabled.

UpdateStatus (inherited from TMemDataSet)
Indicates the current update
status for the dataset when
cached updates are
enabled.

Events

Name Description

OnUpdateError (inherited from TMemDataSet)

Occurs when an exception is
generated while cached
updates are applied to a
database.

OnUpdateRecord (inherited from TMemDataSet)
Occurs when a single
update component can not
handle the updates.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.10.2 Properties

Properties of the TUniMetaData class.

For a complete list of the TUniMetaData class members, see the TUniMetaData Members

topic.

Public

Name Description

CachedUpdates (inherited from TMemDataSet)
Used to enable or disable
the use of cached updates
for a dataset.

IndexFieldNames (inherited from TMemDataSet)
Used to get or set the list of
fields on which the recordset
is sorted.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 959

© 2024 Devart

KeyExclusive (inherited from TMemDataSet)
Specifies the upper and
lower boundaries for a
range.

LocalConstraints (inherited from TMemDataSet)

Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet)
Used to prevent implicit
update of rows on database
server.

MetaDataKind (inherited from TDAMetaData) Used to specify which kind
of metainformation to show.

Prepared (inherited from TMemDataSet)
Determines whether a query
is prepared for execution or
not.

Ranged (inherited from TMemDataSet) Indicates whether a range is
applied to a dataset.

Restrictions (inherited from TDAMetaData)
Used to provide one or more
conditions restricting the list
of objects to be described.

UpdateRecordTypes (inherited from TMemDataSet)
Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

Published

Name Description

Connection

Used to specify the
connection which will be
used by TUniMetaData to
request metadata from
server.

Transaction
Used to set or return the
transaction to be used by the
component.

See Also
TUniMetaData Class

Universal Data Access Components960

© 2024 Devart

TUniMetaData Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.10.2.1 Connection Property

Used to specify the connection which will be used by TUniMetaData to request metadata from

server.

Class

TUniMetaData

Syntax

property Connection: TUniConnection;

Remarks

Use the Connection property to specify the connection which will be used by TUniMetaData to

request metadata from server. If Connection is not connected, TUniMetaData will try to

establish connection using the Connect method of the associated TUniConnection object as

soon as it will be necessary.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.10.2.2 Transaction Property

Used to set or return the transaction to be used by the component.

Class

TUniMetaData

Syntax

property Transaction: TUniTransaction stored IsTransactionStored;

Remarks

Use the Transaction property to set or return the transaction to be used by the component.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 961

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.11 TUniParam Class

A class that is used to set the values of individual parameters passed with queries or stored

procedures.

For a list of all members of this type, see TUniParam members.

Unit

Uni

Syntax

TUniParam = class(TDAParam);

Remarks

Use the properties of TUniParam to set the value of a parameter. Objects that use

parameters create TUniParam objects to represent these parameters. For example,

TUniParam objects are used by TUniSQL, TCustomUniDataSet.

TUniParam shares many properties with TField, as both describe the value of a field in a

dataset. However, a TField object has several properties to describe the field binding, and

how the field is displayed, edited, or calculated that are not needed in a TUniParam object.

Conversely, TUniParam includes properties that indicate how the field value is passed as a

parameter.

Inheritance Hierarchy

TDAParam

 TUniParam

See Also
TCustomUniDataSet

TUniSQL

TUniParams

© 1997-2024 Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components962

© 2024 Devart

Devart. All Rights
Reserved.

6.19.1.11.1 Members

TUniParam class overview.

Properties

Name Description

AsBlob (inherited from TDAParam)
Used to set and read the
value of the BLOB
parameter as string.

AsBlobRef (inherited from TDAParam)
Used to set and read the
value of the BLOB
parameter as a TBlob
object.

AsFloat (inherited from TDAParam) Used to assign the value for
a float field to a parameter.

AsInteger (inherited from TDAParam)
Used to assign the value for
an integer field to the
parameter.

AsLargeInt (inherited from TDAParam)
Used to assign the value for
a LargeInteger field to the
parameter.

AsMemo (inherited from TDAParam)
Used to assign the value for
a memo field to the
parameter.

AsMemoRef (inherited from TDAParam)
Used to set and read the
value of the memo
parameter as a TBlob
object.

AsSQLTimeStamp (inherited from TDAParam)
Used to specify the value of
the parameter when it
represents a SQL
timestamp field.

AsString (inherited from TDAParam) Used to assign the string
value to the parameter.

AsWideString (inherited from TDAParam)
Used to assign the Unicode
string value to the
parameter.

DataType (inherited from TDAParam) Indicates the data type of the
parameter.

IsNull (inherited from TDAParam) Used to indicate whether the
value assigned to a

Reference 963

© 2024 Devart

parameter is NULL.

ParamType (inherited from TDAParam) Used to indicate the type of
use for a parameter.

Size (inherited from TDAParam) Specifies the size of a string
type parameter.

Value (inherited from TDAParam) Used to represent the value
of the parameter as Variant.

Methods

Name Description

AssignField (inherited from TDAParam) Assigns field name and field
value to a param.

AssignFieldValue (inherited from TDAParam)
Assigns the specified field
properties and value to a
parameter.

LoadFromFile (inherited from TDAParam)
Places the content of a
specified file into a
TDAParam object.

LoadFromStream (inherited from TDAParam)
Places the content from a
stream into a TDAParam
object.

SetBlobData (inherited from TDAParam)
Overloaded. Writes the data
from a specified buffer to
BLOB.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.12 TUniParams Class

Used to control TUniParam objects.

For a list of all members of this type, see TUniParams members.

Unit

Uni

Syntax

TUniParams = class(TDAParams);

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components964

© 2024 Devart

Remarks

Use TUniParams to manage a list of TUniParam objects for an object that uses field

parameters. For example, TUniStoredProc objects and TUniQuery objects use TUniParams

objects to create and access their parameters.

Inheritance Hierarchy

TDAParams

 TUniParams

See Also
TUniParam

TCustomDASQL.Params

TCustomDADataSet.Params

TCustomDADataSet.Params

TCustomDASQL.Params

TUniParam

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.12.1 Members

TUniParams class overview.

Properties

Name Description

Items (inherited from TDAParams) Used to interate through all
parameters.

Methods

Name Description

FindParam (inherited from TDAParams) Searches for a parameter
with the specified name.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 965

© 2024 Devart

ParamByName (inherited from TDAParams) Searches for a parameter
with the specified name.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.13 TUniQuery Class

A component for executing queries and operating record sets. It also provides flexible way to

update data.

For a list of all members of this type, see TUniQuery members.

Unit

Uni

Syntax

TUniQuery = class(TCustomUniDataSet);

Remarks

TUniQuery is a direct descendant of the TCustomUniDataSet component. It publishes most

of its inherited properties and events so that they can be manipulated at design-time.

Use TUniQuery to perform fetching, insertion, deletion and update of record by dynamically

generated SQL statements. TUniQuery provides automatic blocking of records, their

checking before edit and refreshing after post. Set SQL, SQLInsert, SQLDelete, SQLRefresh,

and SQLUpdate properties to define SQL statements for subsequent accesses to the

database server. There is no restriction to their syntax, so any SQL statement is allowed.

Usually you need to use INSERT, DELETE, and UPDATE statements but you also may use

stored procedures in more diverse cases.

To modify records, you can specify KeyFields. If they are not specified, TUniQuery will

retrieve primary keys for UpdatingTable from metadata. TUniQuery can automatically update

only one table. Updating table is defined by the UpdatingTable property if this property is set.

Otherwise, the table a field of which is the first field in the field list in the SELECT clause is

used as an updating table.

The SQLInsert, SQLDelete, SQLUpdate, SQLRefresh properties support automatic binding of

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components966

© 2024 Devart

parameters which have identical names to fields captions. To retrieve the value of a field as it

was before the operation use the field name with the 'OLD_' prefix. This is especially useful

when doing field comparisons in the WHERE clause of the statement. Use the

TCustomDADataSet.BeforeUpdateExecute event to assign the value to additional parameters

and the TCustomDADataSet.AfterUpdateExecute event to read them.

Inheritance Hierarchy

TMemDataSet

 TCustomDADataSet

 TCustomUniDataSet

 TUniQuery

See Also
Master/Detail Relationships

TUniStoredProc

TUniTable

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.13.1 Members

TUniQuery class overview.

Properties

Name Description

BaseSQL (inherited from TCustomDADataSet)
Used to return SQL text
without any changes
performed by AddWhere,
SetOrderBy, and FilterSQL.

CachedUpdates (inherited from TMemDataSet)
Used to enable or disable
the use of cached updates
for a dataset.

Conditions (inherited from TCustomDADataSet) Used to add WHERE
conditions to a query

Connection (inherited from TCustomDADataSet)
Used to specify a
connection object to use to
connect to a data store.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 967

© 2024 Devart

DataTypeMap (inherited from TCustomDADataSet) Used to set data type
mapping rules

Debug (inherited from TCustomDADataSet)
Used to display the
statement that is being
executed and the values and
types of its parameters.

DetailFields (inherited from TCustomDADataSet)

Used to specify the fields
that correspond to the
foreign key fields from
MasterFields when building
master/detail relationship.

Disconnected (inherited from TCustomDADataSet)
Used to keep dataset
opened after connection is
closed.

DMLRefresh (inherited from TCustomUniDataSet)
Used to refresh record by
RETURNING clause when
insert or update is
performed.

FetchRows (inherited from TCustomDADataSet)
Used to define the number
of rows to be transferred
across the network at the
same time.

FilterSQL (inherited from TCustomDADataSet)
Used to change the WHERE
clause of SELECT
statement and reopen a
query.

FinalSQL (inherited from TCustomDADataSet)

Used to return SQL text with
all changes performed by
AddWhere, SetOrderBy,
and FilterSQL, and with
expanded macros.

IndexFieldNames (inherited from TMemDataSet)
Used to get or set the list of
fields on which the recordset
is sorted.

IsQuery (inherited from TCustomDADataSet) Used to check whether SQL
statement returns rows.

KeyExclusive (inherited from TMemDataSet)
Specifies the upper and
lower boundaries for a
range.

KeyFields (inherited from TCustomDADataSet)

Used to build SQL
statements for the
SQLDelete, SQLInsert, and
SQLUpdate properties if
they were empty before
updating the database.

Universal Data Access Components968

© 2024 Devart

LastInsertId (inherited from TCustomUniDataSet)

Can be used with MySQL
and PostgreSQL servers to
get the value of the ID field
after executing INSERT
statement.

LocalConstraints (inherited from TMemDataSet)

Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet)
Used to prevent implicit
update of rows on database
server.

LockMode
Used to specify what kind of
lock will be performed when
editing a record.

MacroCount (inherited from TCustomDADataSet)
Used to get the number of
macros associated with the
Macros property.

Macros (inherited from TCustomDADataSet) Makes it possible to change
SQL queries easily.

MasterFields (inherited from TCustomDADataSet)

Used to specify the names
of one or more fields that are
used as foreign keys for
dataset when establishing
detail/master relationship
between it and the dataset
specified in MasterSource.

MasterSource (inherited from TCustomDADataSet)
Used to specify the data
source component which
binds current dataset to the
master one.

Options (inherited from TCustomUniDataSet) Specifies the behaviour of a
TCustomUniDataSet object.

ParamCheck (inherited from TCustomDADataSet)

Used to specify whether
parameters for the Params
property are generated
automatically after the SQL
property was changed.

ParamCount (inherited from TCustomDADataSet)
Used to indicate how many
parameters are there in the
Params property.

Params (inherited from TCustomUniDataSet) Holds the parameters for a
query's SQL statement.

Reference 969

© 2024 Devart

Prepared (inherited from TMemDataSet)
Determines whether a query
is prepared for execution or
not.

Ranged (inherited from TMemDataSet) Indicates whether a range is
applied to a dataset.

ReadOnly (inherited from TCustomDADataSet)
Used to prevent users from
updating, inserting, or
deleting data in the dataset.

RefreshOptions (inherited from TCustomDADataSet) Used to indicate when the
editing record is refreshed.

RowsAffected (inherited from TCustomDADataSet)
Used to indicate the number
of rows which were inserted,
updated, or deleted during
the last query operation.

SpecificOptions (inherited from TCustomUniDataSet)
Used to provide extended
settings for each data
provider.

SQL (inherited from TCustomDADataSet)
Used to provide a SQL
statement that a query
component executes when
its Open method is called.

SQLDelete (inherited from TCustomDADataSet)
Used to specify a SQL
statement that will be used
when applying a deletion to
a record.

SQLInsert (inherited from TCustomDADataSet)
Used to specify the SQL
statement that will be used
when applying an insertion
to a dataset.

SQLLock (inherited from TCustomDADataSet)
Used to specify a SQL
statement that will be used
to perform a record lock.

SQLRecCount (inherited from TCustomDADataSet)
Used to specify the SQL
statement that is used to get
the record count when
opening a dataset.

SQLRefresh (inherited from TCustomDADataSet)

Used to specify a SQL
statement that will be used
to refresh current record by
calling the
TCustomDADataSet.Refres
hRecord procedure.

SQLUpdate (inherited from TCustomDADataSet) Used to specify a SQL
statement that will be used

Universal Data Access Components970

© 2024 Devart

when applying an update to
a dataset.

Transaction (inherited from TCustomUniDataSet)

Used to specify the
TUniTransaction object in
the context of which SQL
commands will be executed,
and queries retrieving data
will be opened.

UniDirectional (inherited from TCustomDADataSet)
Used if an application does
not need bidirectional
access to records in the
result set.

UpdateObject (inherited from TCustomUniDataSet)

Points to an update object
component which provides
update SQL statements or
update objects for flexible
data update.

UpdateRecordTypes (inherited from TMemDataSet)
Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

UpdateTransaction (inherited from

TCustomUniDataSet)

Used to specify the
TUniTransaction object in
the context of which update
commands will be executed.

UpdatingTable

Used to specify which table
in a query is assumed to be
the target for subsequent
data-modification queries as
a result of user incentive to
insert, update or delete
records.

Methods

Name Description

AddWhere (inherited from TCustomDADataSet)
Adds condition to the
WHERE clause of SELECT
statement in the SQL
property.

ApplyRange (inherited from TMemDataSet) Applies a range to the
dataset.

Reference 971

© 2024 Devart

ApplyUpdates (inherited from TMemDataSet)
Overloaded. Writes
dataset's pending cached
updates to a database.

BreakExec (inherited from TCustomDADataSet) Breaks execution of the SQL
statement on the server.

CancelRange (inherited from TMemDataSet)
Removes any ranges
currently in effect for a
dataset.

CancelUpdates (inherited from TMemDataSet)
Clears all pending cached
updates from cache and
restores dataset in its prior
state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates
buffer.

CreateBlobStream (inherited from TCustomDADataSet)

Used to obtain a stream for
reading data from or writing
data to a BLOB field,
specified by the Field
parameter.

CreateProcCall (inherited from TCustomUniDataSet)
Assigns a command that
calls stored procedure
specified by name to the
SQL property.

DeferredPost (inherited from TMemDataSet) Makes permanent changes
to the database server.

DeleteWhere (inherited from TCustomDADataSet)
Removes WHERE clause
from the SQL property and
assigns the BaseSQL
property.

EditRangeEnd (inherited from TMemDataSet)
Enables changing the
ending value for an existing
range.

EditRangeStart (inherited from TMemDataSet)
Enables changing the
starting value for an existing
range.

Execute (inherited from TCustomDADataSet)
Overloaded. Executes a
SQL statement on the
server.

Executing (inherited from TCustomDADataSet)
Indicates whether SQL
statement is still being
executed.

Fetched (inherited from TCustomDADataSet)
Used to find out whether
TCustomDADataSet has
fetched all rows.

Universal Data Access Components972

© 2024 Devart

Fetching (inherited from TCustomDADataSet)
Used to learn whether
TCustomDADataSet is still
fetching rows.

FetchingAll (inherited from TCustomDADataSet)
Used to learn whether
TCustomDADataSet is
fetching all rows to the end.

FindKey (inherited from TCustomDADataSet)
Searches for a record which
contains specified field
values.

FindMacro (inherited from TCustomDADataSet) Finds a macro with the
specified name.

FindNearest (inherited from TCustomDADataSet)

Moves the cursor to a
specific record or to the first
record in the dataset that
matches or is greater than
the values specified in the
KeyValues parameter.

FindParam (inherited from TCustomUniDataSet)
Determines if parameter
with the specified name
exists in a dataset.

GetBlob (inherited from TMemDataSet)

Overloaded. Retrieves
TBlob object for a field or
current record when only its
name or the field itself is
known.

GetDataType (inherited from TCustomDADataSet)
Returns internal field types
defined in the MemData and
accompanying modules.

GetFieldObject (inherited from TCustomDADataSet) Returns a multireference
shared object from field.

GetFieldPrecision (inherited from TCustomDADataSet) Retrieves the precision of a
number field.

GetFieldScale (inherited from TCustomDADataSet) Retrieves the scale of a
number field.

GetKeyFieldNames (inherited from

TCustomDADataSet)
Provides a list of available
key field names.

GetOrderBy (inherited from TCustomDADataSet)
Retrieves an ORDER BY
clause from a SQL
statement.

GotoCurrent (inherited from TCustomDADataSet)
Sets the current record in
this dataset similar to the
current record in another
dataset.

Reference 973

© 2024 Devart

Locate (inherited from TMemDataSet)
Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

LocateEx (inherited from TMemDataSet)

Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

Lock (inherited from TCustomDADataSet) Locks the current record.

MacroByName (inherited from TCustomDADataSet) Finds a macro with the
specified name.

OpenNext (inherited from TCustomUniDataSet)
Provides second and other
result sets while executing
multiresult query.

ParamByName (inherited from TCustomUniDataSet)
Accesses parameter
information based on a
specified parameter name.

Prepare (inherited from TCustomDADataSet) Allocates, opens, and
parses cursor for a query.

RefreshRecord (inherited from TCustomDADataSet) Actualizes field values for
the current record.

RestoreSQL (inherited from TCustomDADataSet)
Restores the SQL property
modified by AddWhere and
SetOrderBy.

RestoreUpdates (inherited from TMemDataSet)
Marks all records in the
cache of updates as
unapplied.

RevertRecord (inherited from TMemDataSet)
Cancels changes made to
the current record when
cached updates are
enabled.

SaveSQL (inherited from TCustomDADataSet) Saves the SQL property
value to BaseSQL.

SaveToXML (inherited from TMemDataSet)

Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

SetOrderBy (inherited from TCustomDADataSet) Builds an ORDER BY clause
of a SELECT statement.

SetRange (inherited from TMemDataSet)
Sets the starting and ending
values of a range, and
applies it.

Universal Data Access Components974

© 2024 Devart

SetRangeEnd (inherited from TMemDataSet)

Indicates that subsequent
assignments to field values
specify the end of the range
of rows to include in the
dataset.

SetRangeStart (inherited from TMemDataSet)

Indicates that subsequent
assignments to field values
specify the start of the range
of rows to include in the
dataset.

SQLSaved (inherited from TCustomDADataSet)
Determines if the SQL
property value was saved to
the BaseSQL property.

UnLock (inherited from TCustomDADataSet) Releases a record lock.

UnPrepare (inherited from TMemDataSet)
Frees the resources
allocated for a previously
prepared query on the
server and client sides.

UpdateResult (inherited from TMemDataSet)

Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are
enabled.

UpdateStatus (inherited from TMemDataSet)
Indicates the current update
status for the dataset when
cached updates are
enabled.

Events

Name Description

AfterExecute (inherited from TCustomDADataSet)
Occurs after a component
has executed a query to
database.

AfterFetch (inherited from TCustomDADataSet) Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute (inherited from

TCustomDADataSet)

Occurs after executing
insert, delete, update, lock
and refresh operations.

BeforeFetch (inherited from TCustomDADataSet)
Occurs before dataset is
going to fetch block of
records from the server.

Reference 975

© 2024 Devart

BeforeUpdateExecute (inherited from

TCustomDADataSet)

Occurs before executing
insert, delete, update, lock,
and refresh operations.

OnUpdateError (inherited from TMemDataSet)
Occurs when an exception is
generated while cached
updates are applied to a
database.

OnUpdateRecord (inherited from TMemDataSet)
Occurs when a single
update component can not
handle the updates.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.13.2 Properties

Properties of the TUniQuery class.

For a complete list of the TUniQuery class members, see the TUniQuery Members topic.

Public

Name Description

BaseSQL (inherited from TCustomDADataSet)
Used to return SQL text
without any changes
performed by AddWhere,
SetOrderBy, and FilterSQL.

CachedUpdates (inherited from TMemDataSet)
Used to enable or disable
the use of cached updates
for a dataset.

Conditions (inherited from TCustomDADataSet) Used to add WHERE
conditions to a query

Connection (inherited from TCustomDADataSet)
Used to specify a
connection object to use to
connect to a data store.

DataTypeMap (inherited from TCustomDADataSet) Used to set data type
mapping rules

Debug (inherited from TCustomDADataSet)
Used to display the
statement that is being
executed and the values and
types of its parameters.

DetailFields (inherited from TCustomDADataSet)
Used to specify the fields
that correspond to the
foreign key fields from

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components976

© 2024 Devart

MasterFields when building
master/detail relationship.

Disconnected (inherited from TCustomDADataSet)
Used to keep dataset
opened after connection is
closed.

DMLRefresh (inherited from TCustomUniDataSet)
Used to refresh record by
RETURNING clause when
insert or update is
performed.

FetchRows (inherited from TCustomDADataSet)
Used to define the number
of rows to be transferred
across the network at the
same time.

FilterSQL (inherited from TCustomDADataSet)
Used to change the WHERE
clause of SELECT
statement and reopen a
query.

FinalSQL (inherited from TCustomDADataSet)

Used to return SQL text with
all changes performed by
AddWhere, SetOrderBy,
and FilterSQL, and with
expanded macros.

IndexFieldNames (inherited from TMemDataSet)
Used to get or set the list of
fields on which the recordset
is sorted.

IsQuery (inherited from TCustomDADataSet) Used to check whether SQL
statement returns rows.

KeyExclusive (inherited from TMemDataSet)
Specifies the upper and
lower boundaries for a
range.

KeyFields (inherited from TCustomDADataSet)

Used to build SQL
statements for the
SQLDelete, SQLInsert, and
SQLUpdate properties if
they were empty before
updating the database.

LastInsertId (inherited from TCustomUniDataSet)

Can be used with MySQL
and PostgreSQL servers to
get the value of the ID field
after executing INSERT
statement.

LocalConstraints (inherited from TMemDataSet)

Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of

Reference 977

© 2024 Devart

opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet)
Used to prevent implicit
update of rows on database
server.

MacroCount (inherited from TCustomDADataSet)
Used to get the number of
macros associated with the
Macros property.

Macros (inherited from TCustomDADataSet) Makes it possible to change
SQL queries easily.

MasterFields (inherited from TCustomDADataSet)

Used to specify the names
of one or more fields that are
used as foreign keys for
dataset when establishing
detail/master relationship
between it and the dataset
specified in MasterSource.

MasterSource (inherited from TCustomDADataSet)
Used to specify the data
source component which
binds current dataset to the
master one.

Options (inherited from TCustomUniDataSet) Specifies the behaviour of a
TCustomUniDataSet object.

ParamCheck (inherited from TCustomDADataSet)

Used to specify whether
parameters for the Params
property are generated
automatically after the SQL
property was changed.

ParamCount (inherited from TCustomDADataSet)
Used to indicate how many
parameters are there in the
Params property.

Params (inherited from TCustomUniDataSet) Holds the parameters for a
query's SQL statement.

Prepared (inherited from TMemDataSet)
Determines whether a query
is prepared for execution or
not.

Ranged (inherited from TMemDataSet) Indicates whether a range is
applied to a dataset.

ReadOnly (inherited from TCustomDADataSet)
Used to prevent users from
updating, inserting, or
deleting data in the dataset.

RefreshOptions (inherited from TCustomDADataSet) Used to indicate when the
editing record is refreshed.

RowsAffected (inherited from TCustomDADataSet) Used to indicate the number
of rows which were inserted,

Universal Data Access Components978

© 2024 Devart

updated, or deleted during
the last query operation.

SpecificOptions (inherited from TCustomUniDataSet)
Used to provide extended
settings for each data
provider.

SQL (inherited from TCustomDADataSet)
Used to provide a SQL
statement that a query
component executes when
its Open method is called.

SQLDelete (inherited from TCustomDADataSet)
Used to specify a SQL
statement that will be used
when applying a deletion to
a record.

SQLInsert (inherited from TCustomDADataSet)
Used to specify the SQL
statement that will be used
when applying an insertion
to a dataset.

SQLLock (inherited from TCustomDADataSet)
Used to specify a SQL
statement that will be used
to perform a record lock.

SQLRecCount (inherited from TCustomDADataSet)
Used to specify the SQL
statement that is used to get
the record count when
opening a dataset.

SQLRefresh (inherited from TCustomDADataSet)

Used to specify a SQL
statement that will be used
to refresh current record by
calling the
TCustomDADataSet.Refres
hRecord procedure.

SQLUpdate (inherited from TCustomDADataSet)
Used to specify a SQL
statement that will be used
when applying an update to
a dataset.

Transaction (inherited from TCustomUniDataSet)

Used to specify the
TUniTransaction object in
the context of which SQL
commands will be executed,
and queries retrieving data
will be opened.

UniDirectional (inherited from TCustomDADataSet)
Used if an application does
not need bidirectional
access to records in the
result set.

Reference 979

© 2024 Devart

UpdateObject (inherited from TCustomUniDataSet)

Points to an update object
component which provides
update SQL statements or
update objects for flexible
data update.

UpdateRecordTypes (inherited from TMemDataSet)
Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

UpdateTransaction (inherited from

TCustomUniDataSet)

Used to specify the
TUniTransaction object in
the context of which update
commands will be executed.

Published

Name Description

LockMode
Used to specify what kind of
lock will be performed when
editing a record.

UpdatingTable

Used to specify which table
in a query is assumed to be
the target for subsequent
data-modification queries as
a result of user incentive to
insert, update or delete
records.

See Also
TUniQuery Class

TUniQuery Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.13.2.1 LockMode Property

Used to specify what kind of lock will be performed when editing a record.

Class

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components980

© 2024 Devart

TUniQuery

Syntax

property LockMode: TLockMode;

Remarks

Use the LockMode property to define what kind of lock will be performed when editing a

record. Locking a record is useful in creating multi-user applications. It prevents modification

of a record by several users at the same time.

Locking is performed by the RefreshRecord method.

The default value is lmNone.

See Also
TUniStoredProc.LockMode

TUniTable.LockMode

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.13.2.2 UpdatingTable Property

Used to specify which table in a query is assumed to be the target for subsequent data-

modification queries as a result of user incentive to insert, update or delete records.

Class

TUniQuery

Syntax

property UpdatingTable: string;

Remarks

Use the UpdatingTable property to specify which table in a query is assumed to be the target

for the subsequent data-modification queries as a result of user incentive to insert, update or

delete records.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 981

© 2024 Devart

This property is used on Insert, Update, Delete or RefreshRecord (see also

TCustomUniDataSet.Options) if appropriate SQL (SQLInsert, SQLUpdate or SQLDelete) is

not provided.

If UpdatingTable is not set then the first table used in a query is assumed to be the target.

Example

For example:

1. For the query where the only allowed value for UpdatingTable property is 'Orders';

2. For the query where allowed values for UpdatingTable are 'Orders' and 'Order Details'.

In the first case (or on default) editable field is ShipName, in the second - Quantity field.

Example 1.
 SELECT OrderID, ShipName FROM Orders;
Example 2.
 SELECT A.OrderID, A.ShipName, B.Quantity FROM Orders A,
 [Order Details] B WHERE (A.OrderID=B.OrderID);

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.14 TUniSQL Class

A component for executing SQL statements and calling stored procedures on the database

server.

For a list of all members of this type, see TUniSQL members.

Unit

Uni

Syntax

TUniSQL = class(TCustomDASQL);

Remarks

The TUniSQL component is a direct descendant of the TCustomDASQL class.

Use The TUniSQL component when a client application must execute SQL statement or the

PL/SQL block, and call stored procedure on the database server. The SQL statement should

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components982

© 2024 Devart

not retrieve rows from the database.

Inheritance Hierarchy

TCustomDASQL

 TUniSQL

See Also
TUniQuery

TUniScript

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.14.1 Members

TUniSQL class overview.

Properties

Name Description

ChangeCursor (inherited from TCustomDASQL)
Enables or disables
changing screen cursor
when executing commands
in the NonBlocking mode.

Connection
Used to specify the
connection in which the
script will be executed.

Debug (inherited from TCustomDASQL)
Used to display the
statement that is being
executed and the values and
types of its parameters.

FinalSQL (inherited from TCustomDASQL)
Used to return a SQL
statement with expanded
macros.

LastInsertId

Can be used with MySQL
and PostgreSQL servers to
get the value of the ID field
after executing INSERT
statement.

MacroCount (inherited from TCustomDASQL) Used to get the number of
macros associated with the

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 983

© 2024 Devart

Macros property.

Macros (inherited from TCustomDASQL) Makes it possible to change
SQL queries easily.

ParamCheck (inherited from TCustomDASQL)

Used to specify whether
parameters for the Params
property are implicitly
generated when the SQL
property is being changed.

ParamCount (inherited from TCustomDASQL)
Indicates the number of
parameters in the Params
property.

Params (inherited from TCustomDASQL) Used to contain parameters
for a SQL statement.

ParamValues (inherited from TCustomDASQL)
Used to get or set the values
of individual field
parameters that are
identified by name.

Prepared (inherited from TCustomDASQL)
Used to indicate whether a
query is prepared for
execution.

RowsAffected (inherited from TCustomDASQL)
Used to indicate the number
of rows which were inserted,
updated, or deleted during
the last query operation.

SpecificOptions Provides extended settings
for each data provider.

SQL (inherited from TCustomDASQL)

Used to provide a SQL
statement that a
TCustomDASQL
component executes when
the Execute method is
called.

Transaction

Used to specify the
TUniTransaction object in
the context of which SQL
commands will be executed,
and queries retrieving data
will be opened.

Methods

Name Description

BreakExec (inherited from TCustomDASQL) Breaks execution of an SQL
satatement on the server.

Universal Data Access Components984

© 2024 Devart

CreateProcCall

Assigns a command that
calls stored procedure
specified by Name to the
SQL property.

Execute (inherited from TCustomDASQL)
Overloaded. Executes a
SQL statement on the
server.

Executing (inherited from TCustomDASQL)
Checks whether
TCustomDASQL still
executes a SQL statement.

FindMacro (inherited from TCustomDASQL) Finds a macro with the
specified name.

FindParam Searches for a parameter
with the specified name.

MacroByName (inherited from TCustomDASQL) Finds a macro with the
specified name.

ParamByName Searches for a parameter
with the specified name.

Prepare (inherited from TCustomDASQL) Allocates, opens, and
parses cursor for a query.

UnPrepare (inherited from TCustomDASQL)
Frees the resources
allocated for a previously
prepared query on the
server and client sides.

WaitExecuting (inherited from TCustomDASQL) Waits until TCustomDASQL
executes a SQL statement.

Events

Name Description

AfterExecute (inherited from TCustomDASQL)
Occurs after a SQL
statement has been
executed.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.14.2 Properties

Properties of the TUniSQL class.

For a complete list of the TUniSQL class members, see the TUniSQL Members topic.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 985

© 2024 Devart

Public

Name Description

ChangeCursor (inherited from TCustomDASQL)
Enables or disables
changing screen cursor
when executing commands
in the NonBlocking mode.

Debug (inherited from TCustomDASQL)
Used to display the
statement that is being
executed and the values and
types of its parameters.

FinalSQL (inherited from TCustomDASQL)
Used to return a SQL
statement with expanded
macros.

LastInsertId

Can be used with MySQL
and PostgreSQL servers to
get the value of the ID field
after executing INSERT
statement.

MacroCount (inherited from TCustomDASQL)
Used to get the number of
macros associated with the
Macros property.

Macros (inherited from TCustomDASQL) Makes it possible to change
SQL queries easily.

ParamCheck (inherited from TCustomDASQL)

Used to specify whether
parameters for the Params
property are implicitly
generated when the SQL
property is being changed.

ParamCount (inherited from TCustomDASQL)
Indicates the number of
parameters in the Params
property.

Params (inherited from TCustomDASQL) Used to contain parameters
for a SQL statement.

ParamValues (inherited from TCustomDASQL)
Used to get or set the values
of individual field
parameters that are
identified by name.

Prepared (inherited from TCustomDASQL)
Used to indicate whether a
query is prepared for
execution.

RowsAffected (inherited from TCustomDASQL)
Used to indicate the number
of rows which were inserted,
updated, or deleted during

Universal Data Access Components986

© 2024 Devart

the last query operation.

SQL (inherited from TCustomDASQL)

Used to provide a SQL
statement that a
TCustomDASQL
component executes when
the Execute method is
called.

Published

Name Description

Connection
Used to specify the
connection in which the
script will be executed.

SpecificOptions Provides extended settings
for each data provider.

Transaction

Used to specify the
TUniTransaction object in
the context of which SQL
commands will be executed,
and queries retrieving data
will be opened.

See Also
TUniSQL Class

TUniSQL Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.14.2.1 Connection Property

Used to specify the connection in which the script will be executed.

Class

TUniSQL

Syntax

property Connection: TUniConnection;

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 987

© 2024 Devart

Remarks

Use the Connection property to specify the connection in which the script will be executed. If

Connection is not connected, the TCustomDASQL.Execute method calls the Connect

method of Connection.

See Also
TUniConnection

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.14.2.2 LastInsertId Property

Can be used with MySQL and PostgreSQL servers to get the value of the ID field after

executing INSERT statement.

Class

TUniSQL

Syntax

property LastInsertId: int64;

Remarks

The LastInsertId property can be used with MySQL and PostgreSQL servers to get the value

of the ID field after executing INSERT statement.

For MySQL LastInsertId returns the ID generated for an AUTO_INCREMENT column by the

previous query. Use this property after you have performed an INSERT query into a table that

contains an AUTO_INCREMENT field.

For PostgreSQL LastInsertId returns the OID value generated for an OID column in a table

with OIDs by the previous query.

If the query does not perform insertion into a table that contains field of the types specified

above, the value of LastInsertId won't be defined.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components988

© 2024 Devart

6.19.1.14.2.3 Specif icOptions Property

Provides extended settings for each data provider.

Class

TUniSQL

Syntax

property SpecificOptions: TSpecificOptionsList;

Remarks

Use the SpecificOptions property to provide extended settings for each data provider.

SpecificOptions can be setup both design time and run time.

At design time call the component editor by double click on it, and select the Options tab in

the editor. Calling the SpecificOptions editor from the Object Inspector will open the

component editor with Options tab active. Type or select the provider name, and change

values of required properties. Then you can either close the editor, or select another provider

name. Settings for all providers will be saved.

SpecificOptions can be setup at the same time for all providers that supposed to be used.

All options are applied right before executing. If an option name is not recognized, an

exception is raised and commands are not executed.

Example

You can also setup specific options at run time. Either of two formats can be used:

1. Using the provider name in an option name;

2. Not using the provider name in an option name.

In the second case options will be applied to the current provider, namely to the provider

specified in the TUniConnection.ProviderName property of assigned connection.

When you set the AutoDDL option like it is shown in the second example, you can execute

the script with the InterBase provider, but attempt to execute it with other providers will fail.

Example 1.
 UniSQL1.SpecificOptions.Add('InterBase.AutoDDL=True')
Example 2.
 UniSQL1.SpecificOptions.Add('AutoDDL=True')

Reference 989

© 2024 Devart

See Also
TUniConnection.ProviderName

Using Oracle data access provider with UniDAC in Delphi

Using SQL Server data access provider with UniDAC in Delphi

Using MySQL data access provider with UniDAC in Delphi

Using InterBase data access provider with UniDAC in Delphi

Using PostgreSQL data access provider with UniDAC in Delphi

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.14.2.4 Transaction Property

Used to specify the TUniTransaction object in the context of which SQL commands will be

executed, and queries retrieving data will be opened.

Class

TUniSQL

Syntax

property Transaction: TUniTransaction stored IsTransactionStored;

Remarks

Use the Transaction property to specify the TUniTransaction object in the context of which

SQL commands will be executed, and queries retrieving data will be opened. If this property is

not specified, the default transaction associated with linked TUniConnection will be used. This

transaction will work in AutoCommit mode.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.14.3 Methods

Methods of the TUniSQL class.

For a complete list of the TUniSQL class members, see the TUniSQL Members topic.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components990

© 2024 Devart

Public

Name Description

BreakExec (inherited from TCustomDASQL) Breaks execution of an SQL
satatement on the server.

CreateProcCall

Assigns a command that
calls stored procedure
specified by Name to the
SQL property.

Execute (inherited from TCustomDASQL)
Overloaded. Executes a
SQL statement on the
server.

Executing (inherited from TCustomDASQL)
Checks whether
TCustomDASQL still
executes a SQL statement.

FindMacro (inherited from TCustomDASQL) Finds a macro with the
specified name.

FindParam Searches for a parameter
with the specified name.

MacroByName (inherited from TCustomDASQL) Finds a macro with the
specified name.

ParamByName Searches for a parameter
with the specified name.

Prepare (inherited from TCustomDASQL) Allocates, opens, and
parses cursor for a query.

UnPrepare (inherited from TCustomDASQL)

Frees the resources
allocated for a previously
prepared query on the
server and client sides.

WaitExecuting (inherited from TCustomDASQL) Waits until TCustomDASQL
executes a SQL statement.

See Also
TUniSQL Class

TUniSQL Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 991

© 2024 Devart

6.19.1.14.3.1 CreateProcCall Method

Assigns a command that calls stored procedure specified by Name to the SQL property.

Class

TUniSQL

Syntax

procedure CreateProcCall(const Name: string);

Parameters

Name

Holds the stoped procedure name.

Remarks

Call the CreateProcCall method to assign a command that calls stored procedure specified

by Name to the SQL property. This procedure also retrieves information about parameters of

the procedure from server. After calling CreateProcCall you can assign parameter values of

the stored procedure using, for example, TCustomDASQL.Params or ParamByName, and

then execute it with the TCustomDASQL.Execute method.

See Also
TCustomDASQL.Execute

TUniStoredProc

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.14.3.2 FindParam Method

Searches for a parameter with the specified name.

Class

TUniSQL

Syntax

function FindParam(const Value: string): TUniParam;

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components992

© 2024 Devart

Parameters

Value

Holds the name of the parameter to search.

Return Value

a parameter, if a match is found. Nil otherwise.

Remarks

Call the FindParam method to find a parameter with the name passed in Name argument. If a

match is found, FindParam returns the parameter. Otherwise, it returns nil.

See Also
TUniParam

ParamByName

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.14.3.3 ParamByName Method

Searches for a parameter with the specified name.

Class

TUniSQL

Syntax

function ParamByName(const Value: string): TUniParam;

Parameters

Value

Holds the name of the parameter to search.

Return Value

a parameter, if a match is found. Nil otherwise.

Remarks

Call the ParamByName method to find a parameter with the name passed as Name.

If a match is found, ParamByName returns the parameter. Otherwise, it raises an exception.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 993

© 2024 Devart

Example

UniSQL1.Execute;
Edit1.Text := UniSQL1.ParamByName('Contact').AsString;

See Also
TUniParam

FindParam

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.15 TUniStoredProc Class

A component for accessing and executing stored procedures and functions.

For a list of all members of this type, see TUniStoredProc members.

Unit

Uni

Syntax

TUniStoredProc = class(TCustomUniDataSet);

Remarks

Use TUniStoredProc to access stored procedures on the database server.

You need only to define the StoredProcName property, and the SQL statement to call the

stored procedure will be generated automatically.

Use the Execute method at runtime to generate request that instructs server to execute

procedure and PrepareSQL to describe parameters at run time

Inheritance Hierarchy

TMemDataSet

 TCustomDADataSet

 TCustomUniDataSet

 TUniStoredProc

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components994

© 2024 Devart

See Also
TUniQuery

TUniSQL

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.15.1 Members

TUniStoredProc class overview.

Properties

Name Description

BaseSQL (inherited from TCustomDADataSet)
Used to return SQL text
without any changes
performed by AddWhere,
SetOrderBy, and FilterSQL.

CachedUpdates (inherited from TMemDataSet)
Used to enable or disable
the use of cached updates
for a dataset.

Conditions (inherited from TCustomDADataSet) Used to add WHERE
conditions to a query

Connection (inherited from TCustomDADataSet)
Used to specify a
connection object to use to
connect to a data store.

DataTypeMap (inherited from TCustomDADataSet) Used to set data type
mapping rules

Debug (inherited from TCustomDADataSet)
Used to display the
statement that is being
executed and the values and
types of its parameters.

DetailFields (inherited from TCustomDADataSet)

Used to specify the fields
that correspond to the
foreign key fields from
MasterFields when building
master/detail relationship.

Disconnected (inherited from TCustomDADataSet)
Used to keep dataset
opened after connection is
closed.

DMLRefresh (inherited from TCustomUniDataSet) Used to refresh record by
RETURNING clause when

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 995

© 2024 Devart

insert or update is
performed.

FetchRows (inherited from TCustomDADataSet)
Used to define the number
of rows to be transferred
across the network at the
same time.

FilterSQL (inherited from TCustomDADataSet)
Used to change the WHERE
clause of SELECT
statement and reopen a
query.

FinalSQL (inherited from TCustomDADataSet)

Used to return SQL text with
all changes performed by
AddWhere, SetOrderBy,
and FilterSQL, and with
expanded macros.

IndexFieldNames (inherited from TMemDataSet)
Used to get or set the list of
fields on which the recordset
is sorted.

IsQuery (inherited from TCustomDADataSet) Used to check whether SQL
statement returns rows.

KeyExclusive (inherited from TMemDataSet)
Specifies the upper and
lower boundaries for a
range.

KeyFields (inherited from TCustomDADataSet)

Used to build SQL
statements for the
SQLDelete, SQLInsert, and
SQLUpdate properties if
they were empty before
updating the database.

LastInsertId (inherited from TCustomUniDataSet)

Can be used with MySQL
and PostgreSQL servers to
get the value of the ID field
after executing INSERT
statement.

LocalConstraints (inherited from TMemDataSet)

Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet)
Used to prevent implicit
update of rows on database
server.

LockMode
Used to specify what kind of
lock will be performed when
editing a record.

Universal Data Access Components996

© 2024 Devart

MacroCount (inherited from TCustomDADataSet)
Used to get the number of
macros associated with the
Macros property.

Macros (inherited from TCustomDADataSet) Makes it possible to change
SQL queries easily.

MasterFields (inherited from TCustomDADataSet)

Used to specify the names
of one or more fields that are
used as foreign keys for
dataset when establishing
detail/master relationship
between it and the dataset
specified in MasterSource.

MasterSource (inherited from TCustomDADataSet)
Used to specify the data
source component which
binds current dataset to the
master one.

Options (inherited from TCustomUniDataSet) Specifies the behaviour of a
TCustomUniDataSet object.

ParamCheck (inherited from TCustomDADataSet)

Used to specify whether
parameters for the Params
property are generated
automatically after the SQL
property was changed.

ParamCount (inherited from TCustomDADataSet)
Used to indicate how many
parameters are there in the
Params property.

Params (inherited from TCustomUniDataSet) Holds the parameters for a
query's SQL statement.

Prepared (inherited from TMemDataSet)
Determines whether a query
is prepared for execution or
not.

Ranged (inherited from TMemDataSet) Indicates whether a range is
applied to a dataset.

ReadOnly (inherited from TCustomDADataSet)
Used to prevent users from
updating, inserting, or
deleting data in the dataset.

RefreshOptions (inherited from TCustomDADataSet) Used to indicate when the
editing record is refreshed.

RowsAffected (inherited from TCustomDADataSet)
Used to indicate the number
of rows which were inserted,
updated, or deleted during
the last query operation.

SpecificOptions (inherited from TCustomUniDataSet) Used to provide extended
settings for each data

Reference 997

© 2024 Devart

provider.

SQL (inherited from TCustomDADataSet)
Used to provide a SQL
statement that a query
component executes when
its Open method is called.

SQLDelete (inherited from TCustomDADataSet)
Used to specify a SQL
statement that will be used
when applying a deletion to
a record.

SQLInsert (inherited from TCustomDADataSet)
Used to specify the SQL
statement that will be used
when applying an insertion
to a dataset.

SQLLock (inherited from TCustomDADataSet)
Used to specify a SQL
statement that will be used
to perform a record lock.

SQLRecCount (inherited from TCustomDADataSet)
Used to specify the SQL
statement that is used to get
the record count when
opening a dataset.

SQLRefresh (inherited from TCustomDADataSet)

Used to specify a SQL
statement that will be used
to refresh current record by
calling the
TCustomDADataSet.Refres
hRecord procedure.

SQLUpdate (inherited from TCustomDADataSet)
Used to specify a SQL
statement that will be used
when applying an update to
a dataset.

StoredProcName
Used to specify the name of
the stored procedure to call
on the server.

Transaction (inherited from TCustomUniDataSet)

Used to specify the
TUniTransaction object in
the context of which SQL
commands will be executed,
and queries retrieving data
will be opened.

UniDirectional (inherited from TCustomDADataSet)
Used if an application does
not need bidirectional
access to records in the
result set.

UpdateObject (inherited from TCustomUniDataSet) Points to an update object
component which provides

Universal Data Access Components998

© 2024 Devart

update SQL statements or
update objects for flexible
data update.

UpdateRecordTypes (inherited from TMemDataSet)
Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

UpdateTransaction (inherited from

TCustomUniDataSet)

Used to specify the
TUniTransaction object in
the context of which update
commands will be executed.

Methods

Name Description

AddWhere (inherited from TCustomDADataSet)
Adds condition to the
WHERE clause of SELECT
statement in the SQL
property.

ApplyRange (inherited from TMemDataSet) Applies a range to the
dataset.

ApplyUpdates (inherited from TMemDataSet)
Overloaded. Writes
dataset's pending cached
updates to a database.

BreakExec (inherited from TCustomDADataSet) Breaks execution of the SQL
statement on the server.

CancelRange (inherited from TMemDataSet)
Removes any ranges
currently in effect for a
dataset.

CancelUpdates (inherited from TMemDataSet)
Clears all pending cached
updates from cache and
restores dataset in its prior
state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates
buffer.

CreateBlobStream (inherited from TCustomDADataSet)

Used to obtain a stream for
reading data from or writing
data to a BLOB field,
specified by the Field
parameter.

CreateProcCall (inherited from TCustomUniDataSet) Assigns a command that
calls stored procedure

Reference 999

© 2024 Devart

specified by name to the
SQL property.

DeferredPost (inherited from TMemDataSet) Makes permanent changes
to the database server.

DeleteWhere (inherited from TCustomDADataSet)
Removes WHERE clause
from the SQL property and
assigns the BaseSQL
property.

EditRangeEnd (inherited from TMemDataSet)
Enables changing the
ending value for an existing
range.

EditRangeStart (inherited from TMemDataSet)
Enables changing the
starting value for an existing
range.

ExecProc Executes a SQL statement
on the server.

Execute (inherited from TCustomDADataSet)
Overloaded. Executes a
SQL statement on the
server.

Executing (inherited from TCustomDADataSet)
Indicates whether SQL
statement is still being
executed.

Fetched (inherited from TCustomDADataSet)
Used to find out whether
TCustomDADataSet has
fetched all rows.

Fetching (inherited from TCustomDADataSet)
Used to learn whether
TCustomDADataSet is still
fetching rows.

FetchingAll (inherited from TCustomDADataSet)
Used to learn whether
TCustomDADataSet is
fetching all rows to the end.

FindKey (inherited from TCustomDADataSet)
Searches for a record which
contains specified field
values.

FindMacro (inherited from TCustomDADataSet) Finds a macro with the
specified name.

FindNearest (inherited from TCustomDADataSet)

Moves the cursor to a
specific record or to the first
record in the dataset that
matches or is greater than
the values specified in the
KeyValues parameter.

FindParam (inherited from TCustomUniDataSet) Determines if parameter
with the specified name

Universal Data Access Components1000

© 2024 Devart

exists in a dataset.

GetBlob (inherited from TMemDataSet)

Overloaded. Retrieves
TBlob object for a field or
current record when only its
name or the field itself is
known.

GetDataType (inherited from TCustomDADataSet)
Returns internal field types
defined in the MemData and
accompanying modules.

GetFieldObject (inherited from TCustomDADataSet) Returns a multireference
shared object from field.

GetFieldPrecision (inherited from TCustomDADataSet) Retrieves the precision of a
number field.

GetFieldScale (inherited from TCustomDADataSet) Retrieves the scale of a
number field.

GetKeyFieldNames (inherited from

TCustomDADataSet)
Provides a list of available
key field names.

GetOrderBy (inherited from TCustomDADataSet)
Retrieves an ORDER BY
clause from a SQL
statement.

GotoCurrent (inherited from TCustomDADataSet)
Sets the current record in
this dataset similar to the
current record in another
dataset.

Locate (inherited from TMemDataSet)
Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

LocateEx (inherited from TMemDataSet)

Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

Lock (inherited from TCustomDADataSet) Locks the current record.

MacroByName (inherited from TCustomDADataSet) Finds a macro with the
specified name.

OpenNext (inherited from TCustomUniDataSet)
Provides second and other
result sets while executing
multiresult query.

ParamByName (inherited from TCustomUniDataSet)
Accesses parameter
information based on a
specified parameter name.

Reference 1001

© 2024 Devart

Prepare (inherited from TCustomDADataSet) Allocates, opens, and
parses cursor for a query.

PrepareSQL Describes the stored
procedure parameters.

RefreshRecord (inherited from TCustomDADataSet) Actualizes field values for
the current record.

RestoreSQL (inherited from TCustomDADataSet)
Restores the SQL property
modified by AddWhere and
SetOrderBy.

RestoreUpdates (inherited from TMemDataSet)
Marks all records in the
cache of updates as
unapplied.

RevertRecord (inherited from TMemDataSet)
Cancels changes made to
the current record when
cached updates are
enabled.

SaveSQL (inherited from TCustomDADataSet) Saves the SQL property
value to BaseSQL.

SaveToXML (inherited from TMemDataSet)

Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

SetOrderBy (inherited from TCustomDADataSet) Builds an ORDER BY clause
of a SELECT statement.

SetRange (inherited from TMemDataSet)
Sets the starting and ending
values of a range, and
applies it.

SetRangeEnd (inherited from TMemDataSet)

Indicates that subsequent
assignments to field values
specify the end of the range
of rows to include in the
dataset.

SetRangeStart (inherited from TMemDataSet)

Indicates that subsequent
assignments to field values
specify the start of the range
of rows to include in the
dataset.

SQLSaved (inherited from TCustomDADataSet)
Determines if the SQL
property value was saved to
the BaseSQL property.

UnLock (inherited from TCustomDADataSet) Releases a record lock.

UnPrepare (inherited from TMemDataSet) Frees the resources
allocated for a previously

Universal Data Access Components1002

© 2024 Devart

prepared query on the
server and client sides.

UpdateResult (inherited from TMemDataSet)

Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are
enabled.

UpdateStatus (inherited from TMemDataSet)
Indicates the current update
status for the dataset when
cached updates are
enabled.

Events

Name Description

AfterExecute (inherited from TCustomDADataSet)
Occurs after a component
has executed a query to
database.

AfterFetch (inherited from TCustomDADataSet) Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute (inherited from

TCustomDADataSet)

Occurs after executing
insert, delete, update, lock
and refresh operations.

BeforeFetch (inherited from TCustomDADataSet)
Occurs before dataset is
going to fetch block of
records from the server.

BeforeUpdateExecute (inherited from

TCustomDADataSet)

Occurs before executing
insert, delete, update, lock,
and refresh operations.

OnUpdateError (inherited from TMemDataSet)

Occurs when an exception is
generated while cached
updates are applied to a
database.

OnUpdateRecord (inherited from TMemDataSet)
Occurs when a single
update component can not
handle the updates.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1003

© 2024 Devart

6.19.1.15.2 Properties

Properties of the TUniStoredProc class.

For a complete list of the TUniStoredProc class members, see the TUniStoredProc

Members topic.

Public

Name Description

BaseSQL (inherited from TCustomDADataSet)
Used to return SQL text
without any changes
performed by AddWhere,
SetOrderBy, and FilterSQL.

CachedUpdates (inherited from TMemDataSet)
Used to enable or disable
the use of cached updates
for a dataset.

Conditions (inherited from TCustomDADataSet) Used to add WHERE
conditions to a query

Connection (inherited from TCustomDADataSet)
Used to specify a
connection object to use to
connect to a data store.

DataTypeMap (inherited from TCustomDADataSet) Used to set data type
mapping rules

Debug (inherited from TCustomDADataSet)
Used to display the
statement that is being
executed and the values and
types of its parameters.

DetailFields (inherited from TCustomDADataSet)

Used to specify the fields
that correspond to the
foreign key fields from
MasterFields when building
master/detail relationship.

Disconnected (inherited from TCustomDADataSet)
Used to keep dataset
opened after connection is
closed.

DMLRefresh (inherited from TCustomUniDataSet)
Used to refresh record by
RETURNING clause when
insert or update is
performed.

FetchRows (inherited from TCustomDADataSet)
Used to define the number
of rows to be transferred
across the network at the
same time.

Universal Data Access Components1004

© 2024 Devart

FilterSQL (inherited from TCustomDADataSet)
Used to change the WHERE
clause of SELECT
statement and reopen a
query.

FinalSQL (inherited from TCustomDADataSet)

Used to return SQL text with
all changes performed by
AddWhere, SetOrderBy,
and FilterSQL, and with
expanded macros.

IndexFieldNames (inherited from TMemDataSet)
Used to get or set the list of
fields on which the recordset
is sorted.

IsQuery (inherited from TCustomDADataSet) Used to check whether SQL
statement returns rows.

KeyExclusive (inherited from TMemDataSet)
Specifies the upper and
lower boundaries for a
range.

KeyFields (inherited from TCustomDADataSet)

Used to build SQL
statements for the
SQLDelete, SQLInsert, and
SQLUpdate properties if
they were empty before
updating the database.

LastInsertId (inherited from TCustomUniDataSet)

Can be used with MySQL
and PostgreSQL servers to
get the value of the ID field
after executing INSERT
statement.

LocalConstraints (inherited from TMemDataSet)

Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet)
Used to prevent implicit
update of rows on database
server.

MacroCount (inherited from TCustomDADataSet)
Used to get the number of
macros associated with the
Macros property.

Macros (inherited from TCustomDADataSet) Makes it possible to change
SQL queries easily.

MasterFields (inherited from TCustomDADataSet)

Used to specify the names
of one or more fields that are
used as foreign keys for
dataset when establishing

Reference 1005

© 2024 Devart

detail/master relationship
between it and the dataset
specified in MasterSource.

MasterSource (inherited from TCustomDADataSet)
Used to specify the data
source component which
binds current dataset to the
master one.

Options (inherited from TCustomUniDataSet) Specifies the behaviour of a
TCustomUniDataSet object.

ParamCheck (inherited from TCustomDADataSet)

Used to specify whether
parameters for the Params
property are generated
automatically after the SQL
property was changed.

ParamCount (inherited from TCustomDADataSet)
Used to indicate how many
parameters are there in the
Params property.

Params (inherited from TCustomUniDataSet) Holds the parameters for a
query's SQL statement.

Prepared (inherited from TMemDataSet)
Determines whether a query
is prepared for execution or
not.

Ranged (inherited from TMemDataSet) Indicates whether a range is
applied to a dataset.

ReadOnly (inherited from TCustomDADataSet)
Used to prevent users from
updating, inserting, or
deleting data in the dataset.

RefreshOptions (inherited from TCustomDADataSet) Used to indicate when the
editing record is refreshed.

RowsAffected (inherited from TCustomDADataSet)
Used to indicate the number
of rows which were inserted,
updated, or deleted during
the last query operation.

SpecificOptions (inherited from TCustomUniDataSet)
Used to provide extended
settings for each data
provider.

SQL (inherited from TCustomDADataSet)
Used to provide a SQL
statement that a query
component executes when
its Open method is called.

SQLDelete (inherited from TCustomDADataSet)
Used to specify a SQL
statement that will be used
when applying a deletion to
a record.

Universal Data Access Components1006

© 2024 Devart

SQLInsert (inherited from TCustomDADataSet)
Used to specify the SQL
statement that will be used
when applying an insertion
to a dataset.

SQLLock (inherited from TCustomDADataSet)
Used to specify a SQL
statement that will be used
to perform a record lock.

SQLRecCount (inherited from TCustomDADataSet)
Used to specify the SQL
statement that is used to get
the record count when
opening a dataset.

SQLRefresh (inherited from TCustomDADataSet)

Used to specify a SQL
statement that will be used
to refresh current record by
calling the
TCustomDADataSet.Refres
hRecord procedure.

SQLUpdate (inherited from TCustomDADataSet)
Used to specify a SQL
statement that will be used
when applying an update to
a dataset.

Transaction (inherited from TCustomUniDataSet)

Used to specify the
TUniTransaction object in
the context of which SQL
commands will be executed,
and queries retrieving data
will be opened.

UniDirectional (inherited from TCustomDADataSet)
Used if an application does
not need bidirectional
access to records in the
result set.

UpdateObject (inherited from TCustomUniDataSet)

Points to an update object
component which provides
update SQL statements or
update objects for flexible
data update.

UpdateRecordTypes (inherited from TMemDataSet)
Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

UpdateTransaction (inherited from
Used to specify the
TUniTransaction object in
the context of which update

Reference 1007

© 2024 Devart

TCustomUniDataSet) commands will be executed.

Published

Name Description

LockMode
Used to specify what kind of
lock will be performed when
editing a record.

StoredProcName
Used to specify the name of
the stored procedure to call
on the server.

See Also
TUniStoredProc Class

TUniStoredProc Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.15.2.1 LockMode Property

Used to specify what kind of lock will be performed when editing a record.

Class

TUniStoredProc

Syntax

property LockMode: TLockMode;

Remarks

Use the LockMode property to define what kind of lock will be performed when editing a

record. Locking a record is useful in creating multi-user applications. It prevents modification

of a record by several users at the same time.

Locking is performed by the RefreshRecord method.

The default value is lmNone.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1008

© 2024 Devart

See Also
TUniQuery.LockMode

TUniTable.LockMode

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.15.2.2 StoredProcName Property

Used to specify the name of the stored procedure to call on the server.

Class

TUniStoredProc

Syntax

property StoredProcName: string;

Remarks

Use the StoredProcName property to specify the name of the stored procedure to call on the

server. If StoredProcName does not match the name of an existing stored procedure on the

server, then when the application attempts to prepare the procedure prior to execution, an

exception is raised.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.15.3 Methods

Methods of the TUniStoredProc class.

For a complete list of the TUniStoredProc class members, see the TUniStoredProc

Members topic.

Public

Name Description

AddWhere (inherited from TCustomDADataSet) Adds condition to the
WHERE clause of SELECT

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1009

© 2024 Devart

statement in the SQL
property.

ApplyRange (inherited from TMemDataSet) Applies a range to the
dataset.

ApplyUpdates (inherited from TMemDataSet)
Overloaded. Writes
dataset's pending cached
updates to a database.

BreakExec (inherited from TCustomDADataSet) Breaks execution of the SQL
statement on the server.

CancelRange (inherited from TMemDataSet)
Removes any ranges
currently in effect for a
dataset.

CancelUpdates (inherited from TMemDataSet)
Clears all pending cached
updates from cache and
restores dataset in its prior
state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates
buffer.

CreateBlobStream (inherited from TCustomDADataSet)

Used to obtain a stream for
reading data from or writing
data to a BLOB field,
specified by the Field
parameter.

CreateProcCall (inherited from TCustomUniDataSet)
Assigns a command that
calls stored procedure
specified by name to the
SQL property.

DeferredPost (inherited from TMemDataSet) Makes permanent changes
to the database server.

DeleteWhere (inherited from TCustomDADataSet)
Removes WHERE clause
from the SQL property and
assigns the BaseSQL
property.

EditRangeEnd (inherited from TMemDataSet)
Enables changing the
ending value for an existing
range.

EditRangeStart (inherited from TMemDataSet)
Enables changing the
starting value for an existing
range.

ExecProc Executes a SQL statement
on the server.

Execute (inherited from TCustomDADataSet)
Overloaded. Executes a
SQL statement on the
server.

Universal Data Access Components1010

© 2024 Devart

Executing (inherited from TCustomDADataSet)
Indicates whether SQL
statement is still being
executed.

Fetched (inherited from TCustomDADataSet)
Used to find out whether
TCustomDADataSet has
fetched all rows.

Fetching (inherited from TCustomDADataSet)
Used to learn whether
TCustomDADataSet is still
fetching rows.

FetchingAll (inherited from TCustomDADataSet)
Used to learn whether
TCustomDADataSet is
fetching all rows to the end.

FindKey (inherited from TCustomDADataSet)
Searches for a record which
contains specified field
values.

FindMacro (inherited from TCustomDADataSet) Finds a macro with the
specified name.

FindNearest (inherited from TCustomDADataSet)

Moves the cursor to a
specific record or to the first
record in the dataset that
matches or is greater than
the values specified in the
KeyValues parameter.

FindParam (inherited from TCustomUniDataSet)
Determines if parameter
with the specified name
exists in a dataset.

GetBlob (inherited from TMemDataSet)

Overloaded. Retrieves
TBlob object for a field or
current record when only its
name or the field itself is
known.

GetDataType (inherited from TCustomDADataSet)
Returns internal field types
defined in the MemData and
accompanying modules.

GetFieldObject (inherited from TCustomDADataSet) Returns a multireference
shared object from field.

GetFieldPrecision (inherited from TCustomDADataSet) Retrieves the precision of a
number field.

GetFieldScale (inherited from TCustomDADataSet) Retrieves the scale of a
number field.

GetKeyFieldNames (inherited from

TCustomDADataSet)
Provides a list of available
key field names.

Reference 1011

© 2024 Devart

GetOrderBy (inherited from TCustomDADataSet)
Retrieves an ORDER BY
clause from a SQL
statement.

GotoCurrent (inherited from TCustomDADataSet)
Sets the current record in
this dataset similar to the
current record in another
dataset.

Locate (inherited from TMemDataSet)
Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

LocateEx (inherited from TMemDataSet)

Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

Lock (inherited from TCustomDADataSet) Locks the current record.

MacroByName (inherited from TCustomDADataSet) Finds a macro with the
specified name.

OpenNext (inherited from TCustomUniDataSet)
Provides second and other
result sets while executing
multiresult query.

ParamByName (inherited from TCustomUniDataSet)
Accesses parameter
information based on a
specified parameter name.

Prepare (inherited from TCustomDADataSet) Allocates, opens, and
parses cursor for a query.

PrepareSQL Describes the stored
procedure parameters.

RefreshRecord (inherited from TCustomDADataSet) Actualizes field values for
the current record.

RestoreSQL (inherited from TCustomDADataSet)
Restores the SQL property
modified by AddWhere and
SetOrderBy.

RestoreUpdates (inherited from TMemDataSet)
Marks all records in the
cache of updates as
unapplied.

RevertRecord (inherited from TMemDataSet)
Cancels changes made to
the current record when
cached updates are
enabled.

SaveSQL (inherited from TCustomDADataSet) Saves the SQL property
value to BaseSQL.

Universal Data Access Components1012

© 2024 Devart

SaveToXML (inherited from TMemDataSet)

Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

SetOrderBy (inherited from TCustomDADataSet) Builds an ORDER BY clause
of a SELECT statement.

SetRange (inherited from TMemDataSet)
Sets the starting and ending
values of a range, and
applies it.

SetRangeEnd (inherited from TMemDataSet)

Indicates that subsequent
assignments to field values
specify the end of the range
of rows to include in the
dataset.

SetRangeStart (inherited from TMemDataSet)

Indicates that subsequent
assignments to field values
specify the start of the range
of rows to include in the
dataset.

SQLSaved (inherited from TCustomDADataSet)
Determines if the SQL
property value was saved to
the BaseSQL property.

UnLock (inherited from TCustomDADataSet) Releases a record lock.

UnPrepare (inherited from TMemDataSet)
Frees the resources
allocated for a previously
prepared query on the
server and client sides.

UpdateResult (inherited from TMemDataSet)

Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are
enabled.

UpdateStatus (inherited from TMemDataSet)
Indicates the current update
status for the dataset when
cached updates are
enabled.

See Also
TUniStoredProc Class

TUniStoredProc Class Members

© 1997-2024 Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1013

© 2024 Devart

Devart. All Rights
Reserved.

6.19.1.15.3.1 ExecProc Method

Executes a SQL statement on the server.

Class

TUniStoredProc

Syntax

procedure ExecProc;

Remarks

The ExecProc method is equal to the TCustomDADataSet.Execute method. It is included for

compatibility with the TStoredProc component.

See Also
TCustomDADataSet.Execute

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.15.3.2 PrepareSQL Method

Describes the stored procedure parameters.

Class

TUniStoredProc

Syntax

procedure PrepareSQL(IsQuery: boolean = False);

Parameters

IsQuery

If True, the SELECT statement is generated.

Remarks

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1014

© 2024 Devart

Call the PrepareSQL method to describe parameters of stored procedure. The Execute

method calls it automatically if it is necessary. You can define parameters at design time if

ParameterEditor is open. Set the IsQuery parameter to True to prepare SELECT statement.

Set it to False or omit it to prepare EXECUTE PROCEDURE statement. This parameter has

sense only for InterBase server.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.16 TUniTable Class

A component for retrieving and updating data in a single table without writing SQL statements.

For a list of all members of this type, see TUniTable members.

Unit

Uni

Syntax

TUniTable = class(TCustomUniTable);

Remarks

The TUniTable component allows retrieving and updating data in a single table without writing

SQL statements. Use TUniTable to access data in a table . Use the TableName property to

specify table name. TUniTable uses the KeyFields property to build SQL statements for

updating table data. KeyFields is a string containing a semicolon-delimited list of the field

names.

Inheritance Hierarchy

TMemDataSet

 TCustomDADataSet

 TCustomUniDataSet

 TCustomUniTable

 TUniTable

See Also

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1015

© 2024 Devart

Master/Detail Relationships

TCustomUniDataSet

TUniQuery

TUniStoredProc

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.16.1 Members

TUniTable class overview.

Properties

Name Description

BaseSQL (inherited from TCustomDADataSet)
Used to return SQL text
without any changes
performed by AddWhere,
SetOrderBy, and FilterSQL.

CachedUpdates (inherited from TMemDataSet)
Used to enable or disable
the use of cached updates
for a dataset.

Conditions (inherited from TCustomDADataSet) Used to add WHERE
conditions to a query

Connection (inherited from TCustomDADataSet)
Used to specify a
connection object to use to
connect to a data store.

DataTypeMap (inherited from TCustomDADataSet) Used to set data type
mapping rules

Debug (inherited from TCustomDADataSet)
Used to display the
statement that is being
executed and the values and
types of its parameters.

DetailFields (inherited from TCustomDADataSet)

Used to specify the fields
that correspond to the
foreign key fields from
MasterFields when building
master/detail relationship.

Disconnected (inherited from TCustomDADataSet)
Used to keep dataset
opened after connection is
closed.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1016

© 2024 Devart

DMLRefresh (inherited from TCustomUniDataSet)
Used to refresh record by
RETURNING clause when
insert or update is
performed.

FetchRows (inherited from TCustomDADataSet)
Used to define the number
of rows to be transferred
across the network at the
same time.

FilterSQL (inherited from TCustomDADataSet)
Used to change the WHERE
clause of SELECT
statement and reopen a
query.

FinalSQL (inherited from TCustomDADataSet)

Used to return SQL text with
all changes performed by
AddWhere, SetOrderBy,
and FilterSQL, and with
expanded macros.

IndexFieldNames (inherited from TMemDataSet)
Used to get or set the list of
fields on which the recordset
is sorted.

IsQuery (inherited from TCustomDADataSet) Used to check whether SQL
statement returns rows.

KeyExclusive (inherited from TMemDataSet)
Specifies the upper and
lower boundaries for a
range.

KeyFields (inherited from TCustomDADataSet)

Used to build SQL
statements for the
SQLDelete, SQLInsert, and
SQLUpdate properties if
they were empty before
updating the database.

LastInsertId (inherited from TCustomUniDataSet)

Can be used with MySQL
and PostgreSQL servers to
get the value of the ID field
after executing INSERT
statement.

LocalConstraints (inherited from TMemDataSet)

Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet)
Used to prevent implicit
update of rows on database
server.

Reference 1017

© 2024 Devart

LockMode
Used to specify what kind of
lock will be performed when
editing a record.

MacroCount (inherited from TCustomDADataSet)
Used to get the number of
macros associated with the
Macros property.

Macros (inherited from TCustomDADataSet) Makes it possible to change
SQL queries easily.

MasterFields (inherited from TCustomDADataSet)

Used to specify the names
of one or more fields that are
used as foreign keys for
dataset when establishing
detail/master relationship
between it and the dataset
specified in MasterSource.

MasterSource (inherited from TCustomDADataSet)
Used to specify the data
source component which
binds current dataset to the
master one.

Options (inherited from TCustomUniDataSet) Specifies the behaviour of a
TCustomUniDataSet object.

OrderFields Used to build ORDER BY
clause of SQL statements.

ParamCheck (inherited from TCustomDADataSet)

Used to specify whether
parameters for the Params
property are generated
automatically after the SQL
property was changed.

ParamCount (inherited from TCustomDADataSet)
Used to indicate how many
parameters are there in the
Params property.

Params (inherited from TCustomUniDataSet) Holds the parameters for a
query's SQL statement.

Prepared (inherited from TMemDataSet)
Determines whether a query
is prepared for execution or
not.

Ranged (inherited from TMemDataSet) Indicates whether a range is
applied to a dataset.

ReadOnly (inherited from TCustomDADataSet)
Used to prevent users from
updating, inserting, or
deleting data in the dataset.

RefreshOptions (inherited from TCustomDADataSet) Used to indicate when the
editing record is refreshed.

Universal Data Access Components1018

© 2024 Devart

RowsAffected (inherited from TCustomDADataSet)
Used to indicate the number
of rows which were inserted,
updated, or deleted during
the last query operation.

SpecificOptions (inherited from TCustomUniDataSet)
Used to provide extended
settings for each data
provider.

SQL (inherited from TCustomDADataSet)
Used to provide a SQL
statement that a query
component executes when
its Open method is called.

SQLDelete (inherited from TCustomDADataSet)
Used to specify a SQL
statement that will be used
when applying a deletion to
a record.

SQLInsert (inherited from TCustomDADataSet)
Used to specify the SQL
statement that will be used
when applying an insertion
to a dataset.

SQLLock (inherited from TCustomDADataSet)
Used to specify a SQL
statement that will be used
to perform a record lock.

SQLRecCount (inherited from TCustomDADataSet)
Used to specify the SQL
statement that is used to get
the record count when
opening a dataset.

SQLRefresh (inherited from TCustomDADataSet)

Used to specify a SQL
statement that will be used
to refresh current record by
calling the
TCustomDADataSet.Refres
hRecord procedure.

SQLUpdate (inherited from TCustomDADataSet)
Used to specify a SQL
statement that will be used
when applying an update to
a dataset.

TableName
Used to specify the name of
the database table this
component encapsulates.

Transaction (inherited from TCustomUniDataSet)

Used to specify the
TUniTransaction object in
the context of which SQL
commands will be executed,
and queries retrieving data
will be opened.

Reference 1019

© 2024 Devart

UniDirectional (inherited from TCustomDADataSet)
Used if an application does
not need bidirectional
access to records in the
result set.

UpdateObject (inherited from TCustomUniDataSet)

Points to an update object
component which provides
update SQL statements or
update objects for flexible
data update.

UpdateRecordTypes (inherited from TMemDataSet)
Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

UpdateTransaction (inherited from

TCustomUniDataSet)

Used to specify the
TUniTransaction object in
the context of which update
commands will be executed.

Methods

Name Description

AddWhere (inherited from TCustomDADataSet)
Adds condition to the
WHERE clause of SELECT
statement in the SQL
property.

ApplyRange (inherited from TMemDataSet) Applies a range to the
dataset.

ApplyUpdates (inherited from TMemDataSet)
Overloaded. Writes
dataset's pending cached
updates to a database.

BreakExec (inherited from TCustomDADataSet) Breaks execution of the SQL
statement on the server.

CancelRange (inherited from TMemDataSet)
Removes any ranges
currently in effect for a
dataset.

CancelUpdates (inherited from TMemDataSet)
Clears all pending cached
updates from cache and
restores dataset in its prior
state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates
buffer.

Universal Data Access Components1020

© 2024 Devart

CreateBlobStream (inherited from TCustomDADataSet)

Used to obtain a stream for
reading data from or writing
data to a BLOB field,
specified by the Field
parameter.

CreateProcCall (inherited from TCustomUniDataSet)
Assigns a command that
calls stored procedure
specified by name to the
SQL property.

DeferredPost (inherited from TMemDataSet) Makes permanent changes
to the database server.

DeleteWhere (inherited from TCustomDADataSet)
Removes WHERE clause
from the SQL property and
assigns the BaseSQL
property.

EditRangeEnd (inherited from TMemDataSet)
Enables changing the
ending value for an existing
range.

EditRangeStart (inherited from TMemDataSet)
Enables changing the
starting value for an existing
range.

Execute (inherited from TCustomDADataSet)
Overloaded. Executes a
SQL statement on the
server.

Executing (inherited from TCustomDADataSet)
Indicates whether SQL
statement is still being
executed.

Fetched (inherited from TCustomDADataSet)
Used to find out whether
TCustomDADataSet has
fetched all rows.

Fetching (inherited from TCustomDADataSet)
Used to learn whether
TCustomDADataSet is still
fetching rows.

FetchingAll (inherited from TCustomDADataSet)
Used to learn whether
TCustomDADataSet is
fetching all rows to the end.

FindKey (inherited from TCustomDADataSet)
Searches for a record which
contains specified field
values.

FindMacro (inherited from TCustomDADataSet) Finds a macro with the
specified name.

FindNearest (inherited from TCustomDADataSet)
Moves the cursor to a
specific record or to the first
record in the dataset that

Reference 1021

© 2024 Devart

matches or is greater than
the values specified in the
KeyValues parameter.

FindParam (inherited from TCustomUniDataSet)
Determines if parameter
with the specified name
exists in a dataset.

GetBlob (inherited from TMemDataSet)

Overloaded. Retrieves
TBlob object for a field or
current record when only its
name or the field itself is
known.

GetDataType (inherited from TCustomDADataSet)
Returns internal field types
defined in the MemData and
accompanying modules.

GetFieldObject (inherited from TCustomDADataSet) Returns a multireference
shared object from field.

GetFieldPrecision (inherited from TCustomDADataSet) Retrieves the precision of a
number field.

GetFieldScale (inherited from TCustomDADataSet) Retrieves the scale of a
number field.

GetKeyFieldNames (inherited from

TCustomDADataSet)
Provides a list of available
key field names.

GetOrderBy (inherited from TCustomDADataSet)
Retrieves an ORDER BY
clause from a SQL
statement.

GotoCurrent (inherited from TCustomDADataSet)
Sets the current record in
this dataset similar to the
current record in another
dataset.

Locate (inherited from TMemDataSet)
Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

LocateEx (inherited from TMemDataSet)

Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

Lock (inherited from TCustomDADataSet) Locks the current record.

MacroByName (inherited from TCustomDADataSet) Finds a macro with the
specified name.

OpenNext (inherited from TCustomUniDataSet) Provides second and other

Universal Data Access Components1022

© 2024 Devart

result sets while executing
multiresult query.

ParamByName (inherited from TCustomUniDataSet)
Accesses parameter
information based on a
specified parameter name.

Prepare (inherited from TCustomDADataSet) Allocates, opens, and
parses cursor for a query.

PrepareSQL (inherited from TCustomUniTable)
Used to determine
KeyFields and build query
for TUniTable.

RefreshRecord (inherited from TCustomDADataSet) Actualizes field values for
the current record.

RestoreSQL (inherited from TCustomDADataSet)
Restores the SQL property
modified by AddWhere and
SetOrderBy.

RestoreUpdates (inherited from TMemDataSet)
Marks all records in the
cache of updates as
unapplied.

RevertRecord (inherited from TMemDataSet)
Cancels changes made to
the current record when
cached updates are
enabled.

SaveSQL (inherited from TCustomDADataSet) Saves the SQL property
value to BaseSQL.

SaveToXML (inherited from TMemDataSet)

Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

SetOrderBy (inherited from TCustomDADataSet) Builds an ORDER BY clause
of a SELECT statement.

SetRange (inherited from TMemDataSet)
Sets the starting and ending
values of a range, and
applies it.

SetRangeEnd (inherited from TMemDataSet)

Indicates that subsequent
assignments to field values
specify the end of the range
of rows to include in the
dataset.

SetRangeStart (inherited from TMemDataSet)

Indicates that subsequent
assignments to field values
specify the start of the range
of rows to include in the
dataset.

Reference 1023

© 2024 Devart

SQLSaved (inherited from TCustomDADataSet)
Determines if the SQL
property value was saved to
the BaseSQL property.

UnLock (inherited from TCustomDADataSet) Releases a record lock.

UnPrepare (inherited from TMemDataSet)
Frees the resources
allocated for a previously
prepared query on the
server and client sides.

UpdateResult (inherited from TMemDataSet)

Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are
enabled.

UpdateStatus (inherited from TMemDataSet)
Indicates the current update
status for the dataset when
cached updates are
enabled.

Events

Name Description

AfterExecute (inherited from TCustomDADataSet)
Occurs after a component
has executed a query to
database.

AfterFetch (inherited from TCustomDADataSet) Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute (inherited from

TCustomDADataSet)

Occurs after executing
insert, delete, update, lock
and refresh operations.

BeforeFetch (inherited from TCustomDADataSet)
Occurs before dataset is
going to fetch block of
records from the server.

BeforeUpdateExecute (inherited from

TCustomDADataSet)

Occurs before executing
insert, delete, update, lock,
and refresh operations.

OnUpdateError (inherited from TMemDataSet)
Occurs when an exception is
generated while cached
updates are applied to a
database.

OnUpdateRecord (inherited from TMemDataSet)
Occurs when a single
update component can not
handle the updates.

Universal Data Access Components1024

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.16.2 Properties

Properties of the TUniTable class.

For a complete list of the TUniTable class members, see the TUniTable Members topic.

Public

Name Description

BaseSQL (inherited from TCustomDADataSet)
Used to return SQL text
without any changes
performed by AddWhere,
SetOrderBy, and FilterSQL.

CachedUpdates (inherited from TMemDataSet)
Used to enable or disable
the use of cached updates
for a dataset.

Conditions (inherited from TCustomDADataSet) Used to add WHERE
conditions to a query

Connection (inherited from TCustomDADataSet)
Used to specify a
connection object to use to
connect to a data store.

DataTypeMap (inherited from TCustomDADataSet) Used to set data type
mapping rules

Debug (inherited from TCustomDADataSet)
Used to display the
statement that is being
executed and the values and
types of its parameters.

DetailFields (inherited from TCustomDADataSet)

Used to specify the fields
that correspond to the
foreign key fields from
MasterFields when building
master/detail relationship.

Disconnected (inherited from TCustomDADataSet)
Used to keep dataset
opened after connection is
closed.

DMLRefresh (inherited from TCustomUniDataSet)
Used to refresh record by
RETURNING clause when
insert or update is
performed.

FetchRows (inherited from TCustomDADataSet) Used to define the number
of rows to be transferred

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1025

© 2024 Devart

across the network at the
same time.

FilterSQL (inherited from TCustomDADataSet)
Used to change the WHERE
clause of SELECT
statement and reopen a
query.

FinalSQL (inherited from TCustomDADataSet)

Used to return SQL text with
all changes performed by
AddWhere, SetOrderBy,
and FilterSQL, and with
expanded macros.

IndexFieldNames (inherited from TMemDataSet)
Used to get or set the list of
fields on which the recordset
is sorted.

IsQuery (inherited from TCustomDADataSet) Used to check whether SQL
statement returns rows.

KeyExclusive (inherited from TMemDataSet)
Specifies the upper and
lower boundaries for a
range.

KeyFields (inherited from TCustomDADataSet)

Used to build SQL
statements for the
SQLDelete, SQLInsert, and
SQLUpdate properties if
they were empty before
updating the database.

LastInsertId (inherited from TCustomUniDataSet)

Can be used with MySQL
and PostgreSQL servers to
get the value of the ID field
after executing INSERT
statement.

LocalConstraints (inherited from TMemDataSet)

Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet)
Used to prevent implicit
update of rows on database
server.

MacroCount (inherited from TCustomDADataSet)
Used to get the number of
macros associated with the
Macros property.

Macros (inherited from TCustomDADataSet) Makes it possible to change
SQL queries easily.

MasterFields (inherited from TCustomDADataSet) Used to specify the names

Universal Data Access Components1026

© 2024 Devart

of one or more fields that are
used as foreign keys for
dataset when establishing
detail/master relationship
between it and the dataset
specified in MasterSource.

MasterSource (inherited from TCustomDADataSet)
Used to specify the data
source component which
binds current dataset to the
master one.

Options (inherited from TCustomUniDataSet) Specifies the behaviour of a
TCustomUniDataSet object.

ParamCheck (inherited from TCustomDADataSet)

Used to specify whether
parameters for the Params
property are generated
automatically after the SQL
property was changed.

ParamCount (inherited from TCustomDADataSet)
Used to indicate how many
parameters are there in the
Params property.

Params (inherited from TCustomUniDataSet) Holds the parameters for a
query's SQL statement.

Prepared (inherited from TMemDataSet)
Determines whether a query
is prepared for execution or
not.

Ranged (inherited from TMemDataSet) Indicates whether a range is
applied to a dataset.

ReadOnly (inherited from TCustomDADataSet)
Used to prevent users from
updating, inserting, or
deleting data in the dataset.

RefreshOptions (inherited from TCustomDADataSet) Used to indicate when the
editing record is refreshed.

RowsAffected (inherited from TCustomDADataSet)
Used to indicate the number
of rows which were inserted,
updated, or deleted during
the last query operation.

SpecificOptions (inherited from TCustomUniDataSet)
Used to provide extended
settings for each data
provider.

SQL (inherited from TCustomDADataSet)
Used to provide a SQL
statement that a query
component executes when
its Open method is called.

SQLDelete (inherited from TCustomDADataSet) Used to specify a SQL

Reference 1027

© 2024 Devart

statement that will be used
when applying a deletion to
a record.

SQLInsert (inherited from TCustomDADataSet)
Used to specify the SQL
statement that will be used
when applying an insertion
to a dataset.

SQLLock (inherited from TCustomDADataSet)
Used to specify a SQL
statement that will be used
to perform a record lock.

SQLRecCount (inherited from TCustomDADataSet)
Used to specify the SQL
statement that is used to get
the record count when
opening a dataset.

SQLRefresh (inherited from TCustomDADataSet)

Used to specify a SQL
statement that will be used
to refresh current record by
calling the
TCustomDADataSet.Refres
hRecord procedure.

SQLUpdate (inherited from TCustomDADataSet)
Used to specify a SQL
statement that will be used
when applying an update to
a dataset.

Transaction (inherited from TCustomUniDataSet)

Used to specify the
TUniTransaction object in
the context of which SQL
commands will be executed,
and queries retrieving data
will be opened.

UniDirectional (inherited from TCustomDADataSet)
Used if an application does
not need bidirectional
access to records in the
result set.

UpdateObject (inherited from TCustomUniDataSet)

Points to an update object
component which provides
update SQL statements or
update objects for flexible
data update.

UpdateRecordTypes (inherited from TMemDataSet)
Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

Universal Data Access Components1028

© 2024 Devart

UpdateTransaction (inherited from

TCustomUniDataSet)

Used to specify the
TUniTransaction object in
the context of which update
commands will be executed.

Published

Name Description

LockMode
Used to specify what kind of
lock will be performed when
editing a record.

OrderFields Used to build ORDER BY
clause of SQL statements.

TableName
Used to specify the name of
the database table this
component encapsulates.

See Also
TUniTable Class

TUniTable Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.16.2.1 LockMode Property

Used to specify what kind of lock will be performed when editing a record.

Class

TUniTable

Syntax

property LockMode: TLockMode default lmOptimistic;

Remarks

Use the LockMode property to define what kind of lock will be performed when editing a

record. Locking a record is useful in creating multi-user applications. It prevents modification

of a record by several users at the same time.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1029

© 2024 Devart

Locking is performed by the RefreshRecord method.

The default value is lmOptimistic.

See Also
TUniStoredProc.LockMode

TUniQuery.LockMode

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.16.2.2 OrderFields Property

Used to build ORDER BY clause of SQL statements.

Class

TUniTable

Syntax

property OrderFields: string;

Remarks

TUniTable uses the OrderFields property to build ORDER BY clause of SQL statements. To

set several field names to this property separate them with commas.

TUniTable is reopened when OrderFields is being changed.

See Also
TUniTable

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.16.2.3 TableName Property

Used to specify the name of the database table this component encapsulates.

Class

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1030

© 2024 Devart

TUniTable

Syntax

property TableName: string;

Remarks

Use the TableName property to specify the name of the database table this component

encapsulates. If TCustomDADataSet.Connection is assigned at design time,select a valid

table name from the TableName drop-down list in Object Inspector.

See Also
TUniQuery

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.17 TUniTransaction Class

A component for managing transactions in an application.

For a list of all members of this type, see TUniTransaction members.

Unit

Uni

Syntax

TUniTransaction = class(TDATransaction);

Remarks

The TUniTransaction component is used to provide discrete transaction control over

connection. It can be used for manipulating simple local and global transactions.

Inheritance Hierarchy

TDATransaction

 TUniTransaction

See Also

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1031

© 2024 Devart

Transactions

TCustomDAConnection.StartTransaction

TCustomDAConnection.Commit

TCustomDAConnection.Rollback

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.17.1 Members

TUniTransaction class overview.

Properties

Name Description

Active (inherited from TDATransaction) Used to determine if the
transaction is active.

Connections
Used to specify a
connection for the given
index.

ConnectionsCount
Used to get the number of
connections associated with
the transaction component.

DefaultCloseAction (inherited from TDATransaction)

Used to specify the
transaction behaviour when
it is destroyed while being
active, or when one of its
connections is closed with
the active transaction.

IsolationLevel

Used to specify how the
transactions containing
database modifications are
handled.

Methods

Name Description

AddConnection

Binds a
TCustomDAConnection
object with the transaction
component.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1032

© 2024 Devart

Commit (inherited from TDATransaction) Commits the current
transaction.

CommitRetaining

Stores to the database
server all changes of data
associated with the
transaction permanently and
then retains the transaction
context.

RemoveConnection
Disassiciates the specified
connections from the
transaction.

Rollback (inherited from TDATransaction)
Discards all modifications of
data associated with the
current transaction and ends
the transaction.

RollbackRetaining

Rolls back all data changes
associated with the
transaction and retains the
transaction context.

StartTransaction (inherited from TDATransaction) Begins a new transaction.

Events

Name Description

OnCommit (inherited from TDATransaction)
Occurs after the transaction
has been successfully
committed.

OnCommitRetaining (inherited from TDATransaction)
Occurs after
CommitRetaining has been
executed.

OnError (inherited from TDATransaction)
Used to process errors that
occur during executing a
transaction.

OnRollback (inherited from TDATransaction)
Occurs after the transaction
has been successfully rolled
back.

OnRollbackRetaining (inherited from TDATransaction)
Occurs after
RollbackRetaining has been
executed.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1033

© 2024 Devart

6.19.1.17.2 Properties

Properties of the TUniTransaction class.

For a complete list of the TUniTransaction class members, see the TUniTransaction

Members topic.

Public

Name Description

Active (inherited from TDATransaction) Used to determine if the
transaction is active.

Connections
Used to specify a
connection for the given
index.

ConnectionsCount
Used to get the number of
connections associated with
the transaction component.

DefaultCloseAction (inherited from TDATransaction)

Used to specify the
transaction behaviour when
it is destroyed while being
active, or when one of its
connections is closed with
the active transaction.

Published

Name Description

IsolationLevel

Used to specify how the
transactions containing
database modifications are
handled.

See Also
TUniTransaction Class

TUniTransaction Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1034

© 2024 Devart

6.19.1.17.2.1 Connections Property(Indexer)

Used to specify a connection for the given index.

Class

TUniTransaction

Syntax

property Connections[Index: integer]: TUniConnection;

Parameters

Index

Holds the index to specify the connection for.

Remarks

Specifies a connection for the given index.

See Also
ConnectionsCount

RemoveConnection

AddConnection

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.17.2.2 ConnectionsCount Property

Used to get the number of connections associated with the transaction component.

Class

TUniTransaction

Syntax

property ConnectionsCount: integer;

Remarks

Use the ConnectionsCount property for getting the number of connections associated with

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1035

© 2024 Devart

the transaction component.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.17.2.3 IsolationLevel Property

Used to specify how the transactions containing database modifications are handled.

Class

TUniTransaction

Syntax

property IsolationLevel: TCRIsolationLevel;

Remarks

Use the IsolationLevel property to specify how the transactions containing database

modifications are handled.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.17.3 Methods

Methods of the TUniTransaction class.

For a complete list of the TUniTransaction class members, see the TUniTransaction

Members topic.

Public

Name Description

AddConnection

Binds a
TCustomDAConnection
object with the transaction
component.

Commit (inherited from TDATransaction) Commits the current
transaction.

CommitRetaining Stores to the database
server all changes of data

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1036

© 2024 Devart

associated with the
transaction permanently and
then retains the transaction
context.

RemoveConnection
Disassiciates the specified
connections from the
transaction.

Rollback (inherited from TDATransaction)
Discards all modifications of
data associated with the
current transaction and ends
the transaction.

RollbackRetaining

Rolls back all data changes
associated with the
transaction and retains the
transaction context.

StartTransaction (inherited from TDATransaction) Begins a new transaction.

See Also
TUniTransaction Class

TUniTransaction Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.17.3.1 AddConnection Method

Binds a TCustomDAConnection object with the transaction component.

Class

TUniTransaction

Syntax

procedure AddConnection(Connection: TUniConnection);

Parameters

Connection

Holds a TCustomDAConnection object to associate with the transaction component.

Remarks

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1037

© 2024 Devart

Use the AddConnection method to associate a TCustomDAConnection object with the

transaction component.

See Also
RemoveConnection

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.17.3.2 CommitRetaining Method

Stores to the database server all changes of data associated with the transaction

permanently and then retains the transaction context.

Class

TUniTransaction

Syntax

procedure CommitRetaining;

Remarks

Call the CommitRetaining method to store to the database server all changes of data

associated with the transaction permanently and then retain the transaction context.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.17.3.3 RemoveConnection Method

Disassiciates the specified connections from the transaction.

Class

TUniTransaction

Syntax

procedure RemoveConnection(Connection: TUniConnection);

Parameters

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1038

© 2024 Devart

Connection

Holds the connections to disassociate.

Remarks

Call the RemoveConnection method to disassociate the specified connections from the

transaction.

See Also
Connections

AddConnection

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.17.3.4 RollbackRetaining Method

Rolls back all data changes associated with the transaction and retains the transaction

context.

Class

TUniTransaction

Syntax

procedure RollbackRetaining;

Remarks

Call the RollbackRetaining method to roll back all changes of data associated with the

transaction and retain the transaction context.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.18 TUniUpdateSQL Class

A component for tuning update operations for the DataSet component.

For a list of all members of this type, see TUniUpdateSQL members.

Unit

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1039

© 2024 Devart

Uni

Syntax

TUniUpdateSQL = class(TCustomDAUpdateSQL);

Remarks

Use the TUniUpdateSQL component to provide DML statements for the dataset components

that return read-only result set. This component also allows setting objects that can be used

for executing update operations. You may prefer to use directly SQLInsert, SQLUpdate, and

SQLDelete properties of the TCustomDADataSet descendants.

Inheritance Hierarchy

TCustomDAUpdateSQL

 TUniUpdateSQL

See Also
TCustomUniDataSet.UpdateObject

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.1.18.1 Members

TUniUpdateSQL class overview.

Properties

Name Description

DataSet (inherited from TCustomDAUpdateSQL)
Used to hold a reference to
the TCustomDADataSet
object that is being updated.

DeleteObject (inherited from TCustomDAUpdateSQL)
Provides ability to perform
advanced adjustment of the
delete operations.

DeleteSQL (inherited from TCustomDAUpdateSQL) Used when deleting a
record.

InsertObject (inherited from TCustomDAUpdateSQL)
Provides ability to perform
advanced adjustment of
insert operations.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1040

© 2024 Devart

InsertSQL (inherited from TCustomDAUpdateSQL) Used when inserting a
record.

LockObject (inherited from TCustomDAUpdateSQL)
Provides ability to perform
advanced adjustment of lock
operations.

LockSQL (inherited from TCustomDAUpdateSQL) Used to lock the current
record.

ModifyObject (inherited from TCustomDAUpdateSQL)
Provides ability to perform
advanced adjustment of
modify operations.

ModifySQL (inherited from TCustomDAUpdateSQL) Used when updating a
record.

RefreshObject (inherited from TCustomDAUpdateSQL)
Provides ability to perform
advanced adjustment of
refresh operations.

RefreshSQL (inherited from TCustomDAUpdateSQL)

Used to specify an SQL
statement that will be used
for refreshing the current
record by
TCustomDADataSet.Refres
hRecord procedure.

SQL (inherited from TCustomDAUpdateSQL)
Used to return a SQL
statement for one of the
ModifySQL, InsertSQL, or
DeleteSQL properties.

Methods

Name Description

Apply (inherited from TCustomDAUpdateSQL)
Sets parameters for a SQL
statement and executes it to
update a record.

ExecSQL (inherited from TCustomDAUpdateSQL) Executes a SQL statement.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.2 Constants

Constants in the Uni unit.

Constants

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1041

© 2024 Devart

Name Description

UniDACVersion
Read this constant to get
current version number for
UniDAC.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.19.2.1 UniDACVersion Constant

Read this constant to get current version number for UniDAC.

Unit

Uni

Syntax

UniDACVersion = '10.0.0';

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.20 UniAlerter

This unit contains the implementation of the TUniAlerter component.

Classes

Name Description

TUniAlerter
A component for sending
and receiving database
events.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.20.1 Classes

Classes in the UniAlerter unit.

Classes

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1042

© 2024 Devart

Name Description

TUniAlerter
A component for sending
and receiving database
events.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.20.1.1 TUniAlerter Class

A component for sending and receiving database events.

For a list of all members of this type, see TUniAlerter members.

Unit

UniAlerter

Syntax

TUniAlerter = class(TDAAlerter);

Remarks

The TUniAlerter component allows you to register interest in and handle events posted by a

database server. Use TUniAlerter to handle events for responding to actions and database

changes made by other applications. To get events application must register required events.

To do it set the Events property to the required events and call the Start method. When one of

the registered events occurs the OnEvent handler is called.

Events are transaction-based. This means that the waiting connection does not get event until

the transaction posting the event commits.

Note: not all DBMS supports event notification. Currently TUniAlerter can be used with

Oracle, PostgreSQL, and InterBase(Firebird).

TUniAlerter uses the following DBMS-specific features to send and receive events:

Oracle: DBMS_ALERT package;

PostgreSQL: NOTIFY and LISTEN commands;

InterBase: POST_EVENT command;

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1043

© 2024 Devart

Inheritance Hierarchy

TDAAlerter

 TUniAlerter

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.20.1.1.1 Members

TUniAlerter class overview.

Properties

Name Description

Active (inherited from TDAAlerter)
Used to determine if
TDAAlerter waits for
messages.

AutoRegister (inherited from TDAAlerter)
Used to automatically
register events whenever
connection opens.

Connection Used to specify the
connection for TUniAlerter.

Methods

Name Description

SendEvent (inherited from TDAAlerter) Sends an event with Name
and content Message.

Start (inherited from TDAAlerter) Starts waiting process.

Stop (inherited from TDAAlerter) Stops waiting process.

Events

Name Description

OnError (inherited from TDAAlerter) Occurs if an exception
occurs in waiting process

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1044

© 2024 Devart

6.20.1.1.2 Properties

Properties of the TUniAlerter class.

For a complete list of the TUniAlerter class members, see the TUniAlerter Members topic.

Public

Name Description

Active (inherited from TDAAlerter)
Used to determine if
TDAAlerter waits for
messages.

AutoRegister (inherited from TDAAlerter)
Used to automatically
register events whenever
connection opens.

Published

Name Description

Connection Used to specify the
connection for TUniAlerter.

See Also
TUniAlerter Class

TUniAlerter Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.20.1.1.2.1 Connection Property

Used to specify the connection for TUniAlerter.

Class

TUniAlerter

Syntax

property Connection: TUniConnection;

Remarks

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1045

© 2024 Devart

Use the Connection property to specify the connection for TUniAlerter.

See Also
TUniConnection

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.21 UniDacVcl

This unit contains the visual constituent of UniDAC.

Classes

Name Description

TUniConnectDialog
A class that provides a
dialog box for user to supply
his login information.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.21.1 Classes

Classes in the UniDacVcl unit.

Classes

Name Description

TUniConnectDialog
A class that provides a
dialog box for user to supply
his login information.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.21.1.1 TUniConnectDialog Class

A class that provides a dialog box for user to supply his login information.

For a list of all members of this type, see TUniConnectDialog members.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1046

© 2024 Devart

Unit

UniDacVcl

Syntax

TUniConnectDialog = class(TCustomConnectDialog);

Remarks

The TUniConnectDialog component is a direct descendant of TCustomConnectDialog class.

Use TUniConnectDialog to provide dialog box for user to supply provider name, server name,

database, user name, port number, and password. You may want to customize appearance

of dialog box using this class's properties.

Inheritance Hierarchy

TCustomConnectDialog

 TUniConnectDialog

See Also
TCustomDAConnection.ConnectDialog

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.21.1.1.1 Members

TUniConnectDialog class overview.

Properties

Name Description

CancelButton (inherited from TCustomConnectDialog) Used to specify the label for
the Cancel button.

Caption (inherited from TCustomConnectDialog) Used to set the caption of
dialog box.

ConnectButton (inherited from TCustomConnectDialog) Used to specify the label for
the Connect button.

Connection Points to the associated
TUniConnection object.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1047

© 2024 Devart

DatabaseLabel Used to specify a prompt for
database name edit.

DialogClass (inherited from TCustomConnectDialog)
Used to specify the class of
the form that will be
displayed to enter login
information.

LabelSet (inherited from TCustomConnectDialog) Used to set the language of
buttons and labels captions.

PasswordLabel (inherited from

TCustomConnectDialog)
Used to specify a prompt for
password edit.

PortLabel Used to specify a prompt for
port number edit.

ProviderLabel Used to specify a prompt for
provider name.

Retries (inherited from TCustomConnectDialog)
Used to indicate the number
of retries of failed
connections.

SavePassword (inherited from

TCustomConnectDialog)

Used for the password to be
displayed in ConnectDialog
in asterisks.

ServerLabel (inherited from TCustomConnectDialog) Used to specify a prompt for
the server name edit.

StoreLogInfo (inherited from TCustomConnectDialog)

Used to specify whether the
login information should be
kept in system registry after
a connection was
established.

UsernameLabel (inherited from

TCustomConnectDialog)
Used to specify a prompt for
username edit.

Methods

Name Description

Execute (inherited from TCustomConnectDialog)

Displays the connect dialog
and calls the connection's
Connect method when user
clicks the Connect button.

GetServerList (inherited from TCustomConnectDialog) Retrieves a list of available
server names.

© 1997-2024
Devart. All Rights

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1048

© 2024 Devart

Reserved.

6.21.1.1.2 Properties

Properties of the TUniConnectDialog class.

For a complete list of the TUniConnectDialog class members, see the TUniConnectDialog

Members topic.

Public

Name Description

CancelButton (inherited from TCustomConnectDialog) Used to specify the label for
the Cancel button.

Caption (inherited from TCustomConnectDialog) Used to set the caption of
dialog box.

ConnectButton (inherited from TCustomConnectDialog) Used to specify the label for
the Connect button.

Connection Points to the associated
TUniConnection object.

DialogClass (inherited from TCustomConnectDialog)
Used to specify the class of
the form that will be
displayed to enter login
information.

LabelSet (inherited from TCustomConnectDialog) Used to set the language of
buttons and labels captions.

PasswordLabel (inherited from

TCustomConnectDialog)
Used to specify a prompt for
password edit.

Retries (inherited from TCustomConnectDialog)
Used to indicate the number
of retries of failed
connections.

SavePassword (inherited from

TCustomConnectDialog)

Used for the password to be
displayed in ConnectDialog
in asterisks.

ServerLabel (inherited from TCustomConnectDialog) Used to specify a prompt for
the server name edit.

StoreLogInfo (inherited from TCustomConnectDialog)

Used to specify whether the
login information should be
kept in system registry after
a connection was
established.

UsernameLabel (inherited from Used to specify a prompt for
username edit.

Reference 1049

© 2024 Devart

TCustomConnectDialog)

Published

Name Description

DatabaseLabel Used to specify a prompt for
database name edit.

PortLabel Used to specify a prompt for
port number edit.

ProviderLabel Used to specify a prompt for
provider name.

See Also
TUniConnectDialog Class

TUniConnectDialog Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.21.1.1.2.1 Connection Property

Points to the associated TUniConnection object.

Class

TUniConnectDialog

Syntax

property Connection: TUniConnection;

Remarks

The Connection property points to the associated TUniConnection object. This property is

read only.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1050

© 2024 Devart

6.21.1.1.2.2 DatabaseLabel Property

Used to specify a prompt for database name edit.

Class

TUniConnectDialog

Syntax

property DatabaseLabel: string;

Remarks

Use the DatabaseLabel property to specify a prompt for database name edit.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.21.1.1.2.3 PortLabel Property

Used to specify a prompt for port number edit.

Class

TUniConnectDialog

Syntax

property PortLabel: string;

Remarks

Use the PortLabel property to specify a prompt for port number edit.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.21.1.1.2.4 ProviderLabel Property

Used to specify a prompt for provider name.

Class

TUniConnectDialog

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1051

© 2024 Devart

Syntax

property ProviderLabel: string;

Remarks

Use the ProviderLabel property to specify a prompt for provider name.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.22 UniDump

This unit contains the implementation of the TUniDump component.

Classes

Name Description

TUniDump

The class that serves for
storing data from tables or
editable views as a script
and for restoring data from a
received script.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.22.1 Classes

Classes in the UniDump unit.

Classes

Name Description

TUniDump

The class that serves for
storing data from tables or
editable views as a script
and for restoring data from a
received script.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1052

© 2024 Devart

6.22.1.1 TUniDump Class

The class that serves for storing data from tables or editable views as a script and for

restoring data from a received script.

For a list of all members of this type, see TUniDump members.

Unit

UniDump

Syntax

TUniDump = class(TDADump);

Remarks

TUniDump serves to store data from tables or editable views as a script and to restore data

from a received script.

Use the TDADump.TableNames property to specify the list of objects to be stored. To launch

a generating script, call the TDADump.Backup method.

TUniDump also can generate scripts for a query. Just call the TDADump.BackupQuery

method and pass a query statement into it. The object list assigned to the TableNames

property is ignored if you call TDADump.BackupQuery. The generated script can be viewed in

the TDADump.SQL property.

TUniDump works on the client side. It causes large network loading.

Inheritance Hierarchy

TDADump

 TUniDump

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.22.1.1.1 Members

TUniDump class overview.

Properties

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1053

© 2024 Devart

Name Description

Connection (inherited from TDADump)
Used to specify a
connection object that will be
used to connect to a data
store.

Debug (inherited from TDADump)
Used to display the
statement that is being
executed and the values and
types of its parameters.

Options (inherited from TDADump)
Used to specify the
behaviour of a TDADump
component.

SQL (inherited from TDADump) Used to set or get the dump
script.

TableNames (inherited from TDADump) Used to set the names of the
tables to dump.

Methods

Name Description

Backup (inherited from TDADump)
Dumps database objects to
the TDADump.SQL
property.

BackupQuery (inherited from TDADump) Dumps the results of a
particular query.

BackupToFile (inherited from TDADump) Dumps database objects to
the specified file.

BackupToStream (inherited from TDADump) Dumps database objects to
the stream.

Restore (inherited from TDADump) Executes a script contained
in the SQL property.

RestoreFromFile (inherited from TDADump) Executes a script from a file.

RestoreFromStream (inherited from TDADump) Executes a script received
from the stream.

Events

Name Description

OnBackupProgress (inherited from TDADump)

Occurs to indicate the
TDADump.Backup,
M:Devart.Dac.TDADump.Ba
ckupToFile(System.String)

Universal Data Access Components1054

© 2024 Devart

or
M:Devart.Dac.TDADump.Ba
ckupToStream(Borland.Vcl.
TStream) method execution
progress.

OnError (inherited from TDADump)
Occurs when server raises
some error on
TDADump.Restore.

OnRestoreProgress (inherited from TDADump)

Occurs to indicate the
TDADump.Restore,
TDADump.RestoreFromFile
, or
TDADump.RestoreFromStr
eam method execution
progress.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.23 UniLoader

This unit contains the implementation of the TUniLoader component.

Classes

Name Description

TUniLoader
TUniLoader allows to load
external data into a
database table.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.23.1 Classes

Classes in the UniLoader unit.

Classes

Name Description

TUniLoader
TUniLoader allows to load
external data into a
database table.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1055

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.23.1.1 TUniLoader Class

TUniLoader allows to load external data into a database table.

For a list of all members of this type, see TUniLoader members.

Unit

UniLoader

Syntax

TUniLoader = class(TDALoader);

Remarks

TUniLoader serves for fast loading of data to the database. To specify the name of the loading

table set the TableName property. Use the Columns property to access individual columns.

Write OnGetColumnData or OnPutData event handlers to read external data and pass it to

the database. Call the Load method to start loading data.

For each type of database server TUniLoader uses its specific interfaces for loading with

maximum speed.

For Oracle the Direct Path Load interface is used.

For SQL Server loading is based on the memory-based bulk-copy operations using the

IRowsetFastLoad interface. Data loading is performed without transactions.

For PostgreSQL data are loaded using the COPY command.

For MySQL, InterBase, and Firebird loading uses INSERT SQL statements. In this case

several rows are combined in one statement if possible. In Firebird 2.0 and higher INSERT

statements are combined in one EXECUTE BLOCK statement.

Inheritance Hierarchy

TDALoader

 TUniLoader

© 1997-2024 Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1056

© 2024 Devart

Devart. All Rights
Reserved.

6.23.1.1.1 Members

TUniLoader class overview.

Properties

Name Description

Columns (inherited from TDALoader)
Used to add a TDAColumn
object for each field that will
be loaded.

Connection (inherited from TDALoader)

property. Used to specify
TCustomDAConnection in
which TDALoader will be
executed.

TableName (inherited from TDALoader)
Used to specify the name of
the table to which data will
be loaded.

Methods

Name Description

CreateColumns (inherited from TDALoader)

Creates TDAColumn
objects for all fields of the
table with the same name
as TDALoader.TableName.

Load (inherited from TDALoader) Starts loading data.

LoadFromDataSet (inherited from TDALoader) Loads data from the
specified dataset.

PutColumnData (inherited from TDALoader) Overloaded. Puts the value
of individual columns.

Events

Name Description

OnGetColumnData (inherited from TDALoader) Occurs when it is needed to
put column values.

OnProgress (inherited from TDALoader)
Occurs if handling data
loading progress of the
TDALoader.LoadFromData
Set method is needed.

Reference 1057

© 2024 Devart

OnPutData (inherited from TDALoader) Occurs when putting loading
data by rows is needed.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.24 UniProvider

This unit contains the TUniProvider class for linking the server-specific providers to

application.

Classes

Name Description

TUniProvider

A base class components
that are intended to link the
server-specific providers to
application.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.24.1 Classes

Classes in the UniProvider unit.

Classes

Name Description

TUniProvider

A base class components
that are intended to link the
server-specific providers to
application.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.24.1.1 TUniProvider Class

A base class components that are intended to link the server-specific providers to application.

For a list of all members of this type, see TUniProvider members.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1058

© 2024 Devart

Unit

UniProvider

Syntax

TUniProvider = class(TComponent);

Remarks

TUniProvider is a base class for components that are intended to link the server-specific

providers to application.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.24.1.1.1 Members

TUniProvider class overview.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.25 UniScript

This unit contains the implementation of the TUniScript component.

Classes

Name Description

TUniScript
A component for executing
several SQL statements one
by one.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.25.1 Classes

Classes in the UniScript unit.

Classes

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1059

© 2024 Devart

Name Description

TUniScript
A component for executing
several SQL statements one
by one.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.25.1.1 TUniScript Class

A component for executing several SQL statements one by one.

For a list of all members of this type, see TUniScript members.

Unit

UniScript

Syntax

TUniScript = class(TDAScript);

Remarks

Often it is necessary to execute several SQL statements one by one. Known way is using a

lot of components such as TUniSQL. Usually it is not a good solution. With only one

TUniScript component you can execute several SQL statements as one. This sequence of

statements is named script. To separate single statements use semicolon (;), slash (/) ,and

for PL/SQL in Oracle - only slash,also keyword 'GO' for SQL Server and DELIMITER for

MySQL server. Note that slash must be the first character in line.

Errors that occur while execution can be processed in the TDAScript.OnError event handler.

By default, on error TUniScript shows exception and continues execution.

Inheritance Hierarchy

TDAScript

 TUniScript

See Also
TUniSQL

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1060

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.25.1.1.1 Members

TUniScript class overview.

Properties

Name Description

Connection
Used to specify the
connection in which the
script will be executed.

DataSet
Used to retrieve the results
of SELECT statements
execution inside a script.

Debug (inherited from TDAScript)
Used to display the script
execution and all its
parameter values.

Delimiter (inherited from TDAScript)
Used to set the delimiter
string that separates script
statements.

EndLine (inherited from TDAScript)
Used to get the current
statement last line number in
a script.

EndOffset (inherited from TDAScript)
Used to get the offset in the
last line of the current
statement.

EndPos (inherited from TDAScript) Used to get the end position
of the current statement.

Macros (inherited from TDAScript)
Used to change SQL script
text in design- or run-time
easily.

SpecificOptions Provides extended settings
for each data provider.

SQL (inherited from TDAScript) Used to get or set script text.

StartLine (inherited from TDAScript)
Used to get the current
statement start line number
in a script.

StartOffset (inherited from TDAScript)
Used to get the offset in the
first line of the current
statement.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1061

© 2024 Devart

StartPos (inherited from TDAScript)
Used to get the start position
of the current statement in a
script.

Statements (inherited from TDAScript)
Contains a list of statements
obtained from the SQL
property.

Transaction

Used to specify the
TUniTransaction object in
the context of which SQL
commands will be executed,
and queries retrieving data
will be opened.

Methods

Name Description

BreakExec (inherited from TDAScript) Stops script execution.

ErrorOffset (inherited from TDAScript)
Used to get the offset of the
statement if the Execute
method raised an exception.

Execute (inherited from TDAScript) Executes a script.

ExecuteFile (inherited from TDAScript) Executes SQL statements
contained in a file.

ExecuteNext (inherited from TDAScript) Executes the next statement
in the script and then stops.

ExecuteStream (inherited from TDAScript)
Executes SQL statements
contained in a stream
object.

FindMacro (inherited from TDAScript) Finds a macro with the
specified name.

MacroByName (inherited from TDAScript) Finds a macro with the
specified name.

Events

Name Description

AfterExecute (inherited from TDAScript) Occurs after a SQL script
execution.

BeforeExecute (inherited from TDAScript)
Occurs when taking a
specific action before
executing the current SQL

Universal Data Access Components1062

© 2024 Devart

statement is needed.

OnError (inherited from TDAScript) Occurs when server raises
an error.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.25.1.1.2 Properties

Properties of the TUniScript class.

For a complete list of the TUniScript class members, see the TUniScript Members topic.

Public

Name Description

EndLine (inherited from TDAScript)
Used to get the current
statement last line number in
a script.

EndOffset (inherited from TDAScript)
Used to get the offset in the
last line of the current
statement.

EndPos (inherited from TDAScript) Used to get the end position
of the current statement.

StartLine (inherited from TDAScript)
Used to get the current
statement start line number
in a script.

StartOffset (inherited from TDAScript)
Used to get the offset in the
first line of the current
statement.

StartPos (inherited from TDAScript)
Used to get the start position
of the current statement in a
script.

Statements (inherited from TDAScript)
Contains a list of statements
obtained from the SQL
property.

Published

Name Description

Connection
Used to specify the
connection in which the
script will be executed.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1063

© 2024 Devart

DataSet
Used to retrieve the results
of SELECT statements
execution inside a script.

Debug (inherited from TDAScript)
Used to display the script
execution and all its
parameter values.

Delimiter (inherited from TDAScript)
Used to set the delimiter
string that separates script
statements.

Macros (inherited from TDAScript)
Used to change SQL script
text in design- or run-time
easily.

SpecificOptions Provides extended settings
for each data provider.

SQL (inherited from TDAScript) Used to get or set script text.

Transaction

Used to specify the
TUniTransaction object in
the context of which SQL
commands will be executed,
and queries retrieving data
will be opened.

See Also
TUniScript Class

TUniScript Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.25.1.1.2.1 Connection Property

Used to specify the connection in which the script will be executed.

Class

TUniScript

Syntax

property Connection: TUniConnection;

Remarks

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1064

© 2024 Devart

Use the Connection property to specify the connection in which the script will be executed. If

Connection is not connected, the TDAScript.Execute method calls the Connect method of

Connection.

See Also
TUniConnection

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.25.1.1.2.2 DataSet Property

Used to retrieve the results of SELECT statements execution inside a script.

Class

TUniScript

Syntax

property DataSet: TCustomUniDataSet;

Remarks

Use the DataSet property to retrieve the results of SELECT statements execution inside a

script.

See Also
TDAScript.Execute

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.25.1.1.2.3 Specif icOptions Property

Provides extended settings for each data provider.

Class

TUniScript

Syntax

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1065

© 2024 Devart

property SpecificOptions: TStrings;

Remarks

Use the SpecificOptions property to provide extended settings for each data provider.

SpecificOptions can be setup both design time and run time.

At design time call the component editor by double click on it, and select the Options tab in

the editor. Calling the SpecificOptions editor from the Object Inspector will open the

component editor with Options tab active. Type or select the provider name, and change

values of required properties. Then you can either close the editor, or select another provider

name. Settings for all providers will be saved.

SpecificOptions can be setup at the same time for all providers that supposed to be used.

All options are applied right before executing. If an option name is not recognized, an

exception is raised and commands are not executed.

Example

You can also setup specific options at run time. Either of two formats can be used:

1. Using the provider name in an option name;

2. Not using the provider name in an option name

In the second case options will be applied to the current provider, namely to the provider

specified in the TUniConnection.ProviderName property of assigned connection.

When you set the AutoDDL option like it is shown in the second example, you can execute

the script with the InterBase provider, but attempt to execute it with other providers will fail.

Example 1.
 UniScript1.SpecificOptions.Add('InterBase.AutoDDL=True')
Example 2.
 UniScript1.SpecificOptions.Add('AutoDDL=True')

See Also
TUniConnection.ProviderName

Using Oracle data access provider with UniDAC in Delphi

Using SQL Server data access provider with UniDAC in Delphi

Using MySQL data access provider with UniDAC in Delphi

Universal Data Access Components1066

© 2024 Devart

Using InterBase data access provider with UniDAC in Delphi

Using PostgreSQL data access provider with UniDAC in Delphi

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.25.1.1.2.4 Transaction Property

Used to specify the TUniTransaction object in the context of which SQL commands will be

executed, and queries retrieving data will be opened.

Class

TUniScript

Syntax

property Transaction: TUniTransaction stored IsTransactionStored;

Remarks

Use the Transaction property to specify the TUniTransaction object in the context of which

SQL commands will be executed, and queries retrieving data will be opened. If this property is

not specified, the default transaction associated with linked TUniConnection will be used. This

transaction will work in AutoCommit mode.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.26 UniSQLMonitor

This unit contains the implementation of the TUniSQLMonitor component.

Classes

Name Description

TUniSQLMonitor

This component serves for
monitoring dynamic SQL
execution in UniDAC-based
applications.

© 1997-2024
Devart. All Rights

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1067

© 2024 Devart

Reserved.

6.26.1 Classes

Classes in the UniSQLMonitor unit.

Classes

Name Description

TUniSQLMonitor

This component serves for
monitoring dynamic SQL
execution in UniDAC-based
applications.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.26.1.1 TUniSQLMonitor Class

This component serves for monitoring dynamic SQL execution in UniDAC-based

applications.

For a list of all members of this type, see TUniSQLMonitor members.

Unit

UniSQLMonitor

Syntax

TUniSQLMonitor = class(TCustomDASQLMonitor);

Remarks

Use TUniSQLMonitor to monitor dynamic SQL execution in UniDAC-based applications.

TUniSQLMonitor provides two ways of displaying debug information: with dialog window,

DBMonitor or Borland SQL Monitor. Furthermore to receive debug information the

TCustomDASQLMonitor.OnSQL event can be used. Also it is possible to use all these ways

at the same time, though an application may have only one TUniSQLMonitor object. If an

application has no TUniSQLMonitor instance, the Debug window is available to display SQL

statements to be sent.

Inheritance Hierarchy

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1068

© 2024 Devart

TCustomDASQLMonitor

 TUniSQLMonitor

See Also
TCustomDADataSet.Debug

TCustomDASQL.Debug

DBMonitor

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.26.1.1.1 Members

TUniSQLMonitor class overview.

Properties

Name Description

Active (inherited from TCustomDASQLMonitor) Used to activate monitoring
of SQL.

DBMonitorOptions (inherited from

TCustomDASQLMonitor)
Used to set options for
dbMonitor.

Options (inherited from TCustomDASQLMonitor)
Used to include the desired
properties for
TCustomDASQLMonitor.

TraceFlags (inherited from TCustomDASQLMonitor)

Used to specify which
database operations the
monitor should track in an
application at runtime.

Events

Name Description

OnSQL (inherited from TCustomDASQLMonitor)
Occurs when tracing of SQL
activity on database
components is needed.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1069

© 2024 Devart

6.27 VirtualDataSet

This unit contains implementation of the TVirtualDataSet component.

Classes

Name Description

TCustomVirtualDataSet
A base class for
representation of arbitrary
data in tabular form.

TVirtualDataSet Dataset that processes
arbitrary non-tabular data.

Types

Name Description

TOnDeleteRecordEvent
This type is used for the
E:Devart.Dac.TVirtualDataS
et.OnDeleteRecord event.

TOnGetFieldValueEvent
This type is used for the
E:Devart.Dac.TVirtualDataS
et.OnGetFieldValue event.

TOnGetRecordCountEvent

This type is used for the
E:Devart.Dac.TVirtualDataS
et.OnGetRecordCount
event.

TOnModifyRecordEvent

This type is used for
E:Devart.Dac.TVirtualDataS
et.OnInsertRecord and
E:Devart.Dac.TVirtualDataS
et.OnModifyRecord events.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.27.1 Classes

Classes in the VirtualDataSet unit.

Classes

Name Description

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1070

© 2024 Devart

TCustomVirtualDataSet
A base class for
representation of arbitrary
data in tabular form.

TVirtualDataSet Dataset that processes
arbitrary non-tabular data.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.27.1.1 TCustomVirtualDataSet Class

A base class for representation of arbitrary data in tabular form.

For a list of all members of this type, see TCustomVirtualDataSet members.

Unit

VirtualDataSet

Syntax

TCustomVirtualDataSet = class(TMemDataSet);

Inheritance Hierarchy

TMemDataSet

 TCustomVirtualDataSet

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.27.1.1.1 Members

TCustomVirtualDataSet class overview.

Properties

Name Description

CachedUpdates (inherited from TMemDataSet)
Used to enable or disable
the use of cached updates
for a dataset.

IndexFieldNames (inherited from TMemDataSet) Used to get or set the list of
fields on which the recordset

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1071

© 2024 Devart

is sorted.

KeyExclusive (inherited from TMemDataSet)
Specifies the upper and
lower boundaries for a
range.

LocalConstraints (inherited from TMemDataSet)

Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet)
Used to prevent implicit
update of rows on database
server.

Prepared (inherited from TMemDataSet)
Determines whether a query
is prepared for execution or
not.

Ranged (inherited from TMemDataSet) Indicates whether a range is
applied to a dataset.

UpdateRecordTypes (inherited from TMemDataSet)
Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

Methods

Name Description

ApplyRange (inherited from TMemDataSet) Applies a range to the
dataset.

ApplyUpdates (inherited from TMemDataSet)
Overloaded. Writes
dataset's pending cached
updates to a database.

CancelRange (inherited from TMemDataSet)
Removes any ranges
currently in effect for a
dataset.

CancelUpdates (inherited from TMemDataSet)
Clears all pending cached
updates from cache and
restores dataset in its prior
state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates
buffer.

DeferredPost (inherited from TMemDataSet) Makes permanent changes
to the database server.

Universal Data Access Components1072

© 2024 Devart

EditRangeEnd (inherited from TMemDataSet)
Enables changing the
ending value for an existing
range.

EditRangeStart (inherited from TMemDataSet)
Enables changing the
starting value for an existing
range.

GetBlob (inherited from TMemDataSet)

Overloaded. Retrieves
TBlob object for a field or
current record when only its
name or the field itself is
known.

Locate (inherited from TMemDataSet)
Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

LocateEx (inherited from TMemDataSet)

Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

Prepare (inherited from TMemDataSet)
Allocates resources and
creates field components for
a dataset.

RestoreUpdates (inherited from TMemDataSet)
Marks all records in the
cache of updates as
unapplied.

RevertRecord (inherited from TMemDataSet)
Cancels changes made to
the current record when
cached updates are
enabled.

SaveToXML (inherited from TMemDataSet)

Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

SetRange (inherited from TMemDataSet)
Sets the starting and ending
values of a range, and
applies it.

SetRangeEnd (inherited from TMemDataSet)

Indicates that subsequent
assignments to field values
specify the end of the range
of rows to include in the
dataset.

SetRangeStart (inherited from TMemDataSet) Indicates that subsequent
assignments to field values

Reference 1073

© 2024 Devart

specify the start of the range
of rows to include in the
dataset.

UnPrepare (inherited from TMemDataSet)
Frees the resources
allocated for a previously
prepared query on the
server and client sides.

UpdateResult (inherited from TMemDataSet)

Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are
enabled.

UpdateStatus (inherited from TMemDataSet)
Indicates the current update
status for the dataset when
cached updates are
enabled.

Events

Name Description

OnUpdateError (inherited from TMemDataSet)

Occurs when an exception is
generated while cached
updates are applied to a
database.

OnUpdateRecord (inherited from TMemDataSet)
Occurs when a single
update component can not
handle the updates.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.27.1.2 TVirtualDataSet Class

Dataset that processes arbitrary non-tabular data.

For a list of all members of this type, see TVirtualDataSet members.

Unit

VirtualDataSet

Syntax

TVirtualDataSet = class(TCustomVirtualDataSet);

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1074

© 2024 Devart

Inheritance Hierarchy

TMemDataSet

 TCustomVirtualDataSet

 TVirtualDataSet

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.27.1.2.1 Members

TVirtualDataSet class overview.

Properties

Name Description

CachedUpdates (inherited from TMemDataSet)
Used to enable or disable
the use of cached updates
for a dataset.

IndexFieldNames (inherited from TMemDataSet)
Used to get or set the list of
fields on which the recordset
is sorted.

KeyExclusive (inherited from TMemDataSet)
Specifies the upper and
lower boundaries for a
range.

LocalConstraints (inherited from TMemDataSet)

Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet)
Used to prevent implicit
update of rows on database
server.

Prepared (inherited from TMemDataSet)
Determines whether a query
is prepared for execution or
not.

Ranged (inherited from TMemDataSet) Indicates whether a range is
applied to a dataset.

UpdateRecordTypes (inherited from TMemDataSet)
Used to indicate the update
status for the current record
when cached updates are
enabled.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1075

© 2024 Devart

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

Methods

Name Description

ApplyRange (inherited from TMemDataSet) Applies a range to the
dataset.

ApplyUpdates (inherited from TMemDataSet)
Overloaded. Writes
dataset's pending cached
updates to a database.

CancelRange (inherited from TMemDataSet)
Removes any ranges
currently in effect for a
dataset.

CancelUpdates (inherited from TMemDataSet)
Clears all pending cached
updates from cache and
restores dataset in its prior
state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates
buffer.

DeferredPost (inherited from TMemDataSet) Makes permanent changes
to the database server.

EditRangeEnd (inherited from TMemDataSet)
Enables changing the
ending value for an existing
range.

EditRangeStart (inherited from TMemDataSet)
Enables changing the
starting value for an existing
range.

GetBlob (inherited from TMemDataSet)

Overloaded. Retrieves
TBlob object for a field or
current record when only its
name or the field itself is
known.

Locate (inherited from TMemDataSet)
Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

LocateEx (inherited from TMemDataSet)

Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

Prepare (inherited from TMemDataSet) Allocates resources and
creates field components for

Universal Data Access Components1076

© 2024 Devart

a dataset.

RestoreUpdates (inherited from TMemDataSet)
Marks all records in the
cache of updates as
unapplied.

RevertRecord (inherited from TMemDataSet)
Cancels changes made to
the current record when
cached updates are
enabled.

SaveToXML (inherited from TMemDataSet)

Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

SetRange (inherited from TMemDataSet)
Sets the starting and ending
values of a range, and
applies it.

SetRangeEnd (inherited from TMemDataSet)

Indicates that subsequent
assignments to field values
specify the end of the range
of rows to include in the
dataset.

SetRangeStart (inherited from TMemDataSet)

Indicates that subsequent
assignments to field values
specify the start of the range
of rows to include in the
dataset.

UnPrepare (inherited from TMemDataSet)
Frees the resources
allocated for a previously
prepared query on the
server and client sides.

UpdateResult (inherited from TMemDataSet)

Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are
enabled.

UpdateStatus (inherited from TMemDataSet)
Indicates the current update
status for the dataset when
cached updates are
enabled.

Events

Name Description

Reference 1077

© 2024 Devart

OnUpdateError (inherited from TMemDataSet)
Occurs when an exception is
generated while cached
updates are applied to a
database.

OnUpdateRecord (inherited from TMemDataSet)
Occurs when a single
update component can not
handle the updates.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.27.2 Types

Types in the VirtualDataSet unit.

Types

Name Description

TOnDeleteRecordEvent
This type is used for the
E:Devart.Dac.TVirtualDataS
et.OnDeleteRecord event.

TOnGetFieldValueEvent
This type is used for the
E:Devart.Dac.TVirtualDataS
et.OnGetFieldValue event.

TOnGetRecordCountEvent

This type is used for the
E:Devart.Dac.TVirtualDataS
et.OnGetRecordCount
event.

TOnModifyRecordEvent

This type is used for
E:Devart.Dac.TVirtualDataS
et.OnInsertRecord and
E:Devart.Dac.TVirtualDataS
et.OnModifyRecord events.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.27.2.1 TOnDeleteRecordEvent Procedure Reference

This type is used for the E:Devart.Dac.TVirtualDataSet.OnDeleteRecord event.

Unit

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1078

© 2024 Devart

VirtualDataSet

Syntax

TOnDeleteRecordEvent = procedure (Sender: TObject; RecNo:

Integer) of object;

Parameters

Sender

An object that raised the event.

RecNo

Number of the record being deleted.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.27.2.2 TOnGetFieldValueEvent Procedure Reference

This type is used for the E:Devart.Dac.TVirtualDataSet.OnGetFieldValue event.

Unit

VirtualDataSet

Syntax

TOnGetFieldValueEvent = procedure (Sender: TObject; Field: TField;

RecNo: Integer; out Value: Variant) of object;

Parameters

Sender

An object that raised the event.

Field

The field, which data has to be returned.

RecNo

The number of the record, which data has to be returned.

Value

Requested field value.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1079

© 2024 Devart

6.27.2.3 TOnGetRecordCountEvent Procedure Reference

This type is used for the E:Devart.Dac.TVirtualDataSet.OnGetRecordCount event.

Unit

VirtualDataSet

Syntax

TOnGetRecordCountEvent = procedure (Sender: TObject; out Count:

Integer) of object;

Parameters

Sender

An object that raised the event.

Count

The number of records that the virtual dataset will contain.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.27.2.4 TOnModifyRecordEvent Procedure Reference

This type is used for E:Devart.Dac.TVirtualDataSet.OnInsertRecord and

E:Devart.Dac.TVirtualDataSet.OnModifyRecord events.

Unit

VirtualDataSet

Syntax

TOnModifyRecordEvent = procedure (Sender: TObject; var RecNo:

Integer) of object;

Parameters

Sender

An object that raised the event.

RecNo

Number of the record being inserted or modified.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1080

© 2024 Devart

6.28 VirtualQuery

6.28.1 Classes

Classes in the VirtualQuery unit.

Classes

Name Description

TCustomVirtualQuery
A base class that
implements TVirtualQuery
functionality.

TDataSetLink

Used to link a TDataSet
descendant as a data
source for querying data in
TVirtualQuery.

TDataSetLinks
This type is used for the
TCustomVirtualQuery.Sourc
eDataSets property.

TVirtualCollationManager Used to register user-
defined collations.

TVirtualFunctionManager Used to register user-
defined functions.

TVirtualQuery
Used to retrieve data
simultaneously from various
RDBMS'es.

TVirtualQueryOptions Used to set up the behaviour
of the TVirtualQuery class.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.28.1.1 TCustomVirtualQuery Class

A base class that implements TVirtualQuery functionality.

For a list of all members of this type, see TCustomVirtualQuery members.

Unit

VirtualQuery

Syntax

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1081

© 2024 Devart

TCustomVirtualQuery = class(TCustomDADataSet);

Inheritance Hierarchy

TMemDataSet

 TCustomDADataSet

 TCustomVirtualQuery

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.28.1.1.1 Members

TCustomVirtualQuery class overview.

Properties

Name Description

BaseSQL (inherited from TCustomDADataSet)
Used to return SQL text
without any changes
performed by AddWhere,
SetOrderBy, and FilterSQL.

CachedUpdates (inherited from TMemDataSet)
Used to enable or disable
the use of cached updates
for a dataset.

Conditions (inherited from TCustomDADataSet) Used to add WHERE
conditions to a query

Connection (inherited from TCustomDADataSet)
Used to specify a
connection object to use to
connect to a data store.

DataTypeMap (inherited from TCustomDADataSet) Used to set data type
mapping rules

Debug (inherited from TCustomDADataSet)
Used to display the
statement that is being
executed and the values and
types of its parameters.

DetailFields (inherited from TCustomDADataSet)

Used to specify the fields
that correspond to the
foreign key fields from
MasterFields when building
master/detail relationship.

Disconnected (inherited from TCustomDADataSet) Used to keep dataset
opened after connection is

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1082

© 2024 Devart

closed.

FetchRows (inherited from TCustomDADataSet)
Used to define the number
of rows to be transferred
across the network at the
same time.

FilterSQL (inherited from TCustomDADataSet)
Used to change the WHERE
clause of SELECT
statement and reopen a
query.

FinalSQL (inherited from TCustomDADataSet)

Used to return SQL text with
all changes performed by
AddWhere, SetOrderBy,
and FilterSQL, and with
expanded macros.

IndexFieldNames (inherited from TMemDataSet)
Used to get or set the list of
fields on which the recordset
is sorted.

IsQuery (inherited from TCustomDADataSet) Used to check whether SQL
statement returns rows.

KeyExclusive (inherited from TMemDataSet)
Specifies the upper and
lower boundaries for a
range.

KeyFields (inherited from TCustomDADataSet)

Used to build SQL
statements for the
SQLDelete, SQLInsert, and
SQLUpdate properties if
they were empty before
updating the database.

LocalConstraints (inherited from TMemDataSet)

Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet)
Used to prevent implicit
update of rows on database
server.

MacroCount (inherited from TCustomDADataSet)
Used to get the number of
macros associated with the
Macros property.

Macros (inherited from TCustomDADataSet) Makes it possible to change
SQL queries easily.

MasterFields (inherited from TCustomDADataSet)
Used to specify the names
of one or more fields that are
used as foreign keys for

Reference 1083

© 2024 Devart

dataset when establishing
detail/master relationship
between it and the dataset
specified in MasterSource.

MasterSource (inherited from TCustomDADataSet)
Used to specify the data
source component which
binds current dataset to the
master one.

Options
Used to specify the
behaviour of TVirtualQuery
object.

ParamCheck (inherited from TCustomDADataSet)

Used to specify whether
parameters for the Params
property are generated
automatically after the SQL
property was changed.

ParamCount (inherited from TCustomDADataSet)
Used to indicate how many
parameters are there in the
Params property.

Params (inherited from TCustomDADataSet)
Used to view and set
parameter names, values,
and data types dynamically.

Prepared (inherited from TMemDataSet)
Determines whether a query
is prepared for execution or
not.

Ranged (inherited from TMemDataSet) Indicates whether a range is
applied to a dataset.

ReadOnly (inherited from TCustomDADataSet)
Used to prevent users from
updating, inserting, or
deleting data in the dataset.

RefreshOptions (inherited from TCustomDADataSet) Used to indicate when the
editing record is refreshed.

RowsAffected (inherited from TCustomDADataSet)
Used to indicate the number
of rows which were inserted,
updated, or deleted during
the last query operation.

SourceDataSets
Contains a collection of
source datasets for querying
data.

SQL (inherited from TCustomDADataSet)
Used to provide a SQL
statement that a query
component executes when
its Open method is called.

SQLDelete (inherited from TCustomDADataSet) Used to specify a SQL

Universal Data Access Components1084

© 2024 Devart

statement that will be used
when applying a deletion to
a record.

SQLInsert (inherited from TCustomDADataSet)
Used to specify the SQL
statement that will be used
when applying an insertion
to a dataset.

SQLLock (inherited from TCustomDADataSet)
Used to specify a SQL
statement that will be used
to perform a record lock.

SQLRecCount (inherited from TCustomDADataSet)
Used to specify the SQL
statement that is used to get
the record count when
opening a dataset.

SQLRefresh (inherited from TCustomDADataSet)

Used to specify a SQL
statement that will be used
to refresh current record by
calling the
TCustomDADataSet.Refres
hRecord procedure.

SQLUpdate (inherited from TCustomDADataSet)
Used to specify a SQL
statement that will be used
when applying an update to
a dataset.

UniDirectional (inherited from TCustomDADataSet)
Used if an application does
not need bidirectional
access to records in the
result set.

UpdateRecordTypes (inherited from TMemDataSet)
Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

Methods

Name Description

AddWhere (inherited from TCustomDADataSet)
Adds condition to the
WHERE clause of SELECT
statement in the SQL
property.

ApplyRange (inherited from TMemDataSet) Applies a range to the
dataset.

Reference 1085

© 2024 Devart

ApplyUpdates (inherited from TMemDataSet)
Overloaded. Writes
dataset's pending cached
updates to a database.

BreakExec (inherited from TCustomDADataSet) Breaks execution of the SQL
statement on the server.

CancelRange (inherited from TMemDataSet)
Removes any ranges
currently in effect for a
dataset.

CancelUpdates (inherited from TMemDataSet)
Clears all pending cached
updates from cache and
restores dataset in its prior
state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates
buffer.

CreateBlobStream (inherited from TCustomDADataSet)

Used to obtain a stream for
reading data from or writing
data to a BLOB field,
specified by the Field
parameter.

DeferredPost (inherited from TMemDataSet) Makes permanent changes
to the database server.

DeleteWhere (inherited from TCustomDADataSet)
Removes WHERE clause
from the SQL property and
assigns the BaseSQL
property.

EditRangeEnd (inherited from TMemDataSet)
Enables changing the
ending value for an existing
range.

EditRangeStart (inherited from TMemDataSet)
Enables changing the
starting value for an existing
range.

Execute (inherited from TCustomDADataSet)
Overloaded. Executes a
SQL statement on the
server.

Executing (inherited from TCustomDADataSet)
Indicates whether SQL
statement is still being
executed.

Fetched (inherited from TCustomDADataSet)
Used to find out whether
TCustomDADataSet has
fetched all rows.

Fetching (inherited from TCustomDADataSet)
Used to learn whether
TCustomDADataSet is still
fetching rows.

Universal Data Access Components1086

© 2024 Devart

FetchingAll (inherited from TCustomDADataSet)
Used to learn whether
TCustomDADataSet is
fetching all rows to the end.

FindKey (inherited from TCustomDADataSet)
Searches for a record which
contains specified field
values.

FindMacro (inherited from TCustomDADataSet) Finds a macro with the
specified name.

FindNearest (inherited from TCustomDADataSet)

Moves the cursor to a
specific record or to the first
record in the dataset that
matches or is greater than
the values specified in the
KeyValues parameter.

FindParam (inherited from TCustomDADataSet)
Determines if a parameter
with the specified name
exists in a dataset.

GetBlob (inherited from TMemDataSet)

Overloaded. Retrieves
TBlob object for a field or
current record when only its
name or the field itself is
known.

GetDataType (inherited from TCustomDADataSet)
Returns internal field types
defined in the MemData and
accompanying modules.

GetFieldObject (inherited from TCustomDADataSet) Returns a multireference
shared object from field.

GetFieldPrecision (inherited from TCustomDADataSet) Retrieves the precision of a
number field.

GetFieldScale (inherited from TCustomDADataSet) Retrieves the scale of a
number field.

GetKeyFieldNames (inherited from

TCustomDADataSet)
Provides a list of available
key field names.

GetOrderBy (inherited from TCustomDADataSet)
Retrieves an ORDER BY
clause from a SQL
statement.

GotoCurrent (inherited from TCustomDADataSet)
Sets the current record in
this dataset similar to the
current record in another
dataset.

Locate (inherited from TMemDataSet)
Overloaded. Searches a
dataset for a specific record
and positions the cursor on

Reference 1087

© 2024 Devart

it.

LocateEx (inherited from TMemDataSet)

Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

Lock (inherited from TCustomDADataSet) Locks the current record.

MacroByName (inherited from TCustomDADataSet) Finds a macro with the
specified name.

ParamByName (inherited from TCustomDADataSet)
Sets or uses parameter
information for a specific
parameter based on its
name.

Prepare (inherited from TCustomDADataSet) Allocates, opens, and
parses cursor for a query.

RefreshRecord (inherited from TCustomDADataSet) Actualizes field values for
the current record.

RestoreSQL (inherited from TCustomDADataSet)
Restores the SQL property
modified by AddWhere and
SetOrderBy.

RestoreUpdates (inherited from TMemDataSet)
Marks all records in the
cache of updates as
unapplied.

RevertRecord (inherited from TMemDataSet)
Cancels changes made to
the current record when
cached updates are
enabled.

SaveSQL (inherited from TCustomDADataSet) Saves the SQL property
value to BaseSQL.

SaveToXML (inherited from TMemDataSet)

Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

SetOrderBy (inherited from TCustomDADataSet) Builds an ORDER BY clause
of a SELECT statement.

SetRange (inherited from TMemDataSet)
Sets the starting and ending
values of a range, and
applies it.

SetRangeEnd (inherited from TMemDataSet)

Indicates that subsequent
assignments to field values
specify the end of the range
of rows to include in the
dataset.

Universal Data Access Components1088

© 2024 Devart

SetRangeStart (inherited from TMemDataSet)

Indicates that subsequent
assignments to field values
specify the start of the range
of rows to include in the
dataset.

SQLSaved (inherited from TCustomDADataSet)
Determines if the SQL
property value was saved to
the BaseSQL property.

UnLock (inherited from TCustomDADataSet) Releases a record lock.

UnPrepare (inherited from TMemDataSet)
Frees the resources
allocated for a previously
prepared query on the
server and client sides.

UpdateResult (inherited from TMemDataSet)

Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are
enabled.

UpdateStatus (inherited from TMemDataSet)
Indicates the current update
status for the dataset when
cached updates are
enabled.

Events

Name Description

AfterExecute (inherited from TCustomDADataSet)
Occurs after a component
has executed a query to
database.

AfterFetch (inherited from TCustomDADataSet) Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute (inherited from

TCustomDADataSet)

Occurs after executing
insert, delete, update, lock
and refresh operations.

BeforeFetch (inherited from TCustomDADataSet)
Occurs before dataset is
going to fetch block of
records from the server.

BeforeUpdateExecute (inherited from

TCustomDADataSet)

Occurs before executing
insert, delete, update, lock,
and refresh operations.

OnRegisterCollations
Occurs when the connection
is opened to register the
user-defined collation used

Reference 1089

© 2024 Devart

in the query text.

OnRegisterFunctions

Occurs when the query is
opened to register the user-
defined functions used in the
query text.

OnUpdateError (inherited from TMemDataSet)
Occurs when an exception is
generated while cached
updates are applied to a
database.

OnUpdateRecord (inherited from TMemDataSet)
Occurs when a single
update component can not
handle the updates.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.28.1.1.2 Properties

Properties of the TCustomVirtualQuery class.

For a complete list of the TCustomVirtualQuery class members, see the

TCustomVirtualQuery Members topic.

Public

Name Description

BaseSQL (inherited from TCustomDADataSet)
Used to return SQL text
without any changes
performed by AddWhere,
SetOrderBy, and FilterSQL.

CachedUpdates (inherited from TMemDataSet)
Used to enable or disable
the use of cached updates
for a dataset.

Conditions (inherited from TCustomDADataSet) Used to add WHERE
conditions to a query

Connection (inherited from TCustomDADataSet)
Used to specify a
connection object to use to
connect to a data store.

DataTypeMap (inherited from TCustomDADataSet) Used to set data type
mapping rules

Debug (inherited from TCustomDADataSet)
Used to display the
statement that is being
executed and the values and

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1090

© 2024 Devart

types of its parameters.

DetailFields (inherited from TCustomDADataSet)

Used to specify the fields
that correspond to the
foreign key fields from
MasterFields when building
master/detail relationship.

Disconnected (inherited from TCustomDADataSet)
Used to keep dataset
opened after connection is
closed.

FetchRows (inherited from TCustomDADataSet)
Used to define the number
of rows to be transferred
across the network at the
same time.

FilterSQL (inherited from TCustomDADataSet)
Used to change the WHERE
clause of SELECT
statement and reopen a
query.

FinalSQL (inherited from TCustomDADataSet)

Used to return SQL text with
all changes performed by
AddWhere, SetOrderBy,
and FilterSQL, and with
expanded macros.

IndexFieldNames (inherited from TMemDataSet)
Used to get or set the list of
fields on which the recordset
is sorted.

IsQuery (inherited from TCustomDADataSet) Used to check whether SQL
statement returns rows.

KeyExclusive (inherited from TMemDataSet)
Specifies the upper and
lower boundaries for a
range.

KeyFields (inherited from TCustomDADataSet)

Used to build SQL
statements for the
SQLDelete, SQLInsert, and
SQLUpdate properties if
they were empty before
updating the database.

LocalConstraints (inherited from TMemDataSet)

Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet)
Used to prevent implicit
update of rows on database
server.

Reference 1091

© 2024 Devart

MacroCount (inherited from TCustomDADataSet)
Used to get the number of
macros associated with the
Macros property.

Macros (inherited from TCustomDADataSet) Makes it possible to change
SQL queries easily.

MasterFields (inherited from TCustomDADataSet)

Used to specify the names
of one or more fields that are
used as foreign keys for
dataset when establishing
detail/master relationship
between it and the dataset
specified in MasterSource.

MasterSource (inherited from TCustomDADataSet)
Used to specify the data
source component which
binds current dataset to the
master one.

Options
Used to specify the
behaviour of TVirtualQuery
object.

ParamCheck (inherited from TCustomDADataSet)

Used to specify whether
parameters for the Params
property are generated
automatically after the SQL
property was changed.

ParamCount (inherited from TCustomDADataSet)
Used to indicate how many
parameters are there in the
Params property.

Params (inherited from TCustomDADataSet)
Used to view and set
parameter names, values,
and data types dynamically.

Prepared (inherited from TMemDataSet)
Determines whether a query
is prepared for execution or
not.

Ranged (inherited from TMemDataSet) Indicates whether a range is
applied to a dataset.

ReadOnly (inherited from TCustomDADataSet)
Used to prevent users from
updating, inserting, or
deleting data in the dataset.

RefreshOptions (inherited from TCustomDADataSet) Used to indicate when the
editing record is refreshed.

RowsAffected (inherited from TCustomDADataSet)
Used to indicate the number
of rows which were inserted,
updated, or deleted during
the last query operation.

Universal Data Access Components1092

© 2024 Devart

SourceDataSets
Contains a collection of
source datasets for querying
data.

SQL (inherited from TCustomDADataSet)
Used to provide a SQL
statement that a query
component executes when
its Open method is called.

SQLDelete (inherited from TCustomDADataSet)
Used to specify a SQL
statement that will be used
when applying a deletion to
a record.

SQLInsert (inherited from TCustomDADataSet)
Used to specify the SQL
statement that will be used
when applying an insertion
to a dataset.

SQLLock (inherited from TCustomDADataSet)
Used to specify a SQL
statement that will be used
to perform a record lock.

SQLRecCount (inherited from TCustomDADataSet)
Used to specify the SQL
statement that is used to get
the record count when
opening a dataset.

SQLRefresh (inherited from TCustomDADataSet)

Used to specify a SQL
statement that will be used
to refresh current record by
calling the
TCustomDADataSet.Refres
hRecord procedure.

SQLUpdate (inherited from TCustomDADataSet)
Used to specify a SQL
statement that will be used
when applying an update to
a dataset.

UniDirectional (inherited from TCustomDADataSet)
Used if an application does
not need bidirectional
access to records in the
result set.

UpdateRecordTypes (inherited from TMemDataSet)
Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

See Also

Reference 1093

© 2024 Devart

TCustomVirtualQuery Class

TCustomVirtualQuery Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.28.1.1.2.1 Options Property

Used to specify the behaviour of TVirtualQuery object.

Class

TCustomVirtualQuery

Syntax

property Options: TVirtualQueryOptions;

Remarks

Set the properties of Options to specify the behaviour of a TVirtualQuery object.

See Also
TVirtualQuery

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.28.1.1.2.2 SourceDataSets Property

Contains a collection of source datasets for querying data.

Class

TCustomVirtualQuery

Syntax

property SourceDataSets: TDataSetLinks;

Remarks

Use the property to create a list of the data sources to which the SQL statement will be

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1094

© 2024 Devart

executed. Each data source has to be a TDataSet descendant, connected to a database and

opened prior to SQL statement execution in the TVirtualQuery (if

TVirtualQueryOptions.AutoOpenSources option is set to False). Each data source gets its

own "schema name" and "table name" which are used to identify the data source in the SQL

statement. Each data source must have a unique combination of schema name and table

name.

See Also
TVirtualQueryOptions.AutoOpenSources

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.28.1.1.3 Events

Events of the TCustomVirtualQuery class.

For a complete list of the TCustomVirtualQuery class members, see the

TCustomVirtualQuery Members topic.

Public

Name Description

AfterExecute (inherited from TCustomDADataSet)
Occurs after a component
has executed a query to
database.

AfterFetch (inherited from TCustomDADataSet) Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute (inherited from

TCustomDADataSet)

Occurs after executing
insert, delete, update, lock
and refresh operations.

BeforeFetch (inherited from TCustomDADataSet)
Occurs before dataset is
going to fetch block of
records from the server.

BeforeUpdateExecute (inherited from

TCustomDADataSet)

Occurs before executing
insert, delete, update, lock,
and refresh operations.

OnRegisterCollations

Occurs when the connection
is opened to register the
user-defined collation used
in the query text.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1095

© 2024 Devart

OnRegisterFunctions

Occurs when the query is
opened to register the user-
defined functions used in the
query text.

OnUpdateError (inherited from TMemDataSet)
Occurs when an exception is
generated while cached
updates are applied to a
database.

OnUpdateRecord (inherited from TMemDataSet)
Occurs when a single
update component can not
handle the updates.

See Also
TCustomVirtualQuery Class

TCustomVirtualQuery Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.28.1.1.3.1 OnRegisterCollations Event

Occurs when the connection is opened to register the user-defined collation used in the query

text.

Class

TCustomVirtualQuery

Syntax

property OnRegisterCollations: TRegisterCollationsEvent;

Remarks

Occurs after a component has executed a query to a database.

See Also
TCustomDADataSet.Execute

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1096

© 2024 Devart

6.28.1.1.3.2 OnRegisterFunctions Event

Occurs when the query is opened to register the user-defined functions used in the query

text.

Class

TCustomVirtualQuery

Syntax

property OnRegisterFunctions: TRegisterFunctionsEvent;

Remarks

The event occurs before a component has executed a query.

See Also
TCustomDADataSet.Execute

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.28.1.2 TDataSetLink Class

Used to link a TDataSet descendant as a data source for querying data in TVirtualQuery.

For a list of all members of this type, see TDataSetLink members.

Unit

VirtualQuery

Syntax

TDataSetLink = class(TCollectionItem);

Remarks

Add a TDataSetLink instance to the TCustomVirtualQuery.SourceDataSets collection using

the TDataSetLinks.Add method to link a TDataSet descendant as a data source for querying

data in TVirtualQuery.

See Also

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1097

© 2024 Devart

TVirtualQuery

TCustomVirtualQuery.SourceDataSets

TDataSetLinks

TDataSetLinks.Add

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.28.1.2.1 Members

TDataSetLink class overview.

Properties

Name Description

DataSet

Defines a TDataSet
descendant to be linked as
a data source for querying
data in TVirtualQuery.

SchemaName

Defines the schema name
which will be used to identify
the linked source dataset in
a SQL statement.

TableName

Defines the table name
which will be used to identify
the linked source dataset in
a SQL statement.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.28.1.2.2 Properties

Properties of the TDataSetLink class.

For a complete list of the TDataSetLink class members, see the TDataSetLink Members

topic.

Published

Name Description

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1098

© 2024 Devart

DataSet

Defines a TDataSet
descendant to be linked as
a data source for querying
data in TVirtualQuery.

SchemaName

Defines the schema name
which will be used to identify
the linked source dataset in
a SQL statement.

TableName

Defines the table name
which will be used to identify
the linked source dataset in
a SQL statement.

See Also
TDataSetLink Class

TDataSetLink Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.28.1.2.2.1 DataSet Property

Defines a TDataSet descendant to be linked as a data source for querying data in

TVirtualQuery.

Class

TDataSetLink

Syntax

property DataSet: TDataSet;

See Also
TVirtualQuery

SchemaName

TableName

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1099

© 2024 Devart

6.28.1.2.2.2 SchemaName Property

Defines the schema name which will be used to identify the linked source dataset in a SQL

statement.

Class

TDataSetLink

Syntax

property SchemaName: string;

Remarks

Can be left empty. In this case either no schema name or the "main" schema name can be

used when referring to the linked source dataset in a SQL statement.

Combination of schema name and table name must be unique for each linked dataset.

See Also
DataSet

TableName

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.28.1.2.2.3 TableName Property

Defines the table name which will be used to identify the linked source dataset in a SQL

statement.

Class

TDataSetLink

Syntax

property TableName: string stored GetTableNameStored;

Remarks

Must be filled.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1100

© 2024 Devart

Combination of schema name and table name must be unique for each linked dataset.

See Also
DataSet

SchemaName

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.28.1.3 TDataSetLinks Class

This type is used for the TCustomVirtualQuery.SourceDataSets property.

For a list of all members of this type, see TDataSetLinks members.

Unit

VirtualQuery

Syntax

TDataSetLinks = class(TCollection);

Remarks

TDataSetLinks is the TCollection descendant which contains a collection of the TDataSetLink

instances, each of which links a TDataSet descendant as a data source for querying data in

TVirtualQuery.

See Also
TVirtualQuery

TDataSetLink

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.28.1.3.1 Members

TDataSetLinks class overview.

Methods

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1101

© 2024 Devart

Name Description

Add
Overloaded. Adds a new
TDataSetLink instance to
the collection.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.28.1.3.2 Methods

Methods of the TDataSetLinks class.

For a complete list of the TDataSetLinks class members, see the TDataSetLinks Members

topic.

Public

Name Description

Add
Overloaded. Adds a new
TDataSetLink instance to
the collection.

See Also
TDataSetLinks Class

TDataSetLinks Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.28.1.3.2.1 Add Method

Adds a new TDataSetLink instance to the collection.

Class

TDataSetLinks

Overload List

Name Description

Add Adds a new TDataSetLink instance to the

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1102

© 2024 Devart

collection.
Add(DataSet: TDataSet; const
SchemaName: string; const TableName:
string)

Adds a new TDataSetLink instance to the
collection and fills its properties.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

Adds a new TDataSetLink instance to the collection.

Class

TDataSetLinks

Syntax

function Add: TDataSetLink; overload;

Return Value

A instance which has been added.

Remarks

Fill the TDataSetLink.DataSet property of the returned TDataSetLink instance to link a

TDataSet descendant as a data source for querying data in TVirtualQuery. Fill

TDataSetLink.SchemaName and TDataSetLink.TableName properties to identify the source

dataset in a SQL statement. Combination of schema name and table name must be unique

for each linked dataset. Also, a source dataset can be linked using the Add method.

See Also
TVirtualQuery

TDataSetLink

TDataSetLink.DataSet

TDataSetLink.SchemaName

TDataSetLink.TableName

Add

© 1997-2024
Devart. All Rights

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1103

© 2024 Devart

Reserved.

Adds a new TDataSetLink instance to the collection and fills its properties.

Class

TDataSetLinks

Syntax

function Add(DataSet: TDataSet; const SchemaName: string; const

TableName: string): TDataSetLink; overload;

Parameters

DataSet

Defines a TDataSet descendant to be linked as a data source for querying data in
TVirtualQuery.

SchemaName

Defines the schema name which will be used to identify the linked source dataset in a SQL
statement. Can be left empty. In this case either no schema name or the "main" schema
name can be used when referring to the dataset in a SQL statement.

TableName

Defines the table name which will be used to identify the linked source dataset in a SQL
statement. Must be filled.

Return Value

A instance which has been added.

Remarks

Combination of schema name and table name must be unique for each linked dataset. Also,

a source dataset can be linked using the TDataSetLinks.Add method.

See Also
TVirtualQuery

TDataSetLink

TDataSetLink.DataSet

TDataSetLink.SchemaName

TDataSetLink.TableName

TDataSetLinks.Add

Universal Data Access Components1104

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.28.1.4 TVirtualCollationManager Class

Used to register user-defined collations.

For a list of all members of this type, see TVirtualCollationManager members.

Unit

VirtualQuery

Syntax

TVirtualCollationManager = class(System.TObject);

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.28.1.4.1 Members

TVirtualCollationManager class overview.

Methods

Name Description

RegisterAnsiCollation
Overloaded. Used to
register a user-defined non-
Unicode collation.

RegisterCollation
Overloaded. Used to
register a user-defined
collation.

RegisterDefaultCollations Used to register a user-
defined default collation.

RegisterWideCollation
Overloaded. Used to
register a user-defined
Unicode collation.

UnRegisterAnsiCollation
Used to unregister a user-
defined non-Unicode
collation.

UnRegisterCollation Used to unregister a user-
defined collation.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1105

© 2024 Devart

UnRegisterDefaultCollations Used to unregister a user-
defined default collation.

UnRegisterWideCollation Used to unregister a user-
defined Unicode collation.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.28.1.4.2 Methods

Methods of the TVirtualCollationManager class.

For a complete list of the TVirtualCollationManager class members, see the

TVirtualCollationManager Members topic.

Public

Name Description

RegisterAnsiCollation
Overloaded. Used to
register a user-defined non-
Unicode collation.

RegisterCollation
Overloaded. Used to
register a user-defined
collation.

RegisterDefaultCollations Used to register a user-
defined default collation.

RegisterWideCollation
Overloaded. Used to
register a user-defined
Unicode collation.

UnRegisterAnsiCollation
Used to unregister a user-
defined non-Unicode
collation.

UnRegisterCollation Used to unregister a user-
defined collation.

UnRegisterDefaultCollations Used to unregister a user-
defined default collation.

UnRegisterWideCollation Used to unregister a user-
defined Unicode collation.

See Also
TVirtualCollationManager Class

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1106

© 2024 Devart

TVirtualCollationManager Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.28.1.4.2.1 RegisterAnsiCollation Method

Used to register a user-defined non-Unicode collation.

Class

TVirtualCollationManager

Overload List

Name Description

RegisterAnsiCollation(const Name:
string; VirtualAnsiCollation:
TVirtualAnsiCollation)

Used to specify a user-defined non-
Unicode collation that can be applied in an
SQL statement.

RegisterAnsiCollation(const Name:
string; VirtualAnsiCollation:
TVirtualAnsiCollationMethod)

Used to specify a user-defined non-
Unicode collation that can be applied in an
SQL statement.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

Used to specify a user-defined non-Unicode collation that can be applied in an SQL

statement.

Class

TVirtualCollationManager

Syntax

procedure RegisterAnsiCollation(const Name: string;

VirtualAnsiCollation: TVirtualAnsiCollation); overload;

Parameters

Name

User-defined collation name.

VirtualAnsiCollation

User-defined non-Unicode collation.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1107

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

Used to specify a user-defined non-Unicode collation that can be applied in an SQL

statement.

Class

TVirtualCollationManager

Syntax

procedure RegisterAnsiCollation(const Name: string;

VirtualAnsiCollation: TVirtualAnsiCollationMethod); overload;

Parameters

Name

User-defined collation name.

VirtualAnsiCollation

User-defined non-Unicode collation.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.28.1.4.2.2 RegisterCollation Method

Used to register a user-defined collation.

Class

TVirtualCollationManager

Overload List

Name Description

RegisterCollation(const Name: string;
VirtualCollation: TVirtualCollation)

Used to specify a user-defined collation
that can be applied in an SQL statement.

RegisterCollation(const Name: string;
VirtualCollation: TVirtualCollationMethod)

Used to specify a user-defined collation
that can be applied in an SQL statement.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1108

© 2024 Devart

Used to specify a user-defined collation that can be applied in an SQL statement.

Class

TVirtualCollationManager

Syntax

procedure RegisterCollation(const Name: string; VirtualCollation:

TVirtualCollation); overload;

Parameters

Name

User-defined collation name.

VirtualCollation

User-defined collation.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

Used to specify a user-defined collation that can be applied in an SQL statement.

Class

TVirtualCollationManager

Syntax

procedure RegisterCollation(const Name: string; VirtualCollation:

TVirtualCollationMethod); overload;

Parameters

Name

User-defined collation name.

VirtualCollation

User-defined collation.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1109

© 2024 Devart

6.28.1.4.2.3 RegisterDefaultCollations Method

Used to register a user-defined default collation.

Class

TVirtualCollationManager

Syntax

procedure RegisterDefaultCollations;

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.28.1.4.2.4 RegisterWideCollation Method

Used to register a user-defined Unicode collation.

Class

TVirtualCollationManager

Overload List

Name Description

RegisterWideCollation(const Name:
string; VirtualWideCollation:
TVirtualWideCollation)

Used to specify a user-defined Unicode
collation that can be applied in an SQL
statement.

RegisterWideCollation(const Name:
string; VirtualWideCollation:
TVirtualWideCollationMethod)

Used to specify a user-defined Unicode
collation that can be applied in an SQL
statement.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

Used to specify a user-defined Unicode collation that can be applied in an SQL statement.

Class

TVirtualCollationManager

Syntax

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1110

© 2024 Devart

procedure RegisterWideCollation(const Name: string;

VirtualWideCollation: TVirtualWideCollation); overload;

Parameters

Name

User-defined collation name.

VirtualWideCollation

User-defined Unicode collation.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

Used to specify a user-defined Unicode collation that can be applied in an SQL statement.

Class

TVirtualCollationManager

Syntax

procedure RegisterWideCollation(const Name: string;

VirtualWideCollation: TVirtualWideCollationMethod); overload;

Parameters

Name

User-defined collation name.

VirtualWideCollation

User-defined Unicode collation.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.28.1.4.2.5 UnRegisterAnsiCollation Method

Used to unregister a user-defined non-Unicode collation.

Class

TVirtualCollationManager

Syntax

procedure UnRegisterAnsiCollation(const Name: string);

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1111

© 2024 Devart

Parameters

Name

User-defined collation name.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.28.1.4.2.6 UnRegisterCollation Method

Used to unregister a user-defined collation.

Class

TVirtualCollationManager

Syntax

procedure UnRegisterCollation(const Name: string);

Parameters

Name

User-defined collation name.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.28.1.4.2.7 UnRegisterDefaultCollations Method

Used to unregister a user-defined default collation.

Class

TVirtualCollationManager

Syntax

procedure UnRegisterDefaultCollations;

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1112

© 2024 Devart

6.28.1.4.2.8 UnRegisterWideCollation Method

Used to unregister a user-defined Unicode collation.

Class

TVirtualCollationManager

Syntax

procedure UnRegisterWideCollation(const Name: string);

Parameters

Name

User-defined collation name.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.28.1.5 TVirtualFunctionManager Class

Used to register user-defined functions.

For a list of all members of this type, see TVirtualFunctionManager members.

Unit

VirtualQuery

Syntax

TVirtualFunctionManager = class(System.TObject);

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.28.1.5.1 Members

TVirtualFunctionManager class overview.

Methods

Name Description

RegisterFunction Overloaded. Used to
register a new function.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1113

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.28.1.5.2 Methods

Methods of the TVirtualFunctionManager class.

For a complete list of the TVirtualFunctionManager class members, see the

TVirtualFunctionManager Members topic.

Public

Name Description

RegisterFunction Overloaded. Used to
register a new function.

See Also
TVirtualFunctionManager Class

TVirtualFunctionManager Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.28.1.5.2.1 RegisterFunction Method

Used to register a new function.

Class

TVirtualFunctionManager

Overload List

Name Description

RegisterFunction(const Name: string;
ParamCount: Integer; VirtualFunction:
TVirtualFunction)

Used to specify the function that is called
when a user-defined function is called in an
SQL statement.

RegisterFunction(const Name: string;
ParamCount: Integer; VirtualMethod:
TVirtualMethod)

Used to specify the method that is called
when a user-defined function is called in an
SQL statement.

© 1997-2024 Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1114

© 2024 Devart

Devart. All Rights
Reserved.

Used to specify the function that is called when a user-defined function is called in an SQL

statement.

Class

TVirtualFunctionManager

Syntax

procedure RegisterFunction(const Name: string; ParamCount:

Integer; VirtualFunction: TVirtualFunction); overload;

Parameters

Name

Used to specify the name of the function that will be defined.

ParamCount

Used to specify the number of function parameters.

VirtualFunction

Used to specify the function that is called when a user-defined function is called in an SQL
statement.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

Used to specify the method that is called when a user-defined function is called in an SQL

statement.

Class

TVirtualFunctionManager

Syntax

procedure RegisterFunction(const Name: string; ParamCount:

Integer; VirtualMethod: TVirtualMethod); overload;

Parameters

Name

Used to specify the name of the method that will be defined.

ParamCount

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1115

© 2024 Devart

Used to specify the number of method parameters.

VirtualMethod

Used to specify the method that is called when a user-defined function is called in an SQL
statement.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.28.1.6 TVirtualQuery Class

Used to retrieve data simultaneously from various RDBMS'es.

For a list of all members of this type, see TVirtualQuery members.

Unit

VirtualQuery

Syntax

TVirtualQuery = class(TCustomVirtualQuery);

Remarks

TVirtualQuery component is used to retrieve data simultaneously from several different

RDBMS'es. Instead of a database connection, it use a collection of TDataSet descendants

defined in the TCustomVirtualQuery.SourceDataSets property as the data source, for which a

SQL statement can be build. The SQLite is used as an internal SQL-engine, so the SQLite

syntax has to be used for SQL statements.

Use TVirtualQuery to perform fetching, insertion, deletion and update of record by dynamically

generated SQL statements. Set SQL, SQLInsert, SQLDelete, SQLRefresh, and SQLUpdate

properties to define SQL statements for subsequent accesses to the database server. There

is no restriction to their syntax, so any SQL statement is allowed. Usually you need to use

INSERT, DELETE, and UPDATE statements but you also may use stored procedures in

more diverse cases.

To modify records, you can specify KeyFields. If they are not specified, TVirtualQuery will

retrieve primary keys for UpdatingTable from metadata. TVirtualQuery can automatically

update only one table. Updating table is defined by the UpdatingTable property if this property

is set. Otherwise, the table a field of which is the first field in the field list in the SELECT

clause is used as an updating table.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1116

© 2024 Devart

The SQLInsert, SQLDelete, SQLUpdate, SQLRefresh properties support automatic binding of

parameters which have identical names to fields captions. To retrieve the value of a field as it

was before the operation use the field name with the 'OLD_' prefix. This is especially useful

when doing field comparisons in the WHERE clause of the statement. Use the

TCustomDADataSet.BeforeUpdateExecute event to assign the value to additional parameters

and the TCustomDADataSet.AfterUpdateExecute event to read them.

Inheritance Hierarchy

TMemDataSet

 TCustomDADataSet

 TCustomVirtualQuery

 TVirtualQuery

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.28.1.6.1 Members

TVirtualQuery class overview.

Properties

Name Description

BaseSQL (inherited from TCustomDADataSet)
Used to return SQL text
without any changes
performed by AddWhere,
SetOrderBy, and FilterSQL.

CachedUpdates (inherited from TMemDataSet)
Used to enable or disable
the use of cached updates
for a dataset.

Conditions (inherited from TCustomDADataSet) Used to add WHERE
conditions to a query

Connection (inherited from TCustomDADataSet)
Used to specify a
connection object to use to
connect to a data store.

DataTypeMap (inherited from TCustomDADataSet) Used to set data type
mapping rules

Debug (inherited from TCustomDADataSet)
Used to display the
statement that is being
executed and the values and
types of its parameters.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1117

© 2024 Devart

DetailFields (inherited from TCustomDADataSet)

Used to specify the fields
that correspond to the
foreign key fields from
MasterFields when building
master/detail relationship.

Disconnected (inherited from TCustomDADataSet)
Used to keep dataset
opened after connection is
closed.

FetchAll

Defines whether to request
all records of the query from
database server when the
dataset is being opened.

FetchRows (inherited from TCustomDADataSet)
Used to define the number
of rows to be transferred
across the network at the
same time.

FilterSQL (inherited from TCustomDADataSet)
Used to change the WHERE
clause of SELECT
statement and reopen a
query.

FinalSQL (inherited from TCustomDADataSet)

Used to return SQL text with
all changes performed by
AddWhere, SetOrderBy,
and FilterSQL, and with
expanded macros.

IndexFieldNames (inherited from TMemDataSet)
Used to get or set the list of
fields on which the recordset
is sorted.

IsQuery (inherited from TCustomDADataSet) Used to check whether SQL
statement returns rows.

KeyExclusive (inherited from TMemDataSet)
Specifies the upper and
lower boundaries for a
range.

KeyFields (inherited from TCustomDADataSet)

Used to build SQL
statements for the
SQLDelete, SQLInsert, and
SQLUpdate properties if
they were empty before
updating the database.

LocalConstraints (inherited from TMemDataSet)

Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

Universal Data Access Components1118

© 2024 Devart

LocalUpdate (inherited from TMemDataSet)
Used to prevent implicit
update of rows on database
server.

MacroCount (inherited from TCustomDADataSet)
Used to get the number of
macros associated with the
Macros property.

Macros (inherited from TCustomDADataSet) Makes it possible to change
SQL queries easily.

MasterFields (inherited from TCustomDADataSet)

Used to specify the names
of one or more fields that are
used as foreign keys for
dataset when establishing
detail/master relationship
between it and the dataset
specified in MasterSource.

MasterSource (inherited from TCustomDADataSet)
Used to specify the data
source component which
binds current dataset to the
master one.

Options (inherited from TCustomVirtualQuery)
Used to specify the
behaviour of TVirtualQuery
object.

ParamCheck (inherited from TCustomDADataSet)

Used to specify whether
parameters for the Params
property are generated
automatically after the SQL
property was changed.

ParamCount (inherited from TCustomDADataSet)
Used to indicate how many
parameters are there in the
Params property.

Params (inherited from TCustomDADataSet)
Used to view and set
parameter names, values,
and data types dynamically.

Prepared (inherited from TMemDataSet)
Determines whether a query
is prepared for execution or
not.

Ranged (inherited from TMemDataSet) Indicates whether a range is
applied to a dataset.

ReadOnly (inherited from TCustomDADataSet)
Used to prevent users from
updating, inserting, or
deleting data in the dataset.

RefreshOptions (inherited from TCustomDADataSet) Used to indicate when the
editing record is refreshed.

RowsAffected (inherited from TCustomDADataSet) Used to indicate the number

Reference 1119

© 2024 Devart

of rows which were inserted,
updated, or deleted during
the last query operation.

SourceDataSets (inherited from TCustomVirtualQuery)
Contains a collection of
source datasets for querying
data.

SQL (inherited from TCustomDADataSet)
Used to provide a SQL
statement that a query
component executes when
its Open method is called.

SQLDelete (inherited from TCustomDADataSet)
Used to specify a SQL
statement that will be used
when applying a deletion to
a record.

SQLInsert (inherited from TCustomDADataSet)
Used to specify the SQL
statement that will be used
when applying an insertion
to a dataset.

SQLLock (inherited from TCustomDADataSet)
Used to specify a SQL
statement that will be used
to perform a record lock.

SQLRecCount (inherited from TCustomDADataSet)
Used to specify the SQL
statement that is used to get
the record count when
opening a dataset.

SQLRefresh (inherited from TCustomDADataSet)

Used to specify a SQL
statement that will be used
to refresh current record by
calling the
TCustomDADataSet.Refres
hRecord procedure.

SQLUpdate (inherited from TCustomDADataSet)
Used to specify a SQL
statement that will be used
when applying an update to
a dataset.

UniDirectional (inherited from TCustomDADataSet)
Used if an application does
not need bidirectional
access to records in the
result set.

UpdateRecordTypes (inherited from TMemDataSet)
Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

Universal Data Access Components1120

© 2024 Devart

UpdatingTable

Used to specify which table
in a query is assumed to be
the target for subsequent
data-modification queries as
a result of user incentive to
insert, update or delete
records.

Methods

Name Description

AddWhere (inherited from TCustomDADataSet)
Adds condition to the
WHERE clause of SELECT
statement in the SQL
property.

ApplyRange (inherited from TMemDataSet) Applies a range to the
dataset.

ApplyUpdates (inherited from TMemDataSet)
Overloaded. Writes
dataset's pending cached
updates to a database.

BreakExec (inherited from TCustomDADataSet) Breaks execution of the SQL
statement on the server.

CancelRange (inherited from TMemDataSet)
Removes any ranges
currently in effect for a
dataset.

CancelUpdates (inherited from TMemDataSet)
Clears all pending cached
updates from cache and
restores dataset in its prior
state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates
buffer.

CreateBlobStream (inherited from TCustomDADataSet)

Used to obtain a stream for
reading data from or writing
data to a BLOB field,
specified by the Field
parameter.

DeferredPost (inherited from TMemDataSet) Makes permanent changes
to the database server.

DeleteWhere (inherited from TCustomDADataSet)
Removes WHERE clause
from the SQL property and
assigns the BaseSQL
property.

EditRangeEnd (inherited from TMemDataSet) Enables changing the
ending value for an existing

Reference 1121

© 2024 Devart

range.

EditRangeStart (inherited from TMemDataSet)
Enables changing the
starting value for an existing
range.

Execute (inherited from TCustomDADataSet)
Overloaded. Executes a
SQL statement on the
server.

Executing (inherited from TCustomDADataSet)
Indicates whether SQL
statement is still being
executed.

Fetched (inherited from TCustomDADataSet)
Used to find out whether
TCustomDADataSet has
fetched all rows.

Fetching (inherited from TCustomDADataSet)
Used to learn whether
TCustomDADataSet is still
fetching rows.

FetchingAll (inherited from TCustomDADataSet)
Used to learn whether
TCustomDADataSet is
fetching all rows to the end.

FindKey (inherited from TCustomDADataSet)
Searches for a record which
contains specified field
values.

FindMacro (inherited from TCustomDADataSet) Finds a macro with the
specified name.

FindNearest (inherited from TCustomDADataSet)

Moves the cursor to a
specific record or to the first
record in the dataset that
matches or is greater than
the values specified in the
KeyValues parameter.

FindParam (inherited from TCustomDADataSet)
Determines if a parameter
with the specified name
exists in a dataset.

GetBlob (inherited from TMemDataSet)

Overloaded. Retrieves
TBlob object for a field or
current record when only its
name or the field itself is
known.

GetDataType (inherited from TCustomDADataSet)
Returns internal field types
defined in the MemData and
accompanying modules.

GetFieldObject (inherited from TCustomDADataSet) Returns a multireference
shared object from field.

Universal Data Access Components1122

© 2024 Devart

GetFieldPrecision (inherited from TCustomDADataSet) Retrieves the precision of a
number field.

GetFieldScale (inherited from TCustomDADataSet) Retrieves the scale of a
number field.

GetKeyFieldNames (inherited from

TCustomDADataSet)
Provides a list of available
key field names.

GetOrderBy (inherited from TCustomDADataSet)
Retrieves an ORDER BY
clause from a SQL
statement.

GotoCurrent (inherited from TCustomDADataSet)
Sets the current record in
this dataset similar to the
current record in another
dataset.

Locate (inherited from TMemDataSet)
Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

LocateEx (inherited from TMemDataSet)

Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

Lock (inherited from TCustomDADataSet) Locks the current record.

MacroByName (inherited from TCustomDADataSet) Finds a macro with the
specified name.

ParamByName (inherited from TCustomDADataSet)
Sets or uses parameter
information for a specific
parameter based on its
name.

Prepare (inherited from TCustomDADataSet) Allocates, opens, and
parses cursor for a query.

RefreshRecord (inherited from TCustomDADataSet) Actualizes field values for
the current record.

RestoreSQL (inherited from TCustomDADataSet)
Restores the SQL property
modified by AddWhere and
SetOrderBy.

RestoreUpdates (inherited from TMemDataSet)
Marks all records in the
cache of updates as
unapplied.

RevertRecord (inherited from TMemDataSet)
Cancels changes made to
the current record when
cached updates are

Reference 1123

© 2024 Devart

enabled.

SaveSQL (inherited from TCustomDADataSet) Saves the SQL property
value to BaseSQL.

SaveToXML (inherited from TMemDataSet)

Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

SetOrderBy (inherited from TCustomDADataSet) Builds an ORDER BY clause
of a SELECT statement.

SetRange (inherited from TMemDataSet)
Sets the starting and ending
values of a range, and
applies it.

SetRangeEnd (inherited from TMemDataSet)

Indicates that subsequent
assignments to field values
specify the end of the range
of rows to include in the
dataset.

SetRangeStart (inherited from TMemDataSet)

Indicates that subsequent
assignments to field values
specify the start of the range
of rows to include in the
dataset.

SQLSaved (inherited from TCustomDADataSet)
Determines if the SQL
property value was saved to
the BaseSQL property.

UnLock (inherited from TCustomDADataSet) Releases a record lock.

UnPrepare (inherited from TMemDataSet)
Frees the resources
allocated for a previously
prepared query on the
server and client sides.

UpdateResult (inherited from TMemDataSet)

Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are
enabled.

UpdateStatus (inherited from TMemDataSet)
Indicates the current update
status for the dataset when
cached updates are
enabled.

Events

Universal Data Access Components1124

© 2024 Devart

Name Description

AfterExecute (inherited from TCustomDADataSet)
Occurs after a component
has executed a query to
database.

AfterFetch (inherited from TCustomDADataSet) Occurs after dataset finishes
fetching data from server.

AfterUpdateExecute (inherited from

TCustomDADataSet)

Occurs after executing
insert, delete, update, lock
and refresh operations.

BeforeFetch (inherited from TCustomDADataSet)
Occurs before dataset is
going to fetch block of
records from the server.

BeforeUpdateExecute (inherited from

TCustomDADataSet)

Occurs before executing
insert, delete, update, lock,
and refresh operations.

OnRegisterCollations (inherited from

TCustomVirtualQuery)

Occurs when the connection
is opened to register the
user-defined collation used
in the query text.

OnRegisterFunctions (inherited from

TCustomVirtualQuery)

Occurs when the query is
opened to register the user-
defined functions used in the
query text.

OnUpdateError (inherited from TMemDataSet)
Occurs when an exception is
generated while cached
updates are applied to a
database.

OnUpdateRecord (inherited from TMemDataSet)
Occurs when a single
update component can not
handle the updates.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.28.1.6.2 Properties

Properties of the TVirtualQuery class.

For a complete list of the TVirtualQuery class members, see the TVirtualQuery Members

topic.

Public

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1125

© 2024 Devart

Name Description

BaseSQL (inherited from TCustomDADataSet)
Used to return SQL text
without any changes
performed by AddWhere,
SetOrderBy, and FilterSQL.

CachedUpdates (inherited from TMemDataSet)
Used to enable or disable
the use of cached updates
for a dataset.

Conditions (inherited from TCustomDADataSet) Used to add WHERE
conditions to a query

Connection (inherited from TCustomDADataSet)
Used to specify a
connection object to use to
connect to a data store.

DataTypeMap (inherited from TCustomDADataSet) Used to set data type
mapping rules

Debug (inherited from TCustomDADataSet)
Used to display the
statement that is being
executed and the values and
types of its parameters.

DetailFields (inherited from TCustomDADataSet)

Used to specify the fields
that correspond to the
foreign key fields from
MasterFields when building
master/detail relationship.

Disconnected (inherited from TCustomDADataSet)
Used to keep dataset
opened after connection is
closed.

FetchRows (inherited from TCustomDADataSet)
Used to define the number
of rows to be transferred
across the network at the
same time.

FilterSQL (inherited from TCustomDADataSet)
Used to change the WHERE
clause of SELECT
statement and reopen a
query.

FinalSQL (inherited from TCustomDADataSet)

Used to return SQL text with
all changes performed by
AddWhere, SetOrderBy,
and FilterSQL, and with
expanded macros.

IndexFieldNames (inherited from TMemDataSet)
Used to get or set the list of
fields on which the recordset
is sorted.

IsQuery (inherited from TCustomDADataSet) Used to check whether SQL

Universal Data Access Components1126

© 2024 Devart

statement returns rows.

KeyExclusive (inherited from TMemDataSet)
Specifies the upper and
lower boundaries for a
range.

KeyFields (inherited from TCustomDADataSet)

Used to build SQL
statements for the
SQLDelete, SQLInsert, and
SQLUpdate properties if
they were empty before
updating the database.

LocalConstraints (inherited from TMemDataSet)

Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet)
Used to prevent implicit
update of rows on database
server.

MacroCount (inherited from TCustomDADataSet)
Used to get the number of
macros associated with the
Macros property.

Macros (inherited from TCustomDADataSet) Makes it possible to change
SQL queries easily.

MasterFields (inherited from TCustomDADataSet)

Used to specify the names
of one or more fields that are
used as foreign keys for
dataset when establishing
detail/master relationship
between it and the dataset
specified in MasterSource.

MasterSource (inherited from TCustomDADataSet)
Used to specify the data
source component which
binds current dataset to the
master one.

Options (inherited from TCustomVirtualQuery)
Used to specify the
behaviour of TVirtualQuery
object.

ParamCheck (inherited from TCustomDADataSet)

Used to specify whether
parameters for the Params
property are generated
automatically after the SQL
property was changed.

ParamCount (inherited from TCustomDADataSet)
Used to indicate how many
parameters are there in the
Params property.

Reference 1127

© 2024 Devart

Params (inherited from TCustomDADataSet)
Used to view and set
parameter names, values,
and data types dynamically.

Prepared (inherited from TMemDataSet)
Determines whether a query
is prepared for execution or
not.

Ranged (inherited from TMemDataSet) Indicates whether a range is
applied to a dataset.

ReadOnly (inherited from TCustomDADataSet)
Used to prevent users from
updating, inserting, or
deleting data in the dataset.

RefreshOptions (inherited from TCustomDADataSet) Used to indicate when the
editing record is refreshed.

RowsAffected (inherited from TCustomDADataSet)
Used to indicate the number
of rows which were inserted,
updated, or deleted during
the last query operation.

SourceDataSets (inherited from TCustomVirtualQuery)
Contains a collection of
source datasets for querying
data.

SQL (inherited from TCustomDADataSet)
Used to provide a SQL
statement that a query
component executes when
its Open method is called.

SQLDelete (inherited from TCustomDADataSet)
Used to specify a SQL
statement that will be used
when applying a deletion to
a record.

SQLInsert (inherited from TCustomDADataSet)
Used to specify the SQL
statement that will be used
when applying an insertion
to a dataset.

SQLLock (inherited from TCustomDADataSet)
Used to specify a SQL
statement that will be used
to perform a record lock.

SQLRecCount (inherited from TCustomDADataSet)
Used to specify the SQL
statement that is used to get
the record count when
opening a dataset.

SQLRefresh (inherited from TCustomDADataSet)

Used to specify a SQL
statement that will be used
to refresh current record by
calling the
TCustomDADataSet.Refres

Universal Data Access Components1128

© 2024 Devart

hRecord procedure.

SQLUpdate (inherited from TCustomDADataSet)
Used to specify a SQL
statement that will be used
when applying an update to
a dataset.

UniDirectional (inherited from TCustomDADataSet)
Used if an application does
not need bidirectional
access to records in the
result set.

UpdateRecordTypes (inherited from TMemDataSet)
Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

Published

Name Description

FetchAll

Defines whether to request
all records of the query from
database server when the
dataset is being opened.

UpdatingTable

Used to specify which table
in a query is assumed to be
the target for subsequent
data-modification queries as
a result of user incentive to
insert, update or delete
records.

See Also
TVirtualQuery Class

TVirtualQuery Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.28.1.6.2.1 FetchAll Property

Defines whether to request all records of the query from database server when the dataset is

being opened.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1129

© 2024 Devart

Class

TVirtualQuery

Syntax

property FetchAll: boolean;

Remarks

When set to True, all records of the query are requested from database server when the

dataset is being opened. When set to False, records are retrieved when a data-aware

component or a program requests it. If a query can return a lot of records, set this property to

False if initial response time is important.

When the FetchAll property is False, the first call to TMemDataSet.Locate and

TMemDataSet.LocateEx methods may take a lot of time to retrieve additional records to the

client side.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.28.1.6.2.2 UpdatingTable Property

Used to specify which table in a query is assumed to be the target for subsequent data-

modification queries as a result of user incentive to insert, update or delete records.

Class

TVirtualQuery

Syntax

property UpdatingTable: string;

Remarks

Use the UpdatingTable property to specify which table in a query is assumed to be the target

for the subsequent data-modification queries as a result of user incentive to insert, update or

delete records.

This property is used on Insert, Update, Delete or RefreshRecord (see also

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1130

© 2024 Devart

TCustomVirtualQuery.Options) if appropriate SQL (SQLInsert, SQLUpdate or SQLDelete) is

not provided.

If UpdatingTable is not set then the first table used in a query is assumed to be the target.

Example

Below are two examples for the query, where:

1. the only allowed value for UpdatingTable property is 'Dept';

2. allowed values for UpdatingTable are 'Dept' and 'Emp'.

In the first case (or by default) editable field is ShipName, in the second - all fields from Emp.

1)Example 1.
 SELECT * FROM Dept
2) Example 2.
 SELECT * FROM Dept, Emp
 WHERE Dept.DeptNo = Emp.DeptNo

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.28.1.7 TVirtualQueryOptions Class

Used to set up the behaviour of the TVirtualQuery class.

For a list of all members of this type, see TVirtualQueryOptions members.

Unit

VirtualQuery

Syntax

TVirtualQueryOptions = class(TDADataSetOptions);

Inheritance Hierarchy

TDADataSetOptions

 TVirtualQueryOptions

See Also
TVirtualQuery

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1131

© 2024 Devart

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.28.1.7.1 Members

TVirtualQueryOptions class overview.

Properties

Name Description

AutoOpenSources
Used to automatically open
data sources when SQL
statement executed

AutoPrepare (inherited from TDADataSetOptions)
Used to execute automatic
TCustomDADataSet.Prepar
e on the query execution.

CacheCalcFields (inherited from TDADataSetOptions)
Used to enable caching of
the TField.Calculated and
TField.Lookup fields.

CompressBlobMode (inherited from

TDADataSetOptions)

Used to store values of the
BLOB fields in compressed
form.

DefaultValues (inherited from TDADataSetOptions)

Used to request default
values/expressions from the
server and assign them to
the DefaultExpression
property.

DetailDelay (inherited from TDADataSetOptions)

Used to get or set a delay in
milliseconds before
refreshing detail dataset
while navigating master
dataset.

FieldsOrigin (inherited from TDADataSetOptions)

Used for
TCustomDADataSet to fill
the Origin property of the
TField objects by
appropriate value when
opening a dataset.

FlatBuffers (inherited from TDADataSetOptions)
Used to control how a
dataset treats data of the
ftString and ftVarBytes
fields.

FullRefresh Used to specify the fields to
include in the automatically

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1132

© 2024 Devart

generated SQL statement
when calling the method.

InsertAllSetFields (inherited from TDADataSetOptions)
Used to include all set
dataset fields in the
generated INSERT
statement

LocalMasterDetail (inherited from TDADataSetOptions)

Used for
TCustomDADataSet to use
local filtering to establish
master/detail relationship for
detail dataset and does not
refer to the server.

LongStrings (inherited from TDADataSetOptions)
Used to represent string
fields with the length that is
greater than 255 as
TStringField.

MasterFieldsNullable (inherited from

TDADataSetOptions)

Allows to use NULL values
in the fields by which the
relation is built, when
generating the query for the
Detail tables (when this
option is enabled, the
performance can get worse).

NumberRange (inherited from TDADataSetOptions)

Used to set the MaxValue
and MinValue properties of
TIntegerField and
TFloatField to appropriate
values.

QueryRecCount (inherited from TDADataSetOptions)

Used for
TCustomDADataSet to
perform additional query to
get the record count for this
SELECT, so the
RecordCount property
reflects the actual number of
records.

QuoteNames (inherited from TDADataSetOptions)

Used for
TCustomDADataSet to
quote all database object
names in autogenerated
SQL statements such as
update SQL.

RemoveOnRefresh (inherited from TDADataSetOptions)
Used for a dataset to locally
remove a record that can not
be found on the server.

Reference 1133

© 2024 Devart

RequiredFields (inherited from TDADataSetOptions)

Used for
TCustomDADataSet to set
the Required property of the
TField objects for the NOT
NULL fields.

ReturnParams (inherited from TDADataSetOptions)
Used to return the new value
of fields to dataset after
insert or update.

SetEmptyStrToNull
Force replace of empty
strings with NULL values in
data. Default value is False.

SetFieldsReadOnly (inherited from

TDADataSetOptions)

Used for a dataset to set the
ReadOnly property to True
for all fields that do not
belong to UpdatingTable or
can not be updated.

StrictUpdate (inherited from TDADataSetOptions)

Used for
TCustomDADataSet to
raise an exception when the
number of updated or
deleted records is not equal
1.

TrimFixedChar (inherited from TDADataSetOptions)
Specifies whether to discard
all trailing spaces in the
string fields of a dataset.

TrimVarChar

Used to specify whether to
discard all trailing spaces in
the variable-length string
fields of a dataset.

UpdateAllFields (inherited from TDADataSetOptions)
Used to include all dataset
fields in the generated
UPDATE and INSERT
statements.

UpdateBatchSize (inherited from TDADataSetOptions)

Used to get or set a value
that enables or disables
batch processing support,
and specifies the number of
commands that can be
executed in a batch.

UseUnicode Used to enable or disable
Unicode support.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1134

© 2024 Devart

6.28.1.7.2 Properties

Properties of the TVirtualQueryOptions class.

For a complete list of the TVirtualQueryOptions class members, see the

TVirtualQueryOptions Members topic.

Public

Name Description

AutoPrepare (inherited from TDADataSetOptions)
Used to execute automatic
TCustomDADataSet.Prepar
e on the query execution.

CacheCalcFields (inherited from TDADataSetOptions)
Used to enable caching of
the TField.Calculated and
TField.Lookup fields.

CompressBlobMode (inherited from

TDADataSetOptions)

Used to store values of the
BLOB fields in compressed
form.

DefaultValues (inherited from TDADataSetOptions)

Used to request default
values/expressions from the
server and assign them to
the DefaultExpression
property.

DetailDelay (inherited from TDADataSetOptions)

Used to get or set a delay in
milliseconds before
refreshing detail dataset
while navigating master
dataset.

FieldsOrigin (inherited from TDADataSetOptions)

Used for
TCustomDADataSet to fill
the Origin property of the
TField objects by
appropriate value when
opening a dataset.

FlatBuffers (inherited from TDADataSetOptions)
Used to control how a
dataset treats data of the
ftString and ftVarBytes
fields.

InsertAllSetFields (inherited from TDADataSetOptions)
Used to include all set
dataset fields in the
generated INSERT
statement

LocalMasterDetail (inherited from TDADataSetOptions) Used for

Reference 1135

© 2024 Devart

TCustomDADataSet to use
local filtering to establish
master/detail relationship for
detail dataset and does not
refer to the server.

LongStrings (inherited from TDADataSetOptions)
Used to represent string
fields with the length that is
greater than 255 as
TStringField.

MasterFieldsNullable (inherited from

TDADataSetOptions)

Allows to use NULL values
in the fields by which the
relation is built, when
generating the query for the
Detail tables (when this
option is enabled, the
performance can get worse).

NumberRange (inherited from TDADataSetOptions)

Used to set the MaxValue
and MinValue properties of
TIntegerField and
TFloatField to appropriate
values.

QueryRecCount (inherited from TDADataSetOptions)

Used for
TCustomDADataSet to
perform additional query to
get the record count for this
SELECT, so the
RecordCount property
reflects the actual number of
records.

QuoteNames (inherited from TDADataSetOptions)

Used for
TCustomDADataSet to
quote all database object
names in autogenerated
SQL statements such as
update SQL.

RemoveOnRefresh (inherited from TDADataSetOptions)
Used for a dataset to locally
remove a record that can not
be found on the server.

RequiredFields (inherited from TDADataSetOptions)

Used for
TCustomDADataSet to set
the Required property of the
TField objects for the NOT
NULL fields.

ReturnParams (inherited from TDADataSetOptions) Used to return the new value
of fields to dataset after

Universal Data Access Components1136

© 2024 Devart

insert or update.

SetFieldsReadOnly (inherited from

TDADataSetOptions)

Used for a dataset to set the
ReadOnly property to True
for all fields that do not
belong to UpdatingTable or
can not be updated.

StrictUpdate (inherited from TDADataSetOptions)

Used for
TCustomDADataSet to
raise an exception when the
number of updated or
deleted records is not equal
1.

TrimFixedChar (inherited from TDADataSetOptions)
Specifies whether to discard
all trailing spaces in the
string fields of a dataset.

UpdateAllFields (inherited from TDADataSetOptions)
Used to include all dataset
fields in the generated
UPDATE and INSERT
statements.

UpdateBatchSize (inherited from TDADataSetOptions)

Used to get or set a value
that enables or disables
batch processing support,
and specifies the number of
commands that can be
executed in a batch.

Published

Name Description

AutoOpenSources
Used to automatically open
data sources when SQL
statement executed

FullRefresh

Used to specify the fields to
include in the automatically
generated SQL statement
when calling the method.

SetEmptyStrToNull
Force replace of empty
strings with NULL values in
data. Default value is False.

TrimVarChar

Used to specify whether to
discard all trailing spaces in
the variable-length string
fields of a dataset.

Reference 1137

© 2024 Devart

UseUnicode Used to enable or disable
Unicode support.

See Also
TVirtualQueryOptions Class

TVirtualQueryOptions Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.28.1.7.2.1 AutoOpenSources Property

Used to automatically open data sources when SQL statement executed

Class

TVirtualQueryOptions

Syntax

property AutoOpenSources: boolean default False;

Remarks

Use the property to automatically open data sources specified in the

TCustomVirtualQuery.SourceDataSets list when SQL statement executed. If

AutoOpenSources is False, each data source has to be opened prior to SQL statement

execution in the TVirtualQuery. If AutoOpenSources is True, data sources will be opened

automatically. The default value is False;

See Also
TVirtualQuery

TCustomVirtualQuery.SourceDataSets

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1138

© 2024 Devart

6.28.1.7.2.2 FullRefresh Property

Used to specify the fields to include in the automatically generated SQL statement when

calling the method.

Class

TVirtualQueryOptions

Syntax

property FullRefresh: boolean;

Remarks

Use the FullRefresh property to specify what fields to include in the automatically generated

SQL statement when calling the TCustomDADataSet.RefreshRecord method. If the

FullRefresh property is True, all fields from a query are included into SQL statement to

refresh a single record. If FullRefresh is False, only fields from TVirtualQuery.UpdatingTable

are included.

Note: If FullRefresh is True, the refresh of SQL statement for complex queries and views

may be generated with errors. The default value is False.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.28.1.7.2.3 SetEmptyStrToNull Property

Force replace of empty strings with NULL values in data. Default value is False.

Class

TVirtualQueryOptions

Syntax

property SetEmptyStrToNull: boolean;

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1139

© 2024 Devart

6.28.1.7.2.4 TrimVarChar Property

Used to specify whether to discard all trailing spaces in the variable-length string fields of a

dataset.

Class

TVirtualQueryOptions

Syntax

property TrimVarChar: boolean;

Remarks

Use the TrimVarChar property to specify whether to discard all trailing spaces in the variable-

length string fields of a dataset. The default value is False.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.28.1.7.2.5 UseUnicode Property

Used to enable or disable Unicode support.

Class

TVirtualQueryOptions

Syntax

property UseUnicode: boolean default DefValUseUnicode;

Remarks

Use the UseUnicode property to enable or disable Unicode support. When set to True, all

character data is stored as WideString, and TStringField is used instead of TWideStringField.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1140

© 2024 Devart

6.28.2 Types

Types in the VirtualQuery unit.

Types

Name Description

TRegisterFunctionsEvent
This type is used for the
TCustomVirtualQuery.Regist
erFunctions events.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.28.2.1 TRegisterFunctionsEvent Procedure Reference

This type is used for the TCustomVirtualQuery.RegisterFunctions events.

Unit

VirtualQuery

Syntax

TRegisterFunctionsEvent = procedure (Sender: TObject; const

FunctionManager: TVirtualFunctionManager) of object;

Parameters

Sender

An object that raised the event.

FunctionManager

Used to register user-defined functions.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.29 VirtualTable

This unit contains implementation of the TVirtualTable component.

Classes

Name Description

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1141

© 2024 Devart

TVirtualTable

Dataset that stores data in
memory. This component is
placed on the Data Access
page of the Component
palette.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.29.1 Classes

Classes in the VirtualTable unit.

Classes

Name Description

TVirtualTable

Dataset that stores data in
memory. This component is
placed on the Data Access
page of the Component
palette.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.29.1.1 TVirtualTable Class

Dataset that stores data in memory. This component is placed on the Data Access page of

the Component palette.

For a list of all members of this type, see TVirtualTable members.

Unit

VirtualTable

Syntax

TVirtualTable = class(TMemDataSet);

Inheritance Hierarchy

TMemDataSet

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1142

© 2024 Devart

 TVirtualTable

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.29.1.1.1 Members

TVirtualTable class overview.

Properties

Name Description

CachedUpdates (inherited from TMemDataSet)
Used to enable or disable
the use of cached updates
for a dataset.

DefaultSortType
Used to determine the
default type of local sorting
for string fields.

IndexFieldNames (inherited from TMemDataSet)
Used to get or set the list of
fields on which the recordset
is sorted.

KeyExclusive (inherited from TMemDataSet)
Specifies the upper and
lower boundaries for a
range.

LocalConstraints (inherited from TMemDataSet)

Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet)
Used to prevent implicit
update of rows on database
server.

Prepared (inherited from TMemDataSet)
Determines whether a query
is prepared for execution or
not.

Ranged (inherited from TMemDataSet) Indicates whether a range is
applied to a dataset.

UpdateRecordTypes (inherited from TMemDataSet)
Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1143

© 2024 Devart

Methods

Name Description

ApplyRange (inherited from TMemDataSet) Applies a range to the
dataset.

ApplyUpdates (inherited from TMemDataSet)
Overloaded. Writes
dataset's pending cached
updates to a database.

Assign
Copies fields and data from
another TDataSet
component.

CancelRange (inherited from TMemDataSet)
Removes any ranges
currently in effect for a
dataset.

CancelUpdates (inherited from TMemDataSet)
Clears all pending cached
updates from cache and
restores dataset in its prior
state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates
buffer.

DeferredPost (inherited from TMemDataSet) Makes permanent changes
to the database server.

EditRangeEnd (inherited from TMemDataSet)
Enables changing the
ending value for an existing
range.

EditRangeStart (inherited from TMemDataSet)
Enables changing the
starting value for an existing
range.

GetBlob (inherited from TMemDataSet)

Overloaded. Retrieves
TBlob object for a field or
current record when only its
name or the field itself is
known.

LoadFromFile Loads data from a file into a
TVirtualTable component.

LoadFromStream
Copies data from a stream
into a TVirtualTable
component.

Locate (inherited from TMemDataSet)
Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

LocateEx (inherited from TMemDataSet) Overloaded. Excludes
features that don't need to

Universal Data Access Components1144

© 2024 Devart

be included to the
TMemDataSet.Locate
method of TDataSet.

Prepare (inherited from TMemDataSet)
Allocates resources and
creates field components for
a dataset.

RestoreUpdates (inherited from TMemDataSet)
Marks all records in the
cache of updates as
unapplied.

RevertRecord (inherited from TMemDataSet)
Cancels changes made to
the current record when
cached updates are
enabled.

SaveToXML (inherited from TMemDataSet)

Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

SetRange (inherited from TMemDataSet)
Sets the starting and ending
values of a range, and
applies it.

SetRangeEnd (inherited from TMemDataSet)

Indicates that subsequent
assignments to field values
specify the end of the range
of rows to include in the
dataset.

SetRangeStart (inherited from TMemDataSet)

Indicates that subsequent
assignments to field values
specify the start of the range
of rows to include in the
dataset.

UnPrepare (inherited from TMemDataSet)
Frees the resources
allocated for a previously
prepared query on the
server and client sides.

UpdateResult (inherited from TMemDataSet)

Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are
enabled.

UpdateStatus (inherited from TMemDataSet)
Indicates the current update
status for the dataset when
cached updates are
enabled.

Reference 1145

© 2024 Devart

Events

Name Description

OnUpdateError (inherited from TMemDataSet)

Occurs when an exception is
generated while cached
updates are applied to a
database.

OnUpdateRecord (inherited from TMemDataSet)
Occurs when a single
update component can not
handle the updates.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.29.1.1.2 Properties

Properties of the TVirtualTable class.

For a complete list of the TVirtualTable class members, see the TVirtualTable Members

topic.

Public

Name Description

CachedUpdates (inherited from TMemDataSet)
Used to enable or disable
the use of cached updates
for a dataset.

IndexFieldNames (inherited from TMemDataSet)
Used to get or set the list of
fields on which the recordset
is sorted.

KeyExclusive (inherited from TMemDataSet)
Specifies the upper and
lower boundaries for a
range.

LocalConstraints (inherited from TMemDataSet)

Used to avoid setting the
Required property of a
TField component for NOT
NULL fields at the time of
opening TMemDataSet.

LocalUpdate (inherited from TMemDataSet)
Used to prevent implicit
update of rows on database
server.

Prepared (inherited from TMemDataSet) Determines whether a query
is prepared for execution or

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1146

© 2024 Devart

not.

Ranged (inherited from TMemDataSet) Indicates whether a range is
applied to a dataset.

UpdateRecordTypes (inherited from TMemDataSet)
Used to indicate the update
status for the current record
when cached updates are
enabled.

UpdatesPending (inherited from TMemDataSet) Used to check the status of
the cached updates buffer.

Published

Name Description

DefaultSortType
Used to determine the
default type of local sorting
for string fields.

See Also
TVirtualTable Class

TVirtualTable Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.29.1.1.2.1 DefaultSortType Property

Used to determine the default type of local sorting for string fields.

Class

TVirtualTable

Syntax

property DefaultSortType: TSortType default stCaseSensitive;

Remarks

The DefaultSortType property is used when a sort type is not specified explicitly after the field

name in the TMemDataSet.IndexFieldNames property of a dataset.

© 1997-2024 Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1147

© 2024 Devart

Devart. All Rights
Reserved.

6.29.1.1.3 Methods

Methods of the TVirtualTable class.

For a complete list of the TVirtualTable class members, see the TVirtualTable Members

topic.

Public

Name Description

ApplyRange (inherited from TMemDataSet) Applies a range to the
dataset.

ApplyUpdates (inherited from TMemDataSet)
Overloaded. Writes
dataset's pending cached
updates to a database.

Assign
Copies fields and data from
another TDataSet
component.

CancelRange (inherited from TMemDataSet)
Removes any ranges
currently in effect for a
dataset.

CancelUpdates (inherited from TMemDataSet)
Clears all pending cached
updates from cache and
restores dataset in its prior
state.

CommitUpdates (inherited from TMemDataSet) Clears the cached updates
buffer.

DeferredPost (inherited from TMemDataSet) Makes permanent changes
to the database server.

EditRangeEnd (inherited from TMemDataSet)
Enables changing the
ending value for an existing
range.

EditRangeStart (inherited from TMemDataSet)
Enables changing the
starting value for an existing
range.

GetBlob (inherited from TMemDataSet)

Overloaded. Retrieves
TBlob object for a field or
current record when only its
name or the field itself is
known.

LoadFromFile Loads data from a file into a
TVirtualTable component.

Universal Data Access Components1148

© 2024 Devart

LoadFromStream
Copies data from a stream
into a TVirtualTable
component.

Locate (inherited from TMemDataSet)
Overloaded. Searches a
dataset for a specific record
and positions the cursor on
it.

LocateEx (inherited from TMemDataSet)

Overloaded. Excludes
features that don't need to
be included to the
TMemDataSet.Locate
method of TDataSet.

Prepare (inherited from TMemDataSet)
Allocates resources and
creates field components for
a dataset.

RestoreUpdates (inherited from TMemDataSet)
Marks all records in the
cache of updates as
unapplied.

RevertRecord (inherited from TMemDataSet)
Cancels changes made to
the current record when
cached updates are
enabled.

SaveToXML (inherited from TMemDataSet)

Overloaded. Saves the
current dataset data to a file
or a stream in the XML
format compatible with ADO
format.

SetRange (inherited from TMemDataSet)
Sets the starting and ending
values of a range, and
applies it.

SetRangeEnd (inherited from TMemDataSet)

Indicates that subsequent
assignments to field values
specify the end of the range
of rows to include in the
dataset.

SetRangeStart (inherited from TMemDataSet)

Indicates that subsequent
assignments to field values
specify the start of the range
of rows to include in the
dataset.

UnPrepare (inherited from TMemDataSet)
Frees the resources
allocated for a previously
prepared query on the
server and client sides.

Reference 1149

© 2024 Devart

UpdateResult (inherited from TMemDataSet)

Reads the status of the
latest call to the
ApplyUpdates method while
cached updates are
enabled.

UpdateStatus (inherited from TMemDataSet)
Indicates the current update
status for the dataset when
cached updates are
enabled.

See Also
TVirtualTable Class

TVirtualTable Class Members

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.29.1.1.3.1 Assign Method

Copies fields and data from another TDataSet component.

Class

TVirtualTable

Syntax

procedure Assign(Source: TPersistent); override;

Parameters

Source

Holds the TDataSet component to copy fields and data from.

Remarks

Call the Assign method to copy fields and data from another TDataSet component.

Note: Unsupported field types are skipped (i.e. destination dataset will contain less fields than

the source one). This may happen when Source is not a TVirtualTable component but some

server-oriented dataset.

Example

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Universal Data Access Components1150

© 2024 Devart

Query1.SQL.Text := 'SELECT * FROM DEPT';
Query1.Active := True;
VirtualTable1.Assign(Query1);
VirtualTable1.Active := True;

See Also
TVirtualTable

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

6.29.1.1.3.2 LoadFromFile Method

Loads data from a file into a TVirtualTable component.

Class

TVirtualTable

Syntax

procedure LoadFromFile(const FileName: string; LoadFields:

boolean = True; DecodeHTMLEntities: boolean = True);

Parameters

FileName

Holds the name of the file to load data from.

LoadFields

Indicates whether to load fields from the file.

DecodeHTMLEntities

Indicates whether to decode HTML entities from the file.

Remarks

Call the LoadFromFile method to load data from a file into a TVirtualTable component. Specify

the name of the file to load into the field as the value of the FileName parameter.This file may

be an XML document in ADO-compatible format or in virtual table data format. The file format

is detected automatically.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html
https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

Reference 1151

© 2024 Devart

6.29.1.1.3.3 LoadFromStream Method

Copies data from a stream into a TVirtualTable component.

Class

TVirtualTable

Syntax

procedure LoadFromStream(Stream: TStream; LoadFields: boolean =

True; DecodeHTMLEntities: boolean = True);

Parameters

Stream

Holds the stream from which the field's value is copied.

LoadFields

Indicates whether to load fields from the stream.

DecodeHTMLEntities

Indicates whether to decode HTML entities from the stream.

Remarks

Call the LoadFromStream method to copy data from a stream into a TVirtualTable

component. Specify the stream from which the field's value is copied as the value of the

Stream parameter. Data in the stream may be in ADO-compatible format or in virtual table

data format. The data format is detected automatically.

© 1997-2024
Devart. All Rights
Reserved.

Request Support DAC Forum Provide Feedback

https://www.devart.com/company/contactform.html?category=1&product=unidac
https://support.devart.com/portal/en/community/delphi-data-access-components
https://www.devart.com/unidac/feedback.html

	What's New
	General Information
	Overview
	Features
	Requirements
	Compatibility
	Using Several DAC Products in One IDE
	Component List
	Hierarchy Chart
	Editions
	Licensing
	Getting Support

	Getting Started
	Installation
	Migration Wizard
	UniDAC Basics
	Demo Projects
	Deployment

	Using UniDAC
	Connecting to Database
	Updating data with UniDAC
	Master/Detail Relationships
	Data Types
	Data Type Mapping
	Data Encryption
	Working in an Unstable Network
	Disconnected Mode
	Batch Operations
	Increasing Performance
	Using Connection Pooling
	Macros
	DataSet Manager
	Network Tunneling
	Executing Stored Procedures
	Transactions
	Unified SQL
	DBMonitor
	Writing GUI Applications with UniDAC
	Compatibility with Previous Versions
	64-bit Development with Embarcadero RAD Studio XE2
	C++ Builder Development for Android and iOS

	Provider-Specific Notes
	Database Providers
	UniDAC and Adaptive Server Enterprise
	UniDAC and Advantage Database Server
	UniDAC and Amazon Redshift
	UniDAC and DB2
	UniDAC and DBF
	UniDAC and InterBase/Firebird
	InterBase/Firebird Provider
	OTW Network Encryption

	UniDAC and Microsoft Access
	UniDAC and MongoDB
	UniDAC and MySQL
	UniDAC and NexusDB
	UniDAC and PostgreSQL
	UniDAC and ODBC
	UniDAC and Oracle
	UniDAC and SQLite
	SQLite Provider
	Database File Encryption

	UniDAC and SQL Server

	Cloud Providers
	UniDAC and BigCommerce
	UniDAC and Dynamics 365
	UniDAC and FreshBooks
	UniDAC and Google BigQuery
	UniDAC and HubSpot
	UniDAC and Magento
	UniDAC and Mailchimp
	UniDAC and NetSuite
	UniDAC and QuickBooks
	UniDAC and Salesforce
	UniDAC and Salesforce MC
	UniDAC and SugarCRM
	UniDAC and Zoho CRM

	Database Specific Aspects of 64-bit Development

	Reference
	CRAccess
	Classes
	TCRCursor Class
	Members

	Types
	TBeforeFetchProc Procedure Reference

	Enumerations
	TCRIsolationLevel Enumeration
	TCRTransactionAction Enumeration
	TCursorState Enumeration

	CRBatchMove
	Classes
	TCRBatchMove Class
	Members
	Properties
	AbortOnKeyViol Property
	AbortOnProblem Property
	ChangedCount Property
	CommitCount Property
	Destination Property
	FieldMappingMode Property
	KeyViolCount Property
	Mappings Property
	Mode Property
	MovedCount Property
	ProblemCount Property
	RecordCount Property
	Source Property

	Methods
	Execute Method

	Events
	OnBatchMoveProgress Event

	Types
	TCRBatchMoveProgressEvent Procedure Reference

	Enumerations
	TCRBatchMode Enumeration
	TCRFieldMappingMode Enumeration

	CREncryption
	Classes
	TCREncryptor Class
	Members
	Properties
	DataHeader Property
	EncryptionAlgorithm Property
	HashAlgorithm Property
	InvalidHashAction Property
	Password Property

	Methods
	SetKey Method

	Enumerations
	TCREncDataHeader Enumeration
	TCREncryptionAlgorithm Enumeration
	TCRHashAlgorithm Enumeration
	TCRInvalidHashAction Enumeration

	CRVio
	Classes
	THttpOptions Class
	Members
	Properties
	Enabled Property
	Password Property
	ProxyOptions Property
	TrustServerCertificate Property
	Url Property
	Username Property

	TProxyOptions Class
	Members
	Properties
	Hostname Property
	Password Property
	Port Property
	Username Property

	Enumerations
	TIPVersion Enumeration

	CRXml
	Structs
	TAttribute Record

	DAAlerter
	Classes
	TDAAlerter Class
	Members
	Properties
	Active Property
	AutoRegister Property
	Connection Property

	Methods
	SendEvent Method
	Start Method
	Stop Method

	Events
	OnError Event

	Types
	TAlerterErrorEvent Procedure Reference
	TAlerterEventEvent Procedure Reference

	DADump
	Classes
	TDADump Class
	Members
	Properties
	Connection Property
	Debug Property
	Options Property
	SQL Property
	TableNames Property

	Methods
	Backup Method
	BackupQuery Method
	BackupToFile Method
	BackupToStream Method
	Restore Method
	RestoreFromFile Method
	RestoreFromStream Method

	Events
	OnBackupProgress Event
	OnError Event
	OnRestoreProgress Event

	TDADumpOptions Class
	Members
	Properties
	AddDrop Property
	CompleteInsert Property
	GenerateHeader Property
	QuoteNames Property

	Types
	TDABackupProgressEvent Procedure Reference
	TDARestoreProgressEvent Procedure Reference

	DALoader
	Classes
	TDAColumn Class
	Members
	Properties
	FieldType Property
	Name Property

	TDAColumns Class
	Members
	Properties
	Items Property(Indexer)

	TDALoader Class
	Members
	Properties
	Columns Property
	Connection Property
	TableName Property

	Methods
	CreateColumns Method
	Load Method
	LoadFromDataSet Method
	PutColumnData Method
	PutColumnData Method
	PutColumnData Method

	Events
	OnGetColumnData Event
	OnProgress Event
	OnPutData Event

	TDALoaderOptions Class
	Members
	Properties
	UseBlankValues Property

	Types
	TDAPutDataEvent Procedure Reference
	TGetColumnDataEvent Procedure Reference
	TLoaderProgressEvent Procedure Reference

	DAScript
	Classes
	TDAScript Class
	Members
	Properties
	Connection Property
	DataSet Property
	Debug Property
	Delimiter Property
	EndLine Property
	EndOffset Property
	EndPos Property
	Macros Property
	SQL Property
	StartLine Property
	StartOffset Property
	StartPos Property
	Statements Property

	Methods
	BreakExec Method
	ErrorOffset Method
	Execute Method
	ExecuteFile Method
	ExecuteNext Method
	ExecuteStream Method
	FindMacro Method
	MacroByName Method

	Events
	AfterExecute Event
	BeforeExecute Event
	OnError Event

	TDAStatement Class
	Members
	Properties
	EndLine Property
	EndOffset Property
	EndPos Property
	Omit Property
	Params Property
	Script Property
	SQL Property
	StartLine Property
	StartOffset Property
	StartPos Property

	Methods
	Execute Method

	TDAStatements Class
	Members
	Properties
	Items Property(Indexer)

	Types
	TAfterStatementExecuteEvent Procedure Reference
	TBeforeStatementExecuteEvent Procedure Reference
	TOnErrorEvent Procedure Reference

	Enumerations
	TErrorAction Enumeration

	DASQLMonitor
	Classes
	TCustomDASQLMonitor Class
	Members
	Properties
	Active Property
	DBMonitorOptions Property
	Options Property
	TraceFlags Property

	Events
	OnSQL Event

	TDBMonitorOptions Class
	Members
	Properties
	Host Property
	Port Property
	ReconnectTimeout Property
	SendTimeout Property

	Types
	TDATraceFlags Set
	TMonitorOptions Set
	TOnSQLEvent Procedure Reference

	Enumerations
	TDATraceFlag Enumeration
	TMonitorOption Enumeration

	DBAccess
	Classes
	EDAError Class
	Members
	Properties
	Component Property
	ErrorCode Property

	TCRDataSource Class
	Members

	TCustomConnectDialog Class
	Members
	Properties
	CancelButton Property
	Caption Property
	ConnectButton Property
	DialogClass Property
	LabelSet Property
	PasswordLabel Property
	Retries Property
	SavePassword Property
	ServerLabel Property
	StoreLogInfo Property
	UsernameLabel Property

	Methods
	Execute Method
	GetServerList Method

	TCustomDAConnection Class
	Members
	Properties
	ConnectDialog Property
	ConnectString Property
	ConvertEOL Property
	InTransaction Property
	LoginPrompt Property
	Options Property
	Password Property
	Pooling Property
	PoolingOptions Property
	Server Property
	Username Property

	Methods
	ApplyUpdates Method
	ApplyUpdates Method
	ApplyUpdates Method

	Commit Method
	Connect Method
	CreateSQL Method
	Disconnect Method
	ExecProc Method
	ExecProcEx Method
	ExecSQL Method
	ExecSQLEx Method
	GetDatabaseNames Method
	GetKeyFieldNames Method
	GetStoredProcNames Method
	GetTableNames Method
	MonitorMessage Method
	Ping Method
	RemoveFromPool Method
	Rollback Method
	StartTransaction Method

	Events
	OnConnectionLost Event
	OnError Event

	TCustomDADataSet Class
	Members
	Properties
	BaseSQL Property
	Conditions Property
	Connection Property
	DataTypeMap Property
	Debug Property
	DetailFields Property
	Disconnected Property
	FetchRows Property
	FilterSQL Property
	FinalSQL Property
	IsQuery Property
	KeyFields Property
	MacroCount Property
	Macros Property
	MasterFields Property
	MasterSource Property
	Options Property
	ParamCheck Property
	ParamCount Property
	Params Property
	ReadOnly Property
	RefreshOptions Property
	RowsAffected Property
	SQL Property
	SQLDelete Property
	SQLInsert Property
	SQLLock Property
	SQLRecCount Property
	SQLRefresh Property
	SQLUpdate Property
	UniDirectional Property

	Methods
	AddWhere Method
	BreakExec Method
	CreateBlobStream Method
	DeleteWhere Method
	Execute Method
	Execute Method
	Execute Method

	Executing Method
	Fetched Method
	Fetching Method
	FetchingAll Method
	FindKey Method
	FindMacro Method
	FindNearest Method
	FindParam Method
	GetDataType Method
	GetFieldObject Method
	GetFieldPrecision Method
	GetFieldScale Method
	GetKeyFieldNames Method
	GetOrderBy Method
	GotoCurrent Method
	Lock Method
	MacroByName Method
	ParamByName Method
	Prepare Method
	RefreshRecord Method
	RestoreSQL Method
	SaveSQL Method
	SetOrderBy Method
	SQLSaved Method
	UnLock Method

	Events
	AfterExecute Event
	AfterFetch Event
	AfterUpdateExecute Event
	BeforeFetch Event
	BeforeUpdateExecute Event

	TCustomDASQL Class
	Members
	Properties
	ChangeCursor Property
	Connection Property
	Debug Property
	FinalSQL Property
	MacroCount Property
	Macros Property
	ParamCheck Property
	ParamCount Property
	Params Property
	ParamValues Property(Indexer)
	Prepared Property
	RowsAffected Property
	SQL Property

	Methods
	BreakExec Method
	Execute Method
	Execute Method
	Execute Method

	Executing Method
	FindMacro Method
	FindParam Method
	MacroByName Method
	ParamByName Method
	Prepare Method
	UnPrepare Method
	WaitExecuting Method

	Events
	AfterExecute Event

	TCustomDAUpdateSQL Class
	Members
	Properties
	DataSet Property
	DeleteObject Property
	DeleteSQL Property
	InsertObject Property
	InsertSQL Property
	LockObject Property
	LockSQL Property
	ModifyObject Property
	ModifySQL Property
	RefreshObject Property
	RefreshSQL Property
	SQL Property(Indexer)

	Methods
	Apply Method
	ExecSQL Method

	TDACondition Class
	Members
	Properties
	Enabled Property
	Name Property
	Value Property

	Methods
	Disable Method
	Enable Method

	TDAConditions Class
	Members
	Properties
	Condition Property(Indexer)
	Enabled Property
	Items Property(Indexer)
	Text Property
	WhereSQL Property

	Methods
	Add Method
	Add Method
	Add Method

	Delete Method
	Disable Method
	Enable Method
	Find Method
	Get Method
	IndexOf Method
	Remove Method

	TDAConnectionOptions Class
	Members
	Properties
	AllowImplicitConnect Property
	DefaultSortType Property
	DisconnectedMode Property
	KeepDesignConnected Property
	LocalFailover Property

	TDAConnectionSSLOptions Class
	Members
	Properties
	CACert Property
	Cert Property
	CipherList Property
	Key Property

	TDADataSetOptions Class
	Members
	Properties
	AutoPrepare Property
	CacheCalcFields Property
	CompressBlobMode Property
	DefaultValues Property
	DetailDelay Property
	FieldsOrigin Property
	FlatBuffers Property
	InsertAllSetFields Property
	LocalMasterDetail Property
	LongStrings Property
	MasterFieldsNullable Property
	NumberRange Property
	QueryRecCount Property
	QuoteNames Property
	RemoveOnRefresh Property
	RequiredFields Property
	ReturnParams Property
	SetFieldsReadOnly Property
	StrictUpdate Property
	TrimFixedChar Property
	UpdateAllFields Property
	UpdateBatchSize Property

	TDAEncryption Class
	Members
	Properties
	Encryptor Property
	Fields Property

	TDAMapRule Class
	Members
	Properties
	DBLengthMax Property
	DBLengthMin Property
	DBScaleMax Property
	DBScaleMin Property
	DBType Property
	FieldLength Property
	FieldName Property
	FieldScale Property
	FieldType Property
	IgnoreErrors Property

	TDAMapRules Class
	Members
	Properties
	IgnoreInvalidRules Property

	TDAMetaData Class
	Members
	Properties
	Connection Property
	MetaDataKind Property
	Restrictions Property

	Methods
	GetMetaDataKinds Method
	GetRestrictions Method

	TDAParam Class
	Members
	Properties
	AsBlob Property
	AsBlobRef Property
	AsFloat Property
	AsInteger Property
	AsLargeInt Property
	AsMemo Property
	AsMemoRef Property
	AsSQLTimeStamp Property
	AsString Property
	AsWideString Property
	DataType Property
	IsNull Property
	ParamType Property
	Size Property
	Value Property

	Methods
	AssignField Method
	AssignFieldValue Method
	LoadFromFile Method
	LoadFromStream Method
	SetBlobData Method
	SetBlobData Method
	SetBlobData Method

	TDAParams Class
	Members
	Properties
	Items Property(Indexer)

	Methods
	FindParam Method
	ParamByName Method

	TDATransaction Class
	Members
	Properties
	Active Property
	DefaultCloseAction Property

	Methods
	Commit Method
	Rollback Method
	StartTransaction Method

	Events
	OnCommit Event
	OnCommitRetaining Event
	OnError Event
	OnRollback Event
	OnRollbackRetaining Event

	TMacro Class
	Members
	Properties
	Active Property
	AsDateTime Property
	AsFloat Property
	AsInteger Property
	AsString Property
	Name Property
	Value Property

	TMacros Class
	Members
	Properties
	Items Property(Indexer)

	Methods
	AssignValues Method
	Expand Method
	FindMacro Method
	IsEqual Method
	MacroByName Method
	Scan Method

	TPoolingOptions Class
	Members
	Properties
	ConnectionLifetime Property
	MaxPoolSize Property
	MinPoolSize Property
	PoolId Property
	Validate Property

	TSmartFetchOptions Class
	Members
	Properties
	Enabled Property
	LiveBlock Property
	PrefetchedFields Property
	SQLGetKeyValues Property

	Types
	TAfterExecuteEvent Procedure Reference
	TAfterFetchEvent Procedure Reference
	TBeforeFetchEvent Procedure Reference
	TConnectionLostEvent Procedure Reference
	TDAConnectionErrorEvent Procedure Reference
	TDATransactionErrorEvent Procedure Reference
	TRefreshOptions Set
	TUpdateExecuteEvent Procedure Reference

	Enumerations
	TLabelSet Enumeration
	TLockMode Enumeration
	TRefreshOption Enumeration
	TRetryMode Enumeration

	Variables
	ChangeCursor Variable

	LiteCollation
	Types
	TLiteAnsiCollation Function Reference
	TLiteCollation Function Reference
	TLiteWideCollation Function Reference

	LiteFunction
	Types
	TLiteFunction Function Reference

	MemData
	Classes
	TBlob Class
	Members
	Properties
	AsString Property
	AsWideString Property
	IsUnicode Property
	Size Property

	Methods
	Assign Method
	Clear Method
	LoadFromFile Method
	LoadFromStream Method
	Read Method
	SaveToFile Method
	SaveToStream Method
	Truncate Method
	Write Method

	TCompressedBlob Class
	Members
	Properties
	Compressed Property
	CompressedSize Property

	TDBObject Class
	Members

	TMemData Class
	Members

	TObjectType Class
	Members
	Properties
	AttributeCount Property
	Attributes Property(Indexer)
	DataType Property
	Size Property

	Methods
	FindAttribute Method

	TSharedObject Class
	Members
	Properties
	RefCount Property

	Methods
	AddRef Method
	Release Method

	Types
	TLocateExOptions Set
	TUpdateRecKinds Set

	Enumerations
	TCompressBlobMode Enumeration
	TConnLostCause Enumeration
	TDANumericType Enumeration
	TLocateExOption Enumeration
	TSortType Enumeration
	TUpdateRecKind Enumeration

	MemDS
	Classes
	TMemDataSet Class
	Members
	Properties
	CachedUpdates Property
	IndexFieldNames Property
	KeyExclusive Property
	LocalConstraints Property
	LocalUpdate Property
	Prepared Property
	Ranged Property
	UpdateRecordTypes Property
	UpdatesPending Property

	Methods
	ApplyRange Method
	ApplyUpdates Method
	ApplyUpdates Method
	ApplyUpdates Method

	CancelRange Method
	CancelUpdates Method
	CommitUpdates Method
	DeferredPost Method
	EditRangeEnd Method
	EditRangeStart Method
	GetBlob Method
	GetBlob Method
	GetBlob Method

	Locate Method
	Locate Method
	Locate Method

	LocateEx Method
	LocateEx Method
	LocateEx Method

	Prepare Method
	RestoreUpdates Method
	RevertRecord Method
	SaveToXML Method
	SaveToXML Method
	SaveToXML Method

	SetRange Method
	SetRangeEnd Method
	SetRangeStart Method
	UnPrepare Method
	UpdateResult Method
	UpdateStatus Method

	Events
	OnUpdateError Event
	OnUpdateRecord Event

	OracleUniProvider
	Classes
	TOraUtils Class
	Members
	Methods
	ChangePassword Method

	SQLiteUniProvider
	Classes
	TLiteUtils Class
	Members
	Methods
	EncryptDatabase Method
	RegisterAnsiCollation Method
	RegisterCollation Method
	RegisterFunction Method
	RegisterWideCollation Method
	UnRegisterAnsiCollation Method
	UnRegisterCollation Method
	UnRegisterFunction Method
	UnRegisterWideCollation Method

	SQLServerUniProvider
	Classes
	TMSSqlUtils Class
	Members
	Methods
	ChangePassword Method

	Uni
	Classes
	TCustomUniDataSet Class
	Members
	Properties
	DMLRefresh Property
	LastInsertId Property
	Options Property
	Params Property
	SpecificOptions Property
	Transaction Property
	UpdateObject Property
	UpdateTransaction Property

	Methods
	CreateProcCall Method
	FindParam Method
	OpenNext Method
	ParamByName Method

	TCustomUniTable Class
	Members
	Methods
	PrepareSQL Method

	TUniBlob Class
	Members

	TUniConnection Class
	Members
	Properties
	AutoCommit Property
	Database Property
	DefaultTransaction Property
	Macros Property
	Port Property
	ProviderName Property
	SpecificOptions Property

	Methods
	ActiveMacroValueByName Method
	AssignConnect Method
	CommitRetaining Method
	CreateDataSet Method
	CreateSQL Method
	CreateTransaction Method
	ParamByName Method
	ReleaseSavepoint Method
	RollbackRetaining Method
	RollbackToSavepoint Method
	Savepoint Method
	StartTransaction Method
	StartTransaction Method
	StartTransaction Method

	TUniDataSetOptions Class
	Members
	Properties
	EnableBCD Property
	EnableFMTBCD Property
	FullRefresh Property
	SetEmptyStrToNull Property
	TrimVarChar Property

	TUniDataSource Class
	Members

	TUniEncryptor Class
	Members

	TUniMacro Class
	Members
	Properties
	Condition Property
	Name Property
	Value Property

	TUniMacros Class
	Members
	Properties
	Items Property(Indexer)

	Methods
	Add Method
	FindMacro Method
	MacroByName Method

	TUniMetaData Class
	Members
	Properties
	Connection Property
	Transaction Property

	TUniParam Class
	Members

	TUniParams Class
	Members

	TUniQuery Class
	Members
	Properties
	LockMode Property
	UpdatingTable Property

	TUniSQL Class
	Members
	Properties
	Connection Property
	LastInsertId Property
	SpecificOptions Property
	Transaction Property

	Methods
	CreateProcCall Method
	FindParam Method
	ParamByName Method

	TUniStoredProc Class
	Members
	Properties
	LockMode Property
	StoredProcName Property

	Methods
	ExecProc Method
	PrepareSQL Method

	TUniTable Class
	Members
	Properties
	LockMode Property
	OrderFields Property
	TableName Property

	TUniTransaction Class
	Members
	Properties
	Connections Property(Indexer)
	ConnectionsCount Property
	IsolationLevel Property

	Methods
	AddConnection Method
	CommitRetaining Method
	RemoveConnection Method
	RollbackRetaining Method

	TUniUpdateSQL Class
	Members

	Constants
	UniDACVersion Constant

	UniAlerter
	Classes
	TUniAlerter Class
	Members
	Properties
	Connection Property

	UniDacVcl
	Classes
	TUniConnectDialog Class
	Members
	Properties
	Connection Property
	DatabaseLabel Property
	PortLabel Property
	ProviderLabel Property

	UniDump
	Classes
	TUniDump Class
	Members

	UniLoader
	Classes
	TUniLoader Class
	Members

	UniProvider
	Classes
	TUniProvider Class
	Members

	UniScript
	Classes
	TUniScript Class
	Members
	Properties
	Connection Property
	DataSet Property
	SpecificOptions Property
	Transaction Property

	UniSQLMonitor
	Classes
	TUniSQLMonitor Class
	Members

	VirtualDataSet
	Classes
	TCustomVirtualDataSet Class
	Members

	TVirtualDataSet Class
	Members

	Types
	TOnDeleteRecordEvent Procedure Reference
	TOnGetFieldValueEvent Procedure Reference
	TOnGetRecordCountEvent Procedure Reference
	TOnModifyRecordEvent Procedure Reference

	VirtualQuery
	Classes
	TCustomVirtualQuery Class
	Members
	Properties
	Options Property
	SourceDataSets Property

	Events
	OnRegisterCollations Event
	OnRegisterFunctions Event

	TDataSetLink Class
	Members
	Properties
	DataSet Property
	SchemaName Property
	TableName Property

	TDataSetLinks Class
	Members
	Methods
	Add Method
	Add Method
	Add Method

	TVirtualCollationManager Class
	Members
	Methods
	RegisterAnsiCollation Method
	RegisterAnsiCollation Method
	RegisterAnsiCollation Method

	RegisterCollation Method
	RegisterCollation Method
	RegisterCollation Method

	RegisterDefaultCollations Method
	RegisterWideCollation Method
	RegisterWideCollation Method
	RegisterWideCollation Method

	UnRegisterAnsiCollation Method
	UnRegisterCollation Method
	UnRegisterDefaultCollations Method
	UnRegisterWideCollation Method

	TVirtualFunctionManager Class
	Members
	Methods
	RegisterFunction Method
	RegisterFunction Method
	RegisterFunction Method

	TVirtualQuery Class
	Members
	Properties
	FetchAll Property
	UpdatingTable Property

	TVirtualQueryOptions Class
	Members
	Properties
	AutoOpenSources Property
	FullRefresh Property
	SetEmptyStrToNull Property
	TrimVarChar Property
	UseUnicode Property

	Types
	TRegisterFunctionsEvent Procedure Reference

	VirtualTable
	Classes
	TVirtualTable Class
	Members
	Properties
	DefaultSortType Property

	Methods
	Assign Method
	LoadFromFile Method
	LoadFromStream Method

